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a b s t r a c t

In this paper, a novel selective ensemble strategy for support vector data description (SVDD) using the
Renyi entropy based diversity measure is proposed to deal with the problem of one-class classification. In
order to obtain compact classification boundary, the radius of ensemble is defined as the inner product of
the vector of combination weights and the vector of the radii of SVDDs. To make the center of ensemble
achieve the optimal position, the Renyi entropy of the kernelized distances between the images of
samples and the center of ensemble in the high-dimensional feature space is defined as the diversity
measure. Moreover, to fulfill the selective ensemble, an ℓ1-norm based regularization term is introduced
into the objective function of the proposed ensemble. The optimal combination weights can be iteratively
obtained by the half-quadratic optimization technique. Experimental results on two synthetic data sets
and twenty benchmark data sets demonstrate that the proposed selective ensemble method is superior
to the single SVDD and the other four related ensemble approaches.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

One-class classification [1–3] is regarded as a machine learning
task between supervised learning and unsupervised learning. It
can efficiently deal with the problem of extreme class imbalance.
In the training phase, only the samples in one-class can be used to
train a classifier. Moreover, the testing samples can be classified as
normal or novel by the trained classifier. There are many examples
of one-class classification in our real world, such as machine fault
detection [4], network intrusion detection [5], medical diagnosis
[6], credit scoring [7], among others [8,9].

Support vector data description (SVDD) [10] is a generally used
method as a one-class classifier. It establishes a hyper-sphere in
the form of kernel expansion to distinguish the normal data from
the novel data. The kernel function in the decision function maps
the samples from the original space into a high-dimensional fea-
ture space while the explicit form of the mapping is not needed
according to the ‘kernel trick’ [11]. When certain conditions are
satisfied, SVDD is proved to be equivalent to one-class support
vector machine (OCSVM) [12,10].

To make one-class classifier achieve more compact classifica-
tion boundary, Tax and Duin [13] proposed the ensemble of one-
class classifiers. They found that the ensemble can obviously im-
prove the classification performance of one-class classifier. Seguí
et al. [14] proposed the weighted bagging based ensemble of one-
class classifiers. They utilized minimum spanning tree class de-
scriptor as base classifiers. Zhang et al. [15] used locality preser-
ving projection to reduce the dimensionality of the original data,
trained several SVDDs upon the reduced data, and combined the
outputs of the trained SVDDs. Hamdi and Bennani [16] proposed
an ensemble of one-class classifiers by utilizing the orthogonal
projection operator and the bootstrap strategy. Wilk and Woźniak
[17] constructed the ensemble of one-class classifiers by fuzzy
combiner. They utilized fuzzy rule based classifier as base classi-
fier, while used fuzzy error correcting output codes and fuzzy
decision templates as ensemble strategies. For tackling malware
detection, Liu et al. [19] constructed random subspace method
based ensemble of cost-sensitive twin one-class classifiers. Casale
et al. [20] proposed the approximate polytope based ensemble of
one-class classifiers. The methodology uses the geometrical con-
cept of convex hull to define the boundary of the normal class,
while utilizes random projections and ensemble decision process
to judge whether a sample belongs to the convex hull in high-
dimensional spaces. Furthermore, a tilling strategy was proposed
to model non-convex structures. Krawczyk et al. [18] proposed the
clustering-based ensemble of one-class classifiers. The clustering
algorithm is utilized to split the whole normal class into the dis-
jointed sub-regions. On each sub-region, a single one-class
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Fig. 1. Schematic diagram of the ensemble of SVDDs. a1 and a2 are the centers of
the two SVDDs, while ENSVDDs are the ensembles of the two SVDDs.
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classifier is trained. Finally, the outputs of all the one-class clas-
sifiers are combined together. Aghdam et al. [33] developed a new
one-class classification method that can be trained with or with-
out novel data and it can model the observation domain utilizing
any binary classification approach. To mine data steams with
concept drift, Czarnowski and Jedrzejowicz [34] proposed an in-
stance selection and chunk updating based ensemble of one-class
classifiers. Experimental results demonstrate that their method
can outperform the well-known approaches for data streams with
concept drift.

For the scenarios of two-class classification and multi-class
classification, diversity is regarded as a key issue in classifier en-
semble. Dietterich [21] compared the effectiveness of three en-
semble methods, i.e., randomization, bagging, and boosting for
improving the performance of the single decision tree. Through
experiments he declared that randomization is competitive with
bagging but not as accurate as boosting in the situation with little
or no noise in the given training samples. Moreover, Dietterich
also observed that the classifiers in the ensemble become less
diverse as they become more accurate. Conversely, the classifiers
become less accurate as they become more diverse. Kuncheva and
Whitaker [22] studied ten measures of diversity between the base
classifiers. They concluded that designing diverse classifiers is
correct. However, in real-life pattern recognition problems, mea-
suring diversity and utilizing the diversity to efficiently build
better classifier ensemble is still an open problem. For the majority
vote combiner, Brown and Kuncheva [23] first decomposed the
classification error into three parts, i.e., individual accuracy, ‘good’
diversity, and ‘bad’ diversity. Moreover, they also declared that a
larger value of the good diversity reduces the majority vote error,
while a larger value of bad diversity increases the error. Recently,
Sidhu et al. [24,25] studied the diversified ensemble approaches
for the online stream data.

Similar to the cases of two-class classification and multi-class
classification, diversity measure [26,27] acts an important role for
the ensemble of one-class classifiers. Krawczyk and Woźniak
[28,29] first investigated the diversity of ensemble for one-class
classification and formulated five diversity measures. Moreover,
Krawczyk and Woźniak [30] studied the relationship between the
accuracy and diversity towards the ensemble of one-class classi-
fiers. They proposed a novel ensemble strategy for one-class
classification by assuring both high accuracy of individual one-
class classifiers and high diversity among these classifiers. Besides
the accuracy of individual one-class classifiers and the diversity of
ensemble, the combination strategy also affects the performance
of the ensemble of one-class classifiers. Menahem et al. summar-
ized the commonly used combination rules and provided a list in
literature [31]. However, these combination rules all rely on the
estimated probability of sample given the normal class. In the
study, the LSE (lease squares estimation)-based weighting [32] is
utilized to directly combine the outputs of the decision functions
of individual SVDDs.

As aforementioned, the classification boundary of SVDD in the
high-dimensional feature space is hyper-sphere. After combined
by the LSE-based weighting rule, the boundary of ensemble of
SVDDs in the feature space is also a hyper-sphere. Fig. 1 illustrates
an ensemble of SVDDs. It can be deduced from Fig. 1 that the
performance of the ensemble of SVDDs is determined by its length
of radius and location of center. Therefore, the study focuses on
finding the optimal radius and center of ensemble rather than the
highest diversity of ensemble.

Moreover, although an ensemble of classifiers often achieves
better performance than one single classifier, the computational
cost for obtaining the ensemble of these classifiers will become
expensive when the number of base classifiers is large. To over-
come the aforementioned disadvantage, Zhou et al. proved in [35]
that it is better to ensemble part of the base classifiers rather than
all of them. Li and Zhou [36] proposed a selective ensemble al-
gorithm based on the regularization framework. Through solving a
quadratic programming, they get the sparse solution of the vector
of combination weights and implement the selective ensemble.
Zhang and Zhou [37] proposed a linear programming based sparse
ensemble method. Yan et al. [38] proposed a selective neural
network ensemble classification algorithm for the incomplete
data. It is noted in ensemble learning because the handling of
uncertainty plays a key role for classifier performance improve-
ment (e.g. [39,40]) and the selection of base classifier is very
sensitive to the overall performance in bio-informatics [41,42].
Nevertheless, the existing selective ensemble approaches mainly
concentrate on the supervised learning. Till now, there are too few
work upon the selective ensemble of one-class classifiers. Krawc-
zyk and Woźniak [43–46] investigated this issue and proposed
four pruning strategies, i.e., multi-objective ensemble pruning,
dynamic classifier selection method, firefly algorithm based en-
semble pruning, and clustering-based pruning. Experimental re-
sults demonstrate that their methods outperform the state-of-the-
art algorithms for selecting one-class classifiers from the given
classifier committees. Parhizkar and Abadi [47] utilized a modified
binary artificial bee colony algorithm to prune the ensemble of
one-class classifiers and used the ordered weighted averaging
operator to combine the outputs of base classifiers in the pruned
ensemble.

In this study, we propose a selective ensemble strategy for
SVDD to get the optimal combination weights of base classifiers.
The proposed ensemble is mainly based on the Renyi entropy
based diversity measure. The main contributions of the present
study are as follows:

� The radius of ensemble is defined to be the inner product be-
tween the vector of combination weights and the vector of the
radii of SVDDs. Therefore, minimizing the radius of ensemble
can make the classification boundary of the ensemble of SVDDs
as compact as possible.

� The Renyi entropy of the distance variable obtained by the
kernelized distances between the images of samples and the
center of ensemble in the feature space is defined as the di-
versity measure. Maximizing the Renyi entropy based diversity
can make the center of ensemble attain the optimal position in
the feature space.

� An ℓ1-norm based regularization term of the vector of
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combination weights is introduced into the objective function of
the proposed ensemble. Maximizing the ℓ1-norm based reg-
ularization term can effectively fulfill the selective ensemble.

The rest of the paper is organized as follows. SVDD and Renyi
entropy are briefly reviewed in Section 2. In Section 3, the pro-
posed selective ensemble based on the Renyi entropy based di-
versity measure is expatiated. Experiments to validate the pro-
posed ensemble method are conducted in Section 4. Finally, Sec-
tion 5 concludes the study.
2. Preliminaries

In this section, the optimization problems and decision formula
of SVDD are briefly introduced, while the mathematical expression
and estimation calculation of Renyi entropy are briefly reviewed.

2.1. SVDD

SVDD was proposed by Tax and Duin [10]. It finds the smallest
sphere enclosing all the normal data. Given N normal data { } =xi i

N
1

with ∈xi
d, the original optimization problem of SVDD is given

by
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where R is the radius of the enclosing sphere, C is the trade-off
parameter, ξi is the slack variable, and a is the center of the en-
closing sphere. The optimization problem (1) can be solved by the
Lagrange multiplier method. Moreover, substituting the inner
products in the dual optimization problem of (1) by kernel func-
tions, we can obtain the following dual optimization problemwith
nonlinear kernels
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For the choice of kernel functions (· ·)K , , one can refer to literature
[48].

Given a test sample x , it can be classified as the normal data if
the following condition holds
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where ϕ(·) is a nonlinear mapping function that maps the given
samples from the original space into the high-dimensional feature
space. Moreover, if (3) does not satisfy, x is classified as the novel
data.

2.2. Renyi entropy

For a statistic variable X with probability density function f(X),
its Renyi entropy is defined as
∫α
α α( ) =

−
( ) > ≠ ( )

αH X f X dX
1

1
log , 0, 1. 4R

Especially, if α = 2, (4) becomes

∫( ) = − ( ) ( )H X f X dXlog , 5R
2

2

which is known as Renyi quadratic entropy.
Let { } =xi i

N
1 be a set of independent identical distribution samples

with d features drawn from the probability density function f(X).
Therefore, f(X) can be estimated by the Parzen window estimator,
that is,
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where (·)σW 2 is the Parzen window and the scale parameter s2

controls its width. Typically, Gaussian kernel function is commonly
chosen as the kernel function of the Parzen window.
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According to the convolution theorem for Gaussian [49], we
have
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Hence, the Renyi entropy of { } =xi i
N

1 can be obtained as
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For the Renyi entropy in (10), there are two issues should be
declared. First, because the Renyi quadratic entropy is a lower
bound of Shannon's entropy, it might be more efficient than
Shannon's entropy for entropy maximization (cf. [50] p. 54). Sec-
ond, it turns out that the Renyi entropy in (10) provides significant
computational saving [51].
3. Selective ensemble of SVDDs

3.1. Problem formulation
Definition 1. For M SVDDs, the radius of their ensemble is defined
as

∑¯ = =
( )=

r w r w r,
11k

M

k k
T

1

where rk denotes the radius of the kth SVDD, = ( … )w w ww , , , M
T

1 2
is the vector of combination weights for the M radii, and
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= ( … )r r rr , , , M
T

1 2 is the vector consisting of the M radii.

To make the classification boundary of the ensemble of SVDDs
as compact as possible, the square of its radius r̄2 needs to be
minimized. However, to avoid SVDDs in ensemble obtains the
same radius and center, part of the whole training samples are
randomly selected with replacement to train each SVDD. There-
fore, the initialization strategy of the proposed ensemble method
is same with bagging. According to (11), r̄2 can be expressed as

( )¯ = = ( )r w r w rr w. 12
T T T2 2

Let the center vector of the kth SVDD be ak. The kernelized
distance between the image of the ith sample xi and ak in the
feature space is given by
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The different kernelized distances between the image of xi and the
centers of two different SVDDs in the feature space are illustrated
in Fig. 2.

Definition 2. Let dik denote the kernelized distance between the
image of the ith sample xi and the center of the kth SVDD in the
feature space. The kernelized distance between the image of xi

and the center of ensemble in the feature space is defined as

∑¯ = =
( )=

d w d w d ,
14
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T

1 2 .

For the above two definitions, there are three issues that should
be mentioned as follows.

� Once the training procedure of the M SVDDs completes, they
keep fixed. Therefore, the centers { } =ak k

M
1 and radii { } =rk k

M
1 of the

M SVDDs remain unchanged during the procedure for con-
structing an ensemble.

� The explicit expression of the center of ensemble is not given.
One can deduce from (14) that the position of the center of
ensemble moves as the distances { ¯ } =di i

N
1 alter.

� According to the formulae (11) and (14), the location of the
Fig. 2. The kernelized distance between the image of xi and the centers of two
different SVDDs in the feature space.
center and the length of the radius for an ensemble are both
affected by tuning the vector of combination weights w .

Definition 3. The diversity of the distance variable
¯ = { ¯ ¯ … ¯ }D d d d, , , N1 2 can be measured by its Renyi entropy
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Note that the proposed diversity measure is used for measuring
the diversity of the N distances ¯ ¯ … ¯d d d, , , N1 2 rather than the di-
versity of the N SVDDs. According to (15), the high degree of
scatter for the N distances can be obtained by maximizing the
proposed diversity measure. Moreover, as the aforementioned is-
sue, the position of the center of ensemble can be changed by
altering the N kernelized distances between the N samples and the
center of ensemble. Therefore, the optimal location of the center of
ensemble can also be obtained by maximizing ( ¯ )H DR2

in (15). Be-
cause the logarithm function is strictly increasing, maximizing

( ¯ )H DR2
is equivalent to minimizing its corresponding information

potential ^ ( ¯ )V DR2
.

To fulfill the selective ensemble, an ℓ1-norm based regulariza-
tion term ∥ ∥w 1 can be introduced. Note that the elements in the
combination weight w are all no less than zero, i.e.,

≥ ( = … )w k M0 1, 2, ,k .
In summary, the optimization problem of the selective en-

semble of SVDDs using the Renyi entropy based diversity measure
is given by
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3.2. Solution

The second term in the objective function of (16) can be re-
formulated as
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that
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where 1M is an M-dimensional vector with its elements are all one.
Therefore, substituting (17) and (18) into (16), we have
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There are many methods for solving the optimization problem
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(19) in the literature, e.g. half-quadratic optimization technique
[52,53], expectation–maximization (EM) method [54], and gra-
dient-based method [55,56]. In the study, the half-quadratic op-
timization technique is utilized. According to the theory of the
convex conjugated function [53], we have

Proposition 1. For { }( ) = −
σ

G z exp z

2

2

2 , there exists a convex con-
jugated function φ, such that
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Moreover, for a fixed z, the supremum is reached at α = − ( )G z [52].

According to Proposition 1, the objection function (19) can be
augmented as
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where ( )=
×

pP ij N N
stores the auxiliary variables in the half-

quadratic optimization.
The local optimization solution of (21) can be iteratively cal-

culated by
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where τ denotes the τth iteration, = ( … )D d d d, , , N1 2 , = −L P Q is
the Laplacian matrix with the main diagonal entries of the diag-
onal matrix = ∑ = pQ ii j

N
ij1 .

The problem (23) can be solved by finding the saddle point of
the objective function and by taking the derivative of the objective
function with respect to w . Therefore, the local optimal solution of
(23) in the τ( + )1 th iteration is given by
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It should be mentioned here that the objective function ( )J w P,
in (21) converges after certain iterations, which can be summar-
ized as follows:

Proposition 2. The sequence ( )τ τJ w P, , τ = …1, 2, generated by the
iterations (22) and (23) converges.

Proof. According to Proposition 1 and (23), we can find that
( ) ≤ ( ) ≤ ( )τ τ τ τ τ τ+ + +J J Jw P w P w P, , ,1 1 1 . Therefore, the sequence

{ }τ( ) = …τ τJ w P, , 1, 2, is non-decreasing. Moreover, it was shown
in [55] that correntropy is bounded. Thus, we know that ( )τ τJ w P,
is bounded. Consequently, we verify that { }τ( ) = …τ τJ w P, , 1, 2,
converges.□

As stated in Section 1, SVDD is proved to be equivalent to
OCSVM. However, the following remark should be mentioned.
Remark 1. The base classifier of the proposed ensemble method is
fixed to SVDD. Although SVDD and OCSVM are equivalent in cer-
tain conditions, OCSVM cannot be directly used to substitute SVDD
in the proposed ensemble method.

The equivalence between SVDD and OCSVM can be verified in
two different ways. In the first way, the dual optimization problem
of SVDD is proved to be equivalent to that of OCSVM when the
Gaussian kernel function is utilized and the trade-off parameter C
of SVDD is equal to the inverse of the product of the number of
training samples N and the regularization parameter ν of OCSVM
[12]. In the second way, the primal optimization problem of SVDD
is equivalent to that of OCSVM as long as the following three
conditions hold [10]: (i) For OCSVM, the norm of its normal vector
∥ ∥w equals one. (ii) For SVDD, the training samples

( = … )i Nx 1, 2, ,i and the center vector a are all normalized.
(iii) The intercept term ρ of OCSVM equals − R2 2 of SVDD.
Moreover, C of SVDD equals the inverse of the product of the
number of training samples N and ν of OCSVM.

For the first way to derive the equivalence between SVDD and
OCSVM, it can be easily find that there is no relationship between
the radius R of SVDD and the intercept term ρ of OCSVM. Therefore,
the radius of ensemble for OCSVM cannot be obtained. For the
second way, although the relationship between R and ρ is provided,
normalizing the center vector a of SVDD and limiting the norm of
the normal vector w of OCSVM be one may greatly reduce the
classification performances of the final obtained SVDD and OCSVM.
Moreover, for OCSVM, the diversity measure (15) cannot be obtained
because there is no definition of center vector in its whole training
procedure. Hence, OCSVM cannot be directly used to substitute
SVDD as the base classifier of the proposed ensemble method.

3.3. Algorithm

The whole procedure of training the proposed selective en-
semble of SVDDs is summarized in Algorithm 1. As mentioned in
Section 3.1, for the step 1 in Algorithm 1, part of the whole training
samples are randomly chosen with replacement and used for
training each of the M SVDDs. Once the training procedure of the
M SVDDs completes, their centers and radii keep unchanged.
Thereafter, the length of radius and the location of center of en-
semble are adjusted by the proposed ensemble strategy. At the
same time, the redundant SVDDs in the ensemble can be removed.

Algorithm 1. Selective ensemble of SVDDs.
ut: Training samples { } =xi i
N

1, number of SVDDs M, maximum

number of iterations IHQ, regularization coefficient λ
tput: Optimal vector of combination weights ⁎w , M trained
SVDDs
tialization: Width parameter of Gaussian kernel function γ,
trade-off parameter C, width parameter of Renyi entropy
function s

p 1: Train M SVDDs with the parameters γ and C.
p 2: Randomly initialize the combination weights

( = … )w k M1, 2, ,k and ensure the summation of them
equals one.
p 3: Update the combination weights
τ = … I1, 2, , HQ

pdate the auxiliary variables ( = … )p i j N, 1, 2, ,ij by (22).

Update the vector of combination weights w by (24).
d for
en

As is well known, the training complexity of SVDD is ( )O N3 [57].
Therefore, the computational cost of Step 1 in Algorithm 1 is
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( )O MN3 . For Step 3, the calculation of the kernelized distance
matrix D in each iteration needs ( )O MN3 operations. The compu-
tational complexity of the auxiliary matrix P in each iteration is

( )( + )O N M M2 3 2 . Moreover, the calculation of the vector of com-
bination weights w in each iteration takes

( )+ ( + ) +O MN N M M22 2 3 operations according to (24). Therefore,
the overall computational cost for Step 3 is

( )[ + ( + + ) + ( + ) + ]O I MN M M M N N M M2HQ
3 3 2 2 2 3 , where IHQ is the

number of the half-quadratic optimization. Finally, the total
computational complexity of Algorithm 1 is

( )( + ) + [( + + ) + ( + ) + ]O I MN I M M M N N M M1 2HQ HQ
3 3 2 2 2 3 . Usually,

⪢I 1HQ and ⪢N M . The computational cost of Algorithm 1 is ap-

proximately ( ( + ))O I MN M NHQ
3 3 2 .

Given a test sample xts, the kernelized distances between its
image and the M centers …a a a, , , M1 2 in the feature space are
calculated as follows:

∑ ∑ ∑

ϕ

α α α

= ∥ ( ) − ∥

= ( ) − ( ) + ( )
( )= = =

d

K K K

x a

x x x x x x, 2 , , .
25

ts
k

ts k

ts ts
j

N

kj ts j
j

N

l

N

kj kl j l
1 1 1

Therefore, the kernelized distance between the image of xts and
the center of ensemble in the feature space is given by

∑¯ =
( )=

⁎d w d .
26

ts
k

M

k ts
k

1

Moreover, the radius of the ensemble is ¯ = ∑⁎
=

⁎r w rk
M

k k1 . Finally, the
test sample xts can be classified as the normal data if ¯ ≤ ¯⁎d rts sa-
tisfies. Otherwise, xts is classified as the novel data.
4. Experimental results

In the following experiments, the geometric mean (g-mean) is
used to measure the performances of the different methods. The
expression of g-mean is given by [58]

= × ( )+ −g a a , 27

where +a and −a denote the classification accuracy rates of a cer-
tain classifier upon the normal and novel data, respectively. For
SVDD and the selective ensemble of SVDDs (SESVDDs), the Gaus-
sian kernel function γ( ) = { − ∥ − ∥ }K x y x y, exp 2 is selected. For
SESVDDs, its base classifiers are all constructed on the 80% sam-
ples randomly selected with replacement from each training set.
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Fig. 3. The two synthetic data set, where the samples with the blue dot are noise-free sam
Square-Noise data set.
During the course of training SESVDDs, the base classifiers with
their combination weights satisfying <

∑ =

w

w M
1k

l
M

l1
are discarded. In

addition, all the codes are implemented in Matlab.

4.1. Synthetic data sets

To validate the effectiveness of SESVDDs, two synthetic data
sets are generated. The number of base classifiers in SESVDDs and
the maximum number of iterations for the half-quadratic opti-
mization are both taken as 20. The description of the two synthetic
data sets is as follows.

Sine-Noise: 200 noise-free samples are randomly chosen from

the sine curve along ( )π=y xsin 3
2

with ∈ [ ]x 0, 3 , while 50 noise

samples are randomly distributed in the area {( )| ∈x y x,
[ ] ∈ [ − ]}y0, 3 , 2, 2 . Fig. 3 illustrates all the samples and noise.

Square-Noise: 200 noise-free samples are randomly selected in
the square {( )| ∈ [ ] ∈ [ ] ∪ [ ]} ∪ {( )x y x y x y, 0.4, 2.6 , 0.4, 0.6 2.4, 2.6 ,
| ∈ [ ] ∪ [ ] ∈ [ ]}x y0.3, 0.6 2.4, 2.6 , 0.4, 2.6 , while 50 noise samples
are randomly distributed in the area {( )| ∈ [ ]}x y x y, , 0, 3 . Fig. 3b
shows all the samples and noise.

For Sine-Noise, the parameter of the Gaussian kernel function
and the trade-off parameter for SVDD are taken as γ = 40 and
C¼0.2, respectively. The values of the parameters of the Gaussian
kernel function and the trade-off parameter for SESVDDs are both
the same with their counterparts of SVDD. Moreover, the width
parameter of the Renyi entropy function and the regularization
coefficient for SESVDDs are taken as σ = 1 and λ = 1, respectively.
The results of the two methods are shown in Fig. 4. The number of
base classifiers in the trained SESVDDs is 8.

For Square-Noise, the settings of parameters for SVDD and
SESVDDs are all the same with their corresponding roles upon
Sine-Noise. The results of the two approaches are demonstrated in
Fig. 5. The number of base classifiers in the obtained SESVDDs is
11.

According to the results demonstrated in Figs. 4 and 5 together
with the g-mean of the two methods, one can easily find that the
proposed SESVDDs is more robust against noise than SVDD upon
the two synthetic data sets.

To observe the influence of the initial size of SESVDDs on its
final classification performance, the initial number of SVDDs ran-
ges from 10 to 300 with step length 10. The values of g-mean for
SESVDDs upon the two synthetic data sets against the different
numbers of SVDDs are shown in Fig. 6. For Sine-Noise, the optimal
value of g-mean for SESVDDs is 0.9157 as the initial number of
SVDDs is taken as 190, 200, or 210. One can easily observe from
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ples, while the samples with red cross are noise. (a) The Sine-Noise data set. (b) The
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Fig. 4. The classification results of the two methods upon Sine-Noise. (a) SVDD with g-mean 0.6825. (b) SESVDDs with g-mean 0.8567.
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Fig. 5. The classification results of the two methods upon Square-Noise. (a) SVDD with g-mean 0.7669. (b) SESVDDs with g-mean 0.8349.
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Fig. 6. The classification performance of SESVDDs with respect to the different initial number of SVDDs upon the two synthetic data sets. (a) The Sine-Noise data set. (b) The
Square-Noise data set.
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Fig. 6a that the value of g-mean for SESVDDs keeps unchanged as
the initial number of SVDDs is bigger than 240. For Square-Noise,
the optimal value of g-mean for SESVDDs is 0.8442 as the initial
number of SVDDs is taken as 270. It can be observes from Fig. 6b
that the values of g-mean for SESVDDs keep fixed as the initial
number of SVDDs is bigger than 280. Therefore, it can be deduced
from Fig. 6 that the performance of SESVDDs becomes better as
the initial number of SVDDs becomes larger. When the initial
number of SVDDs attains certain value, SESVDDs can obtain the
optimal performance. Finally, the performance of SESVDDs keeps
unchanged as the number becomes larger enough.

The final numbers of SVDDs corresponding to their initial
number of SVDDs for SESVDDs upon the two synthetic data sets
are illustrated in Fig. 7. One can find from Fig. 7 that the final
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Fig. 7. The final numbers of SVDDs against the initial numbers of SVDDs for SESVDDs upon the two synthetic data sets. (a) The Sine-Noise data set. (b) The Square-Noise data
set.

Table 1
The twenty benchmark data sets used in the experiments.

Data sets Nnormal Nnovel Nfeature Ntrain Ntest

Banana 2376 2924 2 1663 3637
Banknote authentication 610 762 4 427 945
Blood transfusion 178 570 4 125 623
Breast cancer 77 186 9 54 209
Cancer 239 444 9 167 516
Cleverland heart 214 83 13 150 147
Diabetics 268 500 8 188 580
Flare solar 94 50 9 66 78
German 300 700 20 210 790
Heart 120 150 13 84 186
Hepatitis 123 32 19 86 69
Image 1188 898 18 832 1254
Liver 145 200 6 102 243
Parkinsons 147 48 22 103 92
Pima 268 500 8 188 580
Sonar 111 97 60 78 130
Twonorm 3703 3697 20 2592 4808
Waveform 1647 3353 21 1153 3847
Wdbc 212 357 9 148 421
Wholesale customers 298 142 7 209 231

Note: Nnormal—number of normal data; Nnovel—number of novel data; Nfeature—

number of features; Ntrain—number of training data; Ntest—number of testing data.

Table 2
The optimal parameters of single SVDD on the twenty benchmark data sets.

Data sets C γ

Banana 0.1 5000
Banknote authentication 0.025 0.125
Blood transfusion 0.3 0.125
Breast cancer 0.7 5000
Cancer 0.05 5000
Cleverland heart 0.2 5000
Diabetics 0.4 50
Flare solar 0.4 5000
German 0.5 5000
Heart 0.3 5000
Hepatitis 1 5000
Image 0.1 5000
Liver 0.2 0.0312
Parkinsons 0.2 5000
Pima 0.2 0.125
Sonar 0.05 50
Twonorm 0.1 5000
Waveform 0.1 5000
Wdbc 0.075 5000
Wholesale customers 0.3 50
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numbers of SVDDs are approximately half of their corresponding
initial number of SVDDs. Hence, SESVDDs can greatly reduce the
number of SVDDs in its initial ensemble.

4.2. Benchmark data sets

To further validate the proposed ensemble method, it is com-
pared with its related five approaches, i.e., single SVDD, ensemble
of SVDDs by bagging [59], ensemble of SVDDs by AdaBoost [60],
random subspace method based ensemble of SVDDs (RSMESVDDs)
[61], and clustering based ensemble of SVDDs (CESVDDs) [18] on
the twenty benchmark data sets. Nine of the twenty benchmark
data sets are chosen from Rätsch's benchmark data sets1, while the
rest eleven are taken from the UCI machine learning repository
[62]. However, the above twenty benchmark data sets are initially
used for two-class classification. To make them fit for one-class
classification, the samples in one class of the given data set are
used as normal data, and the samples in the other class are utilized
as novel data. Furthermore, for each data set, its training set
consists of 70% samples randomly chosen without replacement
1 http://theoval.cmp.uea.ac.uk/gcc/matlab/default.html#benchmarks
from the normal data, while the rest 30% samples of the normal
data and the whole novel data are utilized for testing. The de-
scription of the twenty benchmark data sets is summarized in
Table 1.

To make the single SVDD achieve better performance, its two
parameters, i.e., the trade-off parameter C and the width para-
meter of the Gaussian kernel function γ are exhaustively searched
within the domains {0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5,

}0.6, 0.7, 0.8, 0.9, 1 and {0.0003, 0.0012, 0.005, 0.0078, 0.0312,
}0.125, 0.5, 50, 5000 , respectively. The optimal values of C and γ

for the single SVDD upon the twenty benchmark data sets are
summarized in Table 2.

For the five ensemble approaches, namely, bagging, AdaBoost,
RSMESVDDs, CESVDDs, and the proposed method, the parameters
of their base classifiers are all assigned with the same values as
those of the single SVDD on each benchmark data set. The number
of base classifiers in the five ensemble methods are all taken as 50.
For RSMESVDDs, the percentage of features retained in each
training set is fixed at 75% and the trained SVDDs are combined by
the majority voting rule. For CESVDDs, the PBMF-index based
fuzzy c-means [63] is utilized to split the sample space. Moreover,
the regularization coefficient of the proposed method, i.e. λ is ta-
ken as 1 in the following experiments. The maximum number of
iterations for the half-quadratic optimization is taken as 20. The

http://theoval.cmp.uea.ac.uk/gcc/matlab/default.html#benchmarks


Table 3
The average testing accuracy rates and the standard deviations of the six different methods on the twenty benchmark data sets (%).

Data sets SVDD Bagging AdaBoost RSMESVDDs CESVDDs SESVDDs
P P,1 2 P P,1 2 P P,1 2 P P,1 2 P P,1 2 Nwnz

Banana ±62.16 35.31 ±80.68 4.58 ±80.79 8.33 ±78.05 10.02 ±81.35 2.10 ±95.76 1.10
−0.0224, 6.80E 008 − −7.01E 007, 6.80E 008 −0.0002, 4.88E 004 − −2.38E 013, 6.48E 008 − −3.36E 026, 2.85E 008 26

Banknote authentication ±87.44 0.27 ±88.03 0.30 ±87.63 0.28 ±85.47 0.22 ±87.20 0.15 ±88.18 0.30
− −1.48E 019, 6.80E 008 − −5.11E 011, 1.58E 008 − −3.30E 017, 3.65E 008 − −4.75E 072, 6.80E 008 − −1.101E 073, 6.80E 008 24

Blood transfusion ±72.42 2.42 ±75.79 1.67 ±74.08 1.92 ±70.84 0.00 ±74.46 0.00 ±76.55 1.59
− −3.70E 013, 1.15E 008 − −3.54E 005, 3.65E 008 − −5.90E 010, 1.15E 008 − −2.53E 036, 6.80E 008 − −1.24E 017, 6.80E 008 25

Breast cancer ±77.98 4.54 ±81.89 2.88 ±81.50 3.21 ±81.03 5.98 ±82.92 2.86 ±86.09 2.92
0.0013, 0.0028 0.0026, 0.0052 0.0068, 0.0068 − −1.55E 006, 1.06E 007 − −1.98E 010, 2.80E 008 26

Cancer ±90.75 0.46 ±90.88 0.40 ±90.94 0.38 ±90.53 0.08 ±89.67 0.00 ±91.06 0.40
− −1.67E 007, 1.55E 007 − −4.78E 008, 3.65E 008 0.0003, 0.0021 − −1.11E 009, 1.15E 008 −0, 6.80E 008 25

Cleverland heart ±53.60 5.86 ±56.29 5.04 ±55.19 5.54 ±49.09 5.70 ±54.90 5.87 ±58.42 5.00
− −9.10E 009, 1.31E 008 − −8.60E 009, 1.31E 008 − −7.85E 008, 1.27E 007 − −2.52E 008, 1.58E 006 − −4.86E 010, 3.16E 008 25

Diabetics ±70.71 9.87 ±72.07 2.88 ±72.20 2.17 ±0.57 3.05 ±70.43 2.89 ±72.93 2.84
0.2187, 0.4028 0.0220, 0.0810 0.1783, 0.3143 − −1.64E 005, 2.69E 006 − −2.08E 006, 3.94E 007 25

Flare solar ±60.74 7.84 ±61.18 6.92 ±61.48 5.87 ±66.33 5.46 ±56.60 5.58 ±70.06 9.90
−0.0008, 1.31E 005 −0.0002, 1.14E 004 −0.0004, 1.28E 004 −0.0122, 1.19E 005 − −2.45E 010, 3.28E 008 24

German ±71.59 15.06 ±78.65 1.31 ±78.17 1.48 ±73.58 2.28 ±79.19 1.14 ±82.12 2.09
−0.0062, 1.32E 008 − −3.54E 009, 2.21E 008 − −6.00E 007, 3.42E 008 − −1.56E 006, 4.18E 008 −0.0042, 1.31E 008 24

Heart ±75.98 4.71 ±81.17 3.89 ±79.46 3.82 ±74.80 3.42 ±80.15 2.82 ±84.35 3.03
− −7.19E 11, 1.42E 008 − −9.89E 009, 1.66E 007 − −3.14E 009, 4.45E 008 − −1.02E 016, 6.75E 008 − −1.10E 012, 6.80E 008 24

Hepatitis ±64.83 18.15 ±64.39 8.28 ±66.71 10.22 ±65.08 9.86 ±66.82 9.92 ±67.60 8.43
0.6465, 0.1075 0.0096, 0.0085 0.7848, 0.9246 0.0151, 0.0090 0.5323, 0.5250 24

Image ±54.83 3.34 ±55.82 1.54 ±54.11 0.80 ±53.18 0.67 ±58.37 2.52 ±60.77 2.88
− −4.90E 008, 5.60E 008 − −1.47E 012, 1.67E 008 − −1.92E 13, 1.48E 008 − −1.66E 021, 6.80E 008 − −1.47E 008, 6.79E 008 25

Liver ±75.70 1.79 ±83.49 0.94 ±80.44 0.96 ±71.41 2.13 ±79.06 0.86 ±84.57 1.25
− −1.08E 008, 6.80E 008 0.0002, 0.0008 − −7.34E 008, 4.16E 008 − −3.06E 025, 6.56E 008 − −9.78E 024, 5.79E 008 25

Parkinsons ±52.51 5.16 ±55.76 5.87 ±54.02 5.74 ±53.08 6.54 ±52.04 4.60 ±57.96 5.78
− −4.16E 007, 1.36E 008 0.0002, 0.0144 − −1.27E 006, 1.05E 006 − −6.99E 008, 1.20E 006 − −6.14E 011, 6.80E 008 25

Pima ±72.63 2.78 ±79.92 1.94 ±77.27 1.95 ±70.50 4.52 ±78.61 1.97 ±80.81 1.99
− −9.77E 013, 3.07E 008 − −4.98E 005, 8.35E 005 − −7.65E 010, 2.78E 008 − −4.88E 017, 6.80E 008 − −2.18E 010, 6.79E 008 26

Sonar ±86.79 1.73 ±91.56 1.60 ±89.36 2.14 ±79.30 3.45 ±90.48 3.16 ±92.12 1.61
− −8.32E 007, 3.24E 007 0.0402, 0.020 − −5.86E 006, 1.41E 006 − −4.95E 021, 6.80E 008 0.0004, 0.0009 25

Twonorm ±87.83 7.72 ±90.74 1.11 ±91.10 1.39 ±89.65 4.87 ±91.08 1.23 ±96.17 0.62
0.0027, 0.0088 − −1.95E 009, 6.39E 008 − −1.98E 008, 5.98E 008 − −1.28E 012, 6.69E 008 − −1.84E 022, 6.80E 008 25

Waveform ±87.22 4.98 ±8.37 1.57 ±89.01 2.74 ±86.59 5.28 ±87.60 3.46 ±93.53 1.10
0.0002, 0.0006 − −8.06E 012, 5.32E 008 − −9.69E 006, 4.10E 008 − −1.12E 010, 1.67E 008 − −8.83E 015, 6.79E 008 25

Wdbc ±83.92 4.22 ±85.49 1.91 ±83.29 1.73 ±83.19 3.15 ±79.57 8.12 ±87.03 1.40
0.0003, 0.0005 − −8.02E 012, 6.91E 007 − −1.35E 015, 2.88E 008 − −4.53E 012, 6.80E 008 − −1.46E 007, 1.05E 006 26

Wholesale customers ±74.24 2.72 ±75.35 2.41 ±74.22 3.48 ±70.71 4.57 ±61.67 8.20 ±77.97 0.69
0.1901, 0.2931 0.2685, 0.4291 0.2555, 0.5108 0.0978, 0.2125 0.1537, 0.3460 23

Note: P1—P-value for paired T-test; P2—P-value for Wilcoxon rank-sum test; Nwnz—number of non-zero elements in the vector of combination weights.
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Fig. 8. The classification performances of the five different ensemble approaches with respect to the different numbers of SVDDs upon the four benchmark data sets. (a)
Banknote authentication, (b) cancer, (c) Pima, (d) Wdbc.
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width parameter of the Renyi entropy function s is chosen from
{ … }− −2 , 2 , , 2 , 210 9 9 10 . Through experiments, we find that SESVDDs
achieve better performance on all the twenty benchmark data set
as σ = 210.

The average testing accuracy rates together with their corre-
sponding standard deviations for the 20 trials of the six different
approaches upon the twenty benchmark data sets are summarized
in Table 3. Furthermore, the paired T-test and Wilcoxon rank-sum
test are conducted to examine whether the performance im-
provement achieved by SESVDDs over the other five methods is
statistically significant.

The results shown in Table 3 indicate that the proposed
SESVDDs is statistically different from the other five methods, i.e.,
single SVDD, ensemble of SVDDs by bagging, ensemble of SVDDs
by AdaBoost, random subspace method based ensemble of SVDDs,
and clustering based ensemble of SVDDs on all the twenty data
sets except Diabetics, Hepatitis, and Wholesale Customers. More-
over, the generalization ability of SESVDDs is superior to the other
five approaches. Taking the average testing accuracy rate into
consideration, the values of standard deviation in Table 3 show
that SESVDDs is more stable than the other five methods on all the
twenty benchmark data sets.

For the results in Table 3, there are two issues to be mentioned
as follows.

� In comparison with ensemble of SVDDs by bagging, ensemble of
SVDDs by AdaBoost, random subspace method based ensemble
of SVDDs, and clustering based ensemble of SVDDs, SESVDDs
achieves better performance. The main reason lies that mini-
mizing the weighted combination of radii of base classifiers can
make the proposed ensemble method obtain the optimal length
of radius, while maximizing the Renyi entropy based diversity
upon the kernelized distances between the samples and the
center of ensemble can make the proposed ensemble method
obtain the optimal location of center.

� For SESVDDs, about half of base classifiers (25 of 50) are dis-
carded on the twenty data sets. Therefore, introducing the ℓ1-
norm based regularization term into the objective function of
SESVDDs can effectively get rid of the redundant base classifiers
in ensemble.

In addition, the relationships between the classification per-
formances of the five ensemble methods and the sizes of ensemble
upon the four benchmark data sets are demonstrated in Fig. 8. The
optimal values of g-mean for bagging upon the four benchmark
data sets are 20, 160 (320, 340, or 400), 20, and 80 (or 100), re-
spectively. The optimal values for AdaBoost are 80 (or 120), 60,
160, and 260 (or 400). The optimal values for RSMESVDDs are 200,
320, 80, and 80. The optimal values for SESVDDs are 280, 280 (320,
or 340), 20 (or 60), and 320 (or 340). For each of the four data sets,
the values of g-mean for CESVDDs are all the same. According to
the above observations and the variation trends of the perfor-
mance curves in Fig. 8, one can obtain the following outcomes.

� For bagging, its optimal classification performance achieves as
the size of ensemble is 20 for Banknote Authentication and Pima.
However, the variation trends of the performance curves for the
two cases are both very gently. For Cancer and Wdbc, the opti-
mal performance of bagging is obtained as the size of ensemble
is no less than 80. Overall, bagging may perform better with
larger size of ensemble.
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� For CESVDDs, increasing the number of SVDDs in its ensemble
cannot obtain better classification performance. Hence, in order
to reduce the training and testing costs, CESVDDs prefer smaller
ensemble set-ups.

� For AdaBoost, RSMESVDDs, and SESVDDs, their optimal perfor-
mances are all achieved as the size of ensemble is no less than
60. Therefore, the three ensemble approaches are all performing
better with larger size of ensemble.

� Among the range [20,400] for the size of ensemble, SESVDDs
achieve the optimal classification performance in comparison
with the other four ensemble strategies upon the four data sets.
5. Conclusions

To improve the generalization ability of SVDD, a novel selective
ensemble strategy, named selective ensemble of SVDDs
(SESVDDs), is presented. In SESVDDs, the radius of ensemble is
defined and minimized to obtain the compact classification
boundary. The diversity measure based on the Renyi entropy is
proposed and maximized to get the optimal location of center of
ensemble. Moreover, an ℓ1-norm based regularization term is in-
troduced into the objective function of SESVDDs to fulfill the se-
lective ensemble. In comparison with the single SVDD and the
other four ensemble approaches, SESVDDs demonstrate better
anti-Noise ability and generalization performance on the two
synthetic and twenty benchmark data sets.

To make the proposed ensemble method more promising,
there are four tasks for future investigation. First, it is a tough issue
to find the appropriate width parameter s for the Renyi entropy
base diversity measure of SESVDDs. The heuristic methods for
choosing the width parameter will be considered, such as Silver-
man's rule [64]. Second, the classification performance and anti-
Noise ability of SESVDDs in difficult learning scenarios will be
further examined. The training procedure of SESVDDs is too long
when it is utilized to deal with large data sets. Therefore, it is
necessary to find a more efficient training strategy for SESVDDs.
Moreover, the anti-Noise ability of SESVDDs on the synthetic data
sets is verified. It will be further tested on the benchmark data
sets. Third, one-class classifiers can be utilized to deal with the
multi-class classification task [65–67]. However, through experi-
ments we find that the computational cost of the proposed en-
semble is very high when it is utilized to tackle the multi-class
classification problems. The proposed ensemble strategy will be
improved to make it fit for efficiently dealing with the multi-class
classification task. Fourth, the classification performance of
SESVDDs can be further improved by independently selecting
different parameters for each SVDD in the ensemble rather than
assigning the same parameter for all the SVDDs. However, the
procedure of choosing the appropriate parameters for each SVDD
is time-consuming, which may greatly increase the training cost of
SESVDDs. In our future work, we will try to design a heuristic
method for searching appropriate parameters for each SVDD in the
ensemble.
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