
Information Sciences 369 (2016) 634–647

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Exact and approximate algorithms for discounted {0-1}

knapsack problem

Yi-Chao He

a , Xi-Zhao Wang

b , ∗, Yu-Lin He

b , Shu-Liang Zhao

c , Wen-Bin Li a

a College of Information Engineering, Hebei GEO University, Shijiazhuang 050031, Hebei, China
b Big Data Institute, College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
c College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China

a r t i c l e i n f o

Article history:

Received 30 March 2016

Revised 14 June 2016

Accepted 15 July 2016

Available online 16 July 2016

Keywords:

Discounted {0-1} knapsack problem

Exact algorithm

Approximate algorithm

Dynamic programming

Particle swarm optimization

a b s t r a c t

The D iscounted {0-1} K napsack P roblem (D{0-1}KP) is an extension of the classical 0-1

knapsack problem (0-1 KP) that consists of selecting a set of item groups where each group

includes three items and at most one of the three items can be selected. The D{0-1}KP is

more challenging than the 0-1 KP because four choices of items in an item group diversify

the selection of the items. In this paper, we systematically studied the exact and approxi-

mate algorithms for solving D{0-1}KP. Firstly, a new exact algorithm based on the dynamic

programming and its corresponding fully polynomial time approximation scheme were

designed. Secondly, a 2-approximation algorithm for D{0-1}KP was developed. Thirdly, a

greedy repair algorithm for handling the infeasible solutions of D{0-1}KP was proposed

and we further studied how to use binary particle swarm optimization and greedy re-

pair algorithm to solve the D{0-1}KP. Finally, we used four different kinds of instances to

compare the approximate rate and solving time of the exact and approximate algorithms.

The experimental results and theoretical analysis showed that the approximate algorithms

worked well for D{0-1}KP instances with large value, weight, and size coefficients, while

the exact algorithm was good at solving D{0-1}KP instances with small value, weight, and

size coefficients.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

K napsack P roblem (KP) [1,6,10] is a classical NP-hard problem in computer science, which has found many applications

in various areas, such as business management, computational complexity, cryptology, and applied mathematics, and so

on. KP has some extended versions, e.g., the unbounded KP, multiple-choice KP, and quadratic KP, etc. These KP variants

[22,27,29,30,33] have been well studied and successfully solved with different techniques and methods in the past few

decades.

D iscounted {0-1} K napsack P roblem (D{0-1}KP) a latest variant of classical 0-1 KP, which was firstly proposed by Guldan

[12] in 2007 and used the concept of discount to reflect the sales promotion in real business activities. D{0-1}KP is a 0-1

integer programming problem with n + 1 inequality constraints including the discount constraints and knapsack capacity

constraints, while there is only one inequality constraint in the classical 0-1 KP, where n is the number of item groups. Due

to the better expressive capability to real business sales, D{0-1}KP has obtained a large number of applications in investment
∗ Corresponding author.

E-mail addresses: heyichao119@163.com (Y.-C. He), xzwang@szu.edu.cn , xizhaowang@ieee.org (X.-Z. Wang), dryulinhe@yahoo.com (Y.-L. He).

http://dx.doi.org/10.1016/j.ins.2016.07.037

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.07.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.07.037&domain=pdf
mailto:heyichao119@163.com
mailto:xzwang@szu.edu.cn
mailto:xizhaowang@ieee.org
mailto:dryulinhe@yahoo.com
http://dx.doi.org/10.1016/j.ins.2016.07.037

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 635

decision and resource allocation. However, the algorithmic study on how to solve D{0-1}KP in a more effective way is rare.

In [12] , Guldan presented an exact algorithm to solve D{0-1}KP based on dynamic programming [3] and discussed how to

use the heuristic algorithm to solve D{0-1}KP. Rong et al. [32] in 2012 solved D{0-1}KP by combining the special kernel of

D{0-1}KP with exact algorithm proposed in [12] . Currently, the study on how to solve D{0-1}KP mainly focuses on the exact

algorithm. As far as we know, there is no work which uses the approximate and evolutionary algorithms to solve D{0-1}KP.

Motivated by designing the high-performance and low-complexity algorithms for solving D{0-1}KP, we systematically

studied the exact and approximate algorithms for D{0-1}KP in this article. The main contributions of this article included the

following four aspects: (1) proposing a N ew E xact algorithm for D{0-1}KP (NE-DKP) with lower complexity than algorithm

studied in [12] when the sum of value coefficients is less than knapsack capacity; (2) developing a fully Poly nomial-time

approximate scheme (Poly-DKP) to simplify the aforementioned exact algorithm NE-DKP; (3) presenting a 2 - App roximation

algorithm (App-2-DKP) for D{0-1}KP based on greedy strategy; and (4) providing a P article S warm O ptimization based

G reedy R epair algorithm for D{0-1}KP (PSO-GRDKP). On four kinds of well-known instances from real applications, we tested

the practical performances of proposed exact/approximate algorithms and analyzed their computation complexities and ap-

proximation rates. The experimental results and theoretical analysis showed that the approximate algorithms, i.e., Poly-DKP,

App-2-DKP , and PSO-GRDKP, work well for the large scale D{0-1}KPs, while the exact algorithm, i.e., NE-DKP, is good at

solving the small scale D{0-1}KPs.

The remainder of this article is organized as follows. In Section 2 , we provide a preliminary of D{0-1}KP. In Section 3 , we

describe the new exact algorithm for D{0-1}KP. Sections 4 depicts three approximate algorithms for D{0-1}KP, respectively.

In Section 5 , we report experimental comparisons that demonstrate the feasibility and effectiveness of proposed exact and

approximate algorithms. Finally, we give our conclusions and suggestions for further research in Section 6 .

2. Preliminary

In this section, the definition, mathematical model, and existing exact algorithm of discounted {0-1} knapsack problem

(D{0-1}KP) are described.

Definition 1 ((Discounted {0-1} knapsack problem) [12,32]) . Given n item groups having 3 items and one knapsack with

capacity C , where the items in the i -th (i = 0 , 1 , · · · , n − 1) item group are denoted as 3 i , 3 i + 1 , and 3 i + 2 . The value coef-

ficients of 3 i , 3 i + 1 , and 3 i + 2 are p 3 i , p 3 i +1 , and p 3 i +2 = p 3 i + p 3 i +1 , respectively. The weight coefficients of 3 i , 3 i + 1 , and

3 i + 2 are w 3 i , w 3 i +1 , and w 3 i +2 , where w 3 i +2 is the discounted weight, w 3 i + w 3 i +1 > w 3 i +2 , w 3 i +2 > w 3 i , and w 3 i +2 > w 3 i +1 .

D{0-1}KP is to maximize the total value of items which can be put into the knapsack, where at most one item is selected

from each item group and the sum of weight coefficients is less than knapsack capacity C .

Without loss of generality, we assume that the value coefficient p k , weight coefficient w k (k = 0 , 1 , · · · , 3 n − 1), and knap-

sack capacity C are the positive integers, and w 3 i +2 ≤ C (i = 0 , 1 , · · · , n − 1),
∑ n −1

i =0 w 3 i +2 > C, then the mathematical model

of D{0-1}KP is defined as [12] :

max

n −1 ∑

i =0

(x 3 i p 3 i + x 3 i +1 p 3 i +1 + x 3 i +2 p 3 i +2) (1)

s . t . x 3 i + x 3 i +1 + x 3 i +2 ≤ 1 , i = 0 , 1 , · · · , n − 1 , (2)

n −1 ∑

i =0

(x 3 i w 3 i + x 3 i +1 w 3 i +1 + x 3 i +2 w 3 i +2) ≤ C, (3)

x 3 i , x 3 i +1 , x 3 i +2 ∈ { 0 , 1 } , i = 0 , 1 , · · · , n − 1 , (4)

where, x 3 i , x 3 i +1 , and x 3 i +2 represent whether the items 3 i , 3 i + 1 , and 3 i + 2 are put into the knapsack: x k = 0 indicates the

item k (k = 0 , 1 , · · · , 3 n − 1) is not in knapsack, while x k = 1 indicates the item k is in knapsack. It is worth noting that a

binary vector X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n is a potential solution of D{0-1}KP. Only if X meets both Eqs. (2) and (3) , it is

a feasible solution of D{0-1}KP.

D{0-1}KP obviously has the properties of optimal substructure and overlapping subproblem, thus the dynamic program-

ming is an appropriate method to solve D{0-1}KP. Guldan in [12] provided the first dynamic programming based exact

algorithm to solve D{0-1}KP. In order to distinguish Guldan’s exact algorithm with our new exact algorithm, we abbreviate

it as OE-DKP (O ld E xact algorithm for D{0-1}KP). The recursion formula and computational complexity analysis of OE-DKP

are as follows.

Let P = { p k | k = 0 , 1 , · · · , 3 n − 1 } and W = { w k | k = 0 , 1 , · · · , 3 n − 1 } be the value set and weight set, respectively. For each

item group i ′ ∈ {0, 1, ���, i }, at most one item is selected to put into knapsack. For all items in knapsack, G [i , j] is the

636 Y.-C. He et al. / Information Sciences 369 (2016) 634–647

maximum of total value when the sum of weight coefficients is less than the knapsack capacity j :

G [i, j] =

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎩

G [i − 1 , j] , i f 0 ≤ j < w 3 i

max [G [i − 1 , j] , G [i − 1 , j − w 3 i] + p 3 i] , i f w 3 i ≤ j < w 3 i +1

max

[
G [i − 1 , j] , G [i − 1 , j − w 3 i] + p 3 i ,
G [i − 1 , j − w 3 i +1] + p 3 i +1

]
, i f w 3 i +1 ≤ j < w 3 i +2

max

[
G [i − 1 , j] , G [i − 1 , j − w 3 i] + p 3 i ,
G [i − 1 , j − w 3 i +1] + p 3 i +1 , G [i − 1 , j − w 3 i +2] + p 3 i +2

]
, i f w 3 i +2 ≤ j ≤ C

. (5)

The initial G [0, j] is defined as

G [0 , j] =

⎧ ⎪ ⎨

⎪ ⎩

0 , i f 0 ≤ j < w 0

p 0 , i f w 0 ≤ j < w 1

p 1 , i f w 1 ≤ j < w 2

p 2 , i f w 2 ≤ j ≤ C

. (6)

Let Opt 1 denote the optimal value of OE-DKP. According to Eqs. (5) and (6) , we can get Opt 1 = G [n − 1 , C] . OE-DKP is an

exact algorithm with pseudo polynomial time and its computational complexity of OE-DKP is O (nC).

3. NE-DKP: the new exact algorithm for D{0-1}KP

The recursion formula Eq. (5) of OE-DKP is designed based on “maximizing the total value with the given sum of weight

coefficients”. This section presents a new exact algorithm for D{0-1}KP based on dynamic programming by deriving the

recursion formula with principle of “minimizing the total weight with the given sum of value coefficients”. The new exact

algorithm is abbreviated as NE-DKP.

The weight minimization principle is to minimize the sum of weight coefficients corresponding to items satisfying the

constraint conditions (2) and (3) when the total value is given. Let E [i , j] be the minimum of total weight when the sum

of value coefficients is j , where i = 1 , 2 , · · · , n − 1 , j = 0 , 1 , · · · , S, S =

∑ n −1
i =0 p 3 i +2 . When there is no the subset of items of

which the sum of value coefficients is j , E [i, j] = + ∞ . In addition, E [0, j] satisfies E [0 , 0] = 0 , E [0 , p 0] = w 0 , E [0 , p 1] = w 1 ,

E [0 , p 2] = w 2 , and E
[
0 , j ′

]
= + ∞ (j ′ ∈ {0, 1, ���, S } and j ′ � = 0, p 0 , p 1 , p 2). Assume E [i − 1 , j] is known and p 3 i ≤ p 3 i +1 , E [i , j]

can be calculated as following procedures.

1. When 0 ≤ j < p 3 i , because p 3 i ≤ p 3 i +1 < p 3 i +2 , the value coefficients of items 3 i , 3 i + 1 , and 3 i + 2 are all larger than

j . It indicates that these three items can not be put into knapsack, then we get E [i, j] = E [i − 1 , j] .

2. When p 3 i ≤ j < p 3 i +1 , there is only one item 3 i whose value coefficient is less than j . The item 3 i can be considered

to put into knapsack, then we can get E [i , j] = min [E [i − 1 , j] , E [i − 1 , j − p 3 i] + w 3 i] .

3. When p 3 i +1 ≤ j < p 3 i +2 , the value coefficients of items 3 i and 3 i + 1 are all less than j . They can all be put into

knapsack, then we can get E [i , j] = min [E [i − 1 , j] , E [i − 1 , j − p 3 i] + w 3 i , E [i − 1 , j − p 3 i +1] + w 3 i +1] .

4. When p 3 i +2 ≤ j ≤ S, the value coefficients of three items in item group i are all less than j . All items can

be put into knapsack, then we can get E [i , j] = min [E [i − 1 , j] , E [i − 1 , j − p 3 i] + w 3 i , E [i − 1 , j − p 3 i +1] + w 3 i +1 ,

E [i − 1 , j − p 3 i +2] + w 3 i +2] .

Based on the above-mentioned analysis, the recursion formula of NE-DKP is derived as

E [i, j] =

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎩

E [i − 1 , j] , i f 0 ≤ j < p 3 i
min [E [i − 1 , j] , E [i − 1 , j − p 3 i] + w 3 i] , i f p 3 i ≤ j < p 3 i +1

min

[
E [i − 1 , j] , E [i − 1 , j − p 3 i] + w 3 i ,

E [i − 1 , j − p 3 i +1] + w 3 i +1

]
, i f p 3 i +1 ≤ j < p 3 i +2

min

[
E [i − 1 , j] , E [i − 1 , j − p 3 i] + w 3 i ,

E [i − 1 , j − p 3 i +1] + w 3 i +1 , E [i − 1 , j − p 3 i +2] + w 3 i +2

]
, i f p 3 i +2 ≤ j ≤ S

. (7)

The initial E [0, j] is defined as

E [0 , j] =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

0 , i f j = 0

w 0 , i f j = p 0
w 1 , i f j = p 1
w 2 , i f j = p 2
+ ∞ , otherwise

. (8)

The optimal value of NE-DKP is Op t 2 = max j=1 , 2 , ··· ,S [j | E [n − 1 , j] ≤ C] which represents the total value of items in knapsack

is j and the sum of weight coefficients is less than C .

Now, we discuss how to get the optimal solution X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n corresponding to Opt 2 by using Eqs.

(7) and (8) . Without loss of generality, we assume we have selected the items form item groups n − 1 , n − 2 , · · · , i + 1 .

According to Eq. (7) and the value of E [i , j], we discuss whether there is an item which should be selected from item

group i .

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 637

1. If E [i, j] = E [i − 1 , j] , E [i, j] � = E [i − 1 , j − p 3 i] + w 3 i , E [i, j] � = E [i − 1 , j − p 3 i +1] + w 3 i +1 , and E [i, j] � = E [i − 1 , j − p 3 i +2] +
w 3 i +2 hold simultaneously. This indicates that there is no item belonging to item group i which can be put into

knapsack, then we can get x 3 i = x 3 i +1 = x 3 i +2 = 0 .

2. If E [i, j] � = E [i − 1 , j] , this reflects that there is at least one of inequalities which holds.

• If E [i, j] = E [i − 1 , j − p 3 i] + w 3 i , the item 3 i is put into knapsack. Then, we can get x 3 i = 1 and x 3 i +1 = x 3 i +2 = 0 .

• If E [i, j] = E [i − 1 , j − p 3 i +1] + w 3 i +1 , the item 3 i + 1 is put into knapsack. Then, we can get x 3 i +1 = 1 and x 3 i =
x 3 i +2 = 0 .

• If E [i, j] = E [i − 1 , j − p 3 i +2] + w 3 i +2 , the item 3 i + 2 is put into knapsack. Then, we can get x 3 i +2 = 1 and x 3 i =
x 3 i +1 = 0 .

According to the aforementioned analysis, we can determine the selected item group and the corresponding item. From

Eq. (8) , we can know whether there is an item which is selected from item group 0. Thus, we get an optimal solution of

NE-DKP. The detailed procedure of NE-DKP algorithm is summarized in Algorithm 1 .

Algorithm 1 NE-DKP: the new exact algorithm for D{0-1}KP.

1: Input: The value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } , and knapsack capacity C.

2: Output: The optimal solution X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n and optimal value Op t 2 .

3: S ←

n −1 ∑

i =0

p 3 i +2 , E [0 , 0] ← 0 , E [0 , p 0] ← w 0 , E [0 , p 1] ← w 1 , and E [0 , p 2] ← w 2 ;

4: for j = 1 to S do

5: if j � = p 0 and j � = p 1 and j � = p 2 then

6: E [0 , j] ← + ∞ ;

7: end if

8: end for

9: for i = 1 to n − 1 do

10: for j = 0 to S do

11: E [i, j] ← E [i − 1 , j] ;

12: if p 3 i ≤ j < p 3 i +1 then

13: E [i, j] ← min [E [i, j] , E [i − 1 , j − p 3 i] + w 3 i] ;

14: else if p 3 i +1 ≤ j < p 3 i +2 then

15: E [i, j] ← min [E [i, j] , E [i − 1 , j − p 3 i] + w 3 i , E [i − 1 , j − p 3 i +1] + w 3 i +1] ;

16: else if p 3 i +2 ≤ j then

17: E [i, j] ← min [E [i, j] , E [i − 1 , j − p 3 i] + w 3 i , E [i − 1 , j − p 3 i +1] + w 3 i +1 , E [i − 1 , j − p 3 i +2] + w 3 i +2] ;

18: end if

19: end for

20: end for

21: Op t 2 ← max
j=1 , 2 , ··· ,S

[j | E [n − 1 , j] ≤ C] .

22: for i = 0 to 3 n − 1 do

23: x i ← 0 ;

24: end for

25: while i > 0 and j > 0 do

26: if E [i, j] = E [i − 1 , j − p 3 i] + w 3 i then

27: x 3 i ← 1 , j ← j − p 3 i ;

28: else if E [i, j] = E [i − 1 , j − p 3 i +1] + w 3 i +1 then

29: x 3 i +1 ← 1 , j ← j − p 3 i +1 ;

30: else if E [i, j] = E [i − 1 , j − p 3 i +2] + w 3 i +2 then

31: x 3 i +2 ← 1 , j ← j − p 3 i +2 ;

32: end if

33: i ← i − 1 ;

34: end while

35: if i = 0 and j = p 0 then

36: x 0 ← 1 ;

37: else if i = 0 and j = p 1 then

38: x 1 ← 1 ;

39: else if i = 0 and j = p 2 then

40: x 2 ← 1 ;

41: end if

42: Return (Op t 2 , X) .

638 Y.-C. He et al. / Information Sciences 369 (2016) 634–647

In Algorithm 1 , the time complexities of calculating the optimal value Opt 2 and optimal solution X are O (nS) and O (S),

respectively. Thus, the computational complexity of NE-DKP is O (nS), where S =

∑ n −1
i =0 p 3 i +2 . NE-DKP is also an exact algo-

rithm with pseudo polynomial time. By comparing the computational complexity of NE-DKP with OE-DKP, the following

Theorem 1 can be obtained.

Theorem 1. The solving speeds of OE-DKP and NE-DKP respectively depend on C and S: when C < S , OE-DKP is faster than

NE-DKP; when C > S , OE-DKP is slower than NE-DKP. The time ratio of these two algorithms is C
S when using them to solving a

same D{0-1}KP.

4. Three approximate algorithms for D{0-1}KP

Because OE-DKP and NE-DKP are all the exact algorithms with pseudo polynomial time, their computational complexities

are extremely high when using them to solve the large scale D{0-1}KP. In fact, the approximate solution of D{0-1}KP is

always more desired by many NP-hard problems. It is more important for practical applications to get the approximate

solutions with the fast speed [7,11] . This section provides three approximate algorithms for D{0-1}KP.

4.1. Poly-DKP: the fully polynomial-time approximation scheme for D{0-1}KP

A fully polynomial-time approximation scheme for D{0-1}KP is given in this subsection based on the exact algorithm

NE-DKP. We firstly introduce the concept of fully polynomial-time approximation scheme.

Definition 2. (Fully polynomial-time approximation scheme) [7,11] . Assume A ε is a polynomial approximation scheme for

the optimization problem I . If its performance ratio r (A ε) ≤ 1 + ε (for any 0 < ε < 1) and computational complexity is a

polynomial function of problem scale and

1
ε , then A ε is a fully polynomial-time approximation scheme for I .

I is an instance of D{0-1}KP with the value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } ,
and knapsack capacity C . II is another instance of D{0-1}KP with the value set Q =

{
q k

∣∣q k =

⌊ p k
K

⌋
, k = 0 , 1 , · · · , 3 n − 1

}
,

weight set W, and knapsack capacity C , where K = max
[

εp
2 n , 1

]
, p = max [p 3 i +2 | i = 0 , 1 , · · · , n − 1] , 0 < ε < 1. The optimal

solution of II is Y = (y 0 , y 1 , · · · , y 3 n −1) ∈ { 0 , 1 } 3 n , then Y is a fully polynomial-time approximation solution of I and its ap-

proximate value is App 1 . The detailed procedure of Poly-DKP algorithm is summarized in Algorithm 2 . From Algorithm 2 ,

we can know that the approximate value of instance I is App 1 =

∑ n −1
i =0 (p 3 i y 3 i + p 3 i +1 y 3 i +1 + p 3 i +2 y 3 i +2) .

Theorem 2. Poly-DKP is a fully polynomial-time approximation scheme for D{0-1}KP, its computational complexity is O

(
n 3

ε

)
.

Proof. Because p = max [p 3 i +2 | i = 0 , 1 , · · · , n − 1] , when

εp
2 n ≥ 1 , we can derive

n −1 ∑

i =0

q 3 i +2 =

n −1 ∑

i =0

⌊

q 3 i +2

K

⌋

≤
n −1 ∑

i =0

q 3 i +2

K

≤
n −1 ∑

i =0

p

K

=

np

K

K= εp
2 n =

2 n

2

ε
;

Algorithm 2 Poly-DKP: the fully polynomial-time approximation scheme for D{0-1}KP.

1: Input: The value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } , and knapsack capacity C for

instance I ; the any real number 0 < ε < 1 .

2: Output: The approximate solution Y = (y 0 , y 1 , · · · , y 3 n −1) ∈ { 0 , 1 } 3 n and approximate value Ap p 1 .

3: p ← max [p 3 i +2 | i = 0 , 1 , · · · , n − 1] ;

4: K ← max
[

εp
2 n , 1

]
;

5: for i = 0 to n − 1 do

6: q 3 i ← int
(p 3 i

K

)
; (int (r) is the rounding operation to real number r.)

7: q 3 i +1 ← int
(p 3 i +1

K

)
;

8: if q 3 i == q 3 i +1 then

9: q 3 i ← q 3 i − 1 ;

10: end if

11: q 3 i +2 ← q 3 i + q 3 i +1 ;

12: end for

13: Q ← { q k | k = 0 , 1 , · · · , 3 n − 1 } ;
14: (Ap p 1 , Y) ← NE-DKP (Q , W , C) ; (NE-DKP is Algorithm 1.)

15: Ap p 1 ← 0 ;

16: for i = 0 to 3 n − 1 do

17: Ap p 1 ← Ap p 1 + p i y i ;

18: end for

19: Return (Ap p 1 , Y) .

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 639

when

εp
2 n < 1 , we can get

n −1 ∑

i =0

q 3 i +2 ≤
np

K

K=1 = np ≤ 2 n

2

ε
.

From Algorithm 2 , we can find that the computational complexity of Poly-DKP depends on NE-DKP. Thus, the time com-

plexity of Algorithm 2 is O

(
n

∑ n −1
i =0 q 3 i +2

)
= O

(
n 3

ε

)
.

Assume Opt (I) and X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n are the optimal value and solution of instance I , respectively. Let

S ∗ = { i | x i = 1 , i = 0 , 1 , · · · , 3 n − 1 } denote the set of items in knapsack. The items in S ∗ are determined by X . Then, we can

get Opt (I) =

∑

i ∈ S ∗ p i . Assume Opt (II) and Y = (y 0 , y 1 , · · · , y 3 n −1) ∈ { 0 , 1 } 3 n are the optimal value and solution of instance

II , respectively. Let S = { i | y i = 1 , i = 0 , 1 , · · · , 3 n − 1 } denote the set of items in knapsack. The items in S are determined by

Y . Then, we can get Opt (II) =

∑

i ∈ S q i ≥
⌊

p
K

⌋
. Because Y is the approximate solution of instance I , App (I) =

∑

i ∈ S p i can be

derived. Because q 3 i ≤
⌊ p 3 i

K

⌋
, q 3 i +1 ≤

⌊ p 3 i +1
K

⌋
, and p 3 i +2 = p 3 i + p 3 i +1 , we can derive

q 3 i +2 = q 3 i + q 3 i +1 ≤
⌊

p 3 i +2

K

⌋

.

Furthermore, we can get ∑

i ∈ S
q i ≤

∑

i ∈ S

⌊

p i
K

⌋

≤
∑

i ∈ S

p i
K

,

i.e., K

∑

i ∈ S q i ≤
∑

i ∈ S p i . Because n
 ε, we get

p

2

≤
(

1 − ε

2 n

)
p = K

(
p

K

− 1

)
≤ K

⌊

p

K

⌋

≤ K

∑

i ∈ S
q i ≤

∑

i ∈ S
p i .

Because
p i
K − 1 ≤ q i ≤ p i

K ,
∑

i ∈ T p i − K | T | ≤ K

∑

i ∈ T q i ≤
∑

i ∈ T p i holds for set T which includes the arbitrary items. Thus, we

can derive

Opt (I) − K | S ∗| =

∑

i ∈ S ∗
p i − K | S ∗| ≤ K

∑

i ∈ S ∗
q i ≤ KOpt (II) = K

∑

i ∈ S
q i ≤

∑

i ∈ S
p i = App (I)

for sets S ∗ and S . Because | S ∗| ≤ n , we can further get

App (I) ≥ Opt (I) − Kn = Opt (I) − εp

2

≥ Opt (I) − ε
∑

i ∈ S
p i = Opt (I) − εApp (I) ,

i.e.,
Opt (I)
App (I)

≤ 1 + ε. Hereto, we know that Poly-DKP is a fully polynomial-time approximation scheme for D{0-1}KP according

to Definition 2 . �

4.2. App-2-DKP : the 2-approximation algorithm for D{0-1}KP

For the instance I of D{0-1}KP and arbitrarily small threshold ε > 0, the approximate ratio of Poly-DKP is
Opt (I)
App (I)

≤ 1 + ε.

We can find that the computational complexity of Poly-DKP depends on

1
ε and increases with the decrease of ε. In fact, we

can try to eliminate the negative effects of ε on the computational complexity of approximate algorithm and then give an

approximate algorithm with computational complexity O (n log 2 n). The approximate ratio of such an approximate algorithm

is
Opt (I)
App (I)

≤ 2 .

Lemma 1. For items 3 i , 3 i + 1 , and 3 i + 2 in item group i , the relationship among
p 3 i
w 3 i

,
p 3 i +1
w 3 i +1

, and
p 3 i +2
w 3 i +2

can be induced as one

of the following four cases:

1.
p 3 i
w 3 i

� =

p 3 i +1
w 3 i +1

,
p 3 i
w 3 i

� =

p 3 i +2
w 3 i +2

, and

p 3 i +1
w 3 i +1

� =

p 3 i +2
w 3 i +2

;

2.
p 3 i
w 3 i

=

p 3 i +1
w 3 i +1

<

p 3 i +2
w 3 i +2

;

3.
p 3 i
w 3 i

=

p 3 i +2
w 3 i +2

>

p 3 i +1
w 3 i +1

;

4.
p 3 i +1
w 3 i +1

=

p 3 i +2
w 3 i +2

>

p 3 i
w 3 i

.

Proof. We only prove the case 2, because the proving methods of cases 3 and 4 are same as case 2. When

p 3 i
w 3 i

=

p 3 i +1
w 3 i +1

,

let
w 3 i +1

w 3 i
=

p 3 i +1
p 3 i

= k, then we can get w 3 i +1 = k w 3 i and p 3 i +1 = k p 3 i . According to p 3 i +2 = p 3 i + p 3 i +1 and 0 < w 3 i +2 < w 3 i +
w 3 i +1 , we can derive

p 3 i +2

w 3 i +2

=

p 3 i + p 3 i +2

w 3 i +2

>

p 3 i + p 3 i +2

w 3 i + w 3 i +1

=

(k + 1) p 3 i
(k + 1) w 3 i

=

p 3 i
w 3 i

.

Then, we get that the case 2 holds for
p 3 i
w

,
p 3 i +1
w

, and

p 3 i +2
w

. �

3 i 3 i +1 3 i +2

640 Y.-C. He et al. / Information Sciences 369 (2016) 634–647

Algorithm 3 App-2-DKP : the 2-approximation algorithm for D{0-1}KP.

1: Input: The value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } , and knapsack capacity C for

instance I .

2: Output: The approximate solution X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n and approximate value Ap p 2 .

3: Sorting
p j
w j

(j = 0 , 1 , · · · , 3 n − 1) in descending order. Put the item 3 i + 2 in front of the items 3 i and 3 i + 1 when

p 3 i
w 3 i

=

p 3 i +2
w 3 i +2

or
p 3 i +1
w 3 i +1

=

p 3 i +2
w 3 i +2

. Storing the subscripts of ordered

p j
w j

in array H (0 , 1 , · · · , 3 n − 1) .

4: X (0 , 1 , · · · , 3 n − 1) ← (0 , 0 , · · · , 0) ; B (0 , 1 , · · · , n − 1) ← (0 , 0 , · · · , 0) ; T ← C; Ap p 2 ← 0 ; i ← 0 .

5: while T > 0 and i ≤ 3 n − 1 do

6: if w H (i) ≤ T and B

[
int

(
H (i)

3

)]
== 0 then

7: x H (i) ← 1 ; T ← T − w H (i) ; B

[
int

(
H (i)

3

)]
← 1 ; Ap p 2 ← Ap p 2 + p H (i) ;

8: end if

9: i ← i + 1

10: end while

11: p 3 k +2 ← max
[

p 3 j+2 | j = 0 , 1 , · · · , n − 1
]
;

12: if p 3 k +2 > Ap p 2 then

13: Ap p 2 ← p 3 k +2 ; X ←

x 0 , · · · , x 3 k +1 , x 3 k +2 , x 3 k +3 , · · · , x 3 n −1

(0 , · · · , 0 , 1 , 0 , · · · , 0)
;

14: end if

15: Return (Ap p 2 , X) .

According to the cases 3 and 4 in Lemma 1 , we know that
p 3 i
w 3 i

=

p 3 i +2
w 3 i +2

or
p 3 i +1
w 3 i +1

=

p 3 i +2
w 3 i +2

may exist for an instance of

D{0-1}KP. If the item 3 i + 2 can be put into knapsack, the approximate solution is more desired, because it maximizes the

sum of value coefficients for the residual capacity of knapsack. We give the following Example 1 to explain this fact.

Example 1. Assume there exist an instance I with scale 3 n = 9 . The value set and weigh set of I are

[(3 , 6 , 9) , (2 , 4 , 6) , (4 , 6 , 10)] and [(2 , 5 , 6) , (4 , 2 , 5) , (4 , 3 , 5)] ,

respectively. The knapsack capacity is C = 14. Sorting
p j
w j

(j = 0 , 1 , · · · , 8) in descending order, we can get the subscript se-

quence {4, 7, 8, 0, 2, 5, 1, 6, 3} and

p 0
w 0

=

p 2
w 2

=

3
2 which is the case 3 of Lemma 1 . Then, the item 0 is put into the knap-

sack rather than item 2. The approximate solution determined based on the greedy strategy is X 1 = (1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0)
and the approximate value is 13. If we consider putting the item 2 into knapsack, we can get the approximate solution is

X 2 = (0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1) and the approximate value is 23. X 2 is the optimal solution of instance I .

Algorithm 3 shows the detailed procedure of App-2-DKP algorithm. From Algorithm 3 , we can see that the computational

complexity of App-2-DKP is O (n log 2 n) which mainly depends on the sorting operation. Hereinafter, we give the theoretical

proof to the 2-approximation ratio of App-2-DKP .

Theorem 3. The performance ratio of App-2-DKP is less than or equal to 2, i.e.,
Opt (I)
App (I)

≤ 2 , where Opt (I) and App (I) are the

optimal and approximate values of instance I , respectively.

Proof. Let
b i
a i

denote the maximum of

(
p 3 i
w 3 i

,
p 3 i +1
w 3 i +1

,
p 3 i +2
w 3 i +2

)
. When

p 3 i
w 3 i

=

p 3 i +2
w 3 i +2

or
p 3 i +1
w 3 i +1

=

p 3 i +2
w 3 i +2

, we can get
b i
a i

=

p 3 i +2
w 3 i +2

(i = 0 , 1 , · · · , n − 1). For simplicity, we assume
b 0
a 0

≥ b 1
a 1

≥ · · · ≥ b n −1
a n −1

. Then, there exists k ∈ { 0 , 1 , · · · , n − 1 } which satisfies

the inequations
∑ k

i =0 a i ≤ C, w 3 k +3 +

∑ k
i =0 a i > C, w 3 k +4 +

∑ k
i =0 a i > C, and w 3 k +5 +

∑ k
i =0 a i > C. Thus, we can get

∑ k
i =0 b i ≤

Opt (I) <

∑ k +1
i =0 b i . It indicates that the item group k + 1 is the first one of which there is no any item that can be put

into knapsack. Because there may be one item group in (k + 2 , k + 3 , · · · , n − 1) of which an item will be put into knapsack,

App (I) ≥ ∑ k
i =0 b i holds. because App (I) ≥ max [p 3 i +2 | 0 = 1 , 2 , · · · , n − 1] ≥ max

[
p 3 (k +1) , p 3 (k +1) +1 , p 3 (k +1) +2

]
≥ b k +1 , we can

get

App (I) ≥ 1

2

(

k ∑

i =0

b i + b k +1

)

≥ 1

2

(

k +1 ∑

i =0

b i

)

>

1

2

Opt (I) ,

so we can derive
Opt (I)
App (I)

< 2 . That is to say, App-2-DKP is the 2-approximation algorithm for D{0-1}KP. �

4.3. PSO-GRDKP: the particle swarm optimization based approximation algorithm for D{0-1}KP

In the above-mentioned descriptions, we present two approximate algorithms, i.e., Poly-DKP and App-2-DKP , based on

the dynamic programming and greedy strategy, respectively. In the practical applications [8,9,23,24,26,31,34,36,37,40,43] , we

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 641

Algorithm 4 GR-DKP: the greedy repair algorithm for D{0-1}KP.

1: Input: A binary vector X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n and array H (0 , 1 , · · · , 3 n − 1) .

2: Output: The repaired binary vector X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n .
3: f weight ← 0 ; k ← 3 n − 1 ;

4: for i = 0 to n − 1 do

5: if x 3 i + x 3 i +1 + x 3 i +2 > 1 then

6: x 3 i ← 0 ; x 3 i +1 ← 0 ; x 3 i +2 ← 0 ;

7: j = arg max
j=3 i, 3 i +1 , 3 i +2

(
p j
w j

)
8: x j ← 1 ;

9: f weight ← f weight + w j ;

10: end if

11: end for

12: while f weight > C do

13: if x H (k) == 1 then

14: x H (k) ← 0 ;

15: f weight ← f weight − w H (k) ;

16: end if

17: k ← k − 1 ;

18: end while

19: for j = 0 to 3 n − 1 do

20: i ← int

(
H (j)

3

)
;

21: if x 3 i == 0 and x 3 i +1 == 0 and x 3 i +2 == 0 and f weight + w H (j) ≤ C then

22: x H (j) ← 1 ;

23: f weight ← f weight + w H (j) ;

24: end if

25: end for

26: Return X .

find that it is very successful to use the evolutionary algorithm (e.g., particle swarm optimization [20,42]) to solve the

optimization problems. However, the infeasible solutions will exist because D{0-1}KP is a constrained optimization problem.

The commonly-used strategies to eliminate the infeasible solutions are to use greedy strategy to repair and optimize these

infeasible solutions. Thus, we firstly propose a G reedy R epair algorithm for D{0-1}KP (GR-DKP) and then design the PSO

based greedy repair algorithm for GR-DKP (PSO-GRDKP) in this subsection.

4.3.1. GR-DKP: the greedy repair algorithm for D{0-1}KP

When using PSO to solve the constrained optimization problem D{0-1}KP, two kinds of mostly-used methods to deal

with the infeasible solutions are penalty function and repair [28] , where the repair method is more effective than penalty

function method [4,5,17] . Hereinafter, we present a greedy repair algorithm when PSO is used to solve the constrained

optimization problem D{0-1}KP.

For any binary vector X = (x 0 , x 1 , · · · , x 3 n −1) ∈ { 0 , 1 } 3 n , it will be a feasible solution of D{0-1}KP only if it satisfies the

constrained conditions Eqs. (2) and (3) . Thus, we firstly check whether X satisfies Eq. (2) . If there exists x 3 i , x 3 i +1 , and

x 3 i +2 which makes x 3 i + x 3 i +1 + x 3 i +2 > 1 . It indicates that at least two items in item group i can be put into knapsack.

Here, x j = 1 (j = 3 i, 3 i + 1 , 3 i + 2) corr esponding t o the maximum of

(
p 3 i
w 3 i

,
p 3 i +1
w 3 i +1

,
p 3 i +2
w 3 i +2

)
is not chang ed and other x j s ar e

assigned as 0. Then, we check whether X satisfies Eq. (3) . If not, we change x H (j) = 1 into x H (j) = 0 according to the order

of H (3 n − 1) , H (3 n − 2) , . . . , H (0) until Eq. (3) holds. Finally, we check whether the updated X of which x j = 0 is assigned

to 1 satisfies Eqs. (2) and (3) . Based on the aforementioned descriptions, we give the detailed procedure of GR-DKP in

Algorithm 4 , where
p j
w j

(j = 0 , 1 , · · · , 3 n − 1) are sorted in descending order and the subscripts of ordered

p j
w j

are stored in

the array H (0 , 1 , · · · , 3 n − 1) . Obviously, the computational complexity of GR-DKP is O (n).

4.3.2. PSO-GRDKP: the PSO based approximation algorithm for D{0-1}KP

We design a PSO based greedy repair algorithm for solving D{0-1}KP in this subsection. B inary PSO (BPSO) [21] is

employed in our study due to its simplicity and availability when handling the 0-1 knapsack problems [18,25] . Assume

S (t) =

{
[X i (t) , V i (t)]

∣∣X i (t) ∈ { 0 , 1 } 3 n , V i (t) ∈ [L, U]
3 n

, i = 1 , 2 , · · · , N

}
is the t -th generation population, where

X i (t) = (x i 0 (t) , x i 1 (t) , · · · , x i, 3 n −1 (t))

is the position of i -th particle in the t -th generation population, which is a potential solution of GR-DKP;

V i (t) = (v i 0 (t) , v i 1 (t) , · · · , v i, 3 n −1 (t))

642 Y.-C. He et al. / Information Sciences 369 (2016) 634–647

Algorithm 5 PSO-GRDKP: the PSO based approximation algorithm for D{0-1}KP.

1: Input: The instance I of D{0-1}KP, population size N, iteration number T , lower bound L , upper bound U , acceleration

constants c 1 and c 2 .

2: Output: The approximate solution G (T) and approximate value f [G (T)] of I .

3: Sorting
p j
w j

(j = 0 , 1 , · · · , 3 n − 1) in descending order. Storing the subscripts of ordered

p j
w j

in array H (0 , 1 , · · · , 3 n − 1) .

4: Generating the initial population S (0) = { [X i (0) , V i (0)] | i = 1 , 2 , · · · , N } randomly;

5: for j = 1 to N do

6: X i (0) ← GR-DKP [X i (0) , H (0 , 1 , · · · , 3 n − 1)] ; (GR -DKP is Algorithm 4.)

7: end for

8: Determining P i (0) and G (0) according to f [X i (0)] ; t ← 0 ;

9: while t < T do

10: for i = 1 to N do

11: for j = 0 to 3 n − 1 do

12: v i j (t + 1) ← v i j (t) + c 1 r 1
[

p i j (t) − x i j (t)
]

+ c 2 r 2
[
g j (t) − x i j (t)

]
;

13: if r 3 ≥ sig
[
v i j (t + 1)

]
then

14: x i j (t + 1) ← 0 ;

15: else

16: x i j (t + 1) ← 1 ;

17: end if

18: end for

19: X i (t + 1) ← GR-DKP [X i (t + 1) , H (0 , 1 , · · · , 3 n − 1)] ;

20: if f [X i (t + 1)] > f [P i (t + 1)] then

21: P i (t + 1) ← X i (t + 1) ;

22: end if

23: end for

24: Determining G (t + 1) according to f [P i (t + 1)] , i = 1 , 2 , · · · , N ;

25: t ← t + 1 ;

26: end while

27: Return [f [G (T)] , G (T)] .

is the velocity of i -th particle in the t -th generation population; N is the number of particles in the t -th generation popula-

tion; t > 0 is the number of iterations; L and U are the lower and upper bounds of velocity, respectively. Let

P i (t) = (p i 0 (t) , p i 1 (t) , · · · , p i, 3 n −1 (t)) ∈ { 0 , 1 } 3 n
and

G (t) = (g 0 (t) , g 1 (t) , · · · , g 3 n −1 (t)) ∈ { 0 , 1 } 3 n
denote the locally or personally optimal solution of the i -th particle and globally optimal solution of population.

The position and velocity of the i -th particle is updated according to the following rules:

v i j (t + 1) = v i j (t) + c 1 r 1
[

p i j (t) − x i j (t)
]

+ c 2 r 2
[
g j (t) − x i j (t)

]
, (9)

and

x i j (t + 1) =

{
0 , i f r 3 ≥ sig

[
v i j (t + 1)

]
1 , otherwise

(10)

where, i = 1 , 2 , · · · , N, j = 0 , 1 , · · · , 3 n − 1 , c 1 = c 2 = 2 are the acceleration constants, r 1 , r 2 , r 3 are the random numbers

within interval (0, 1), and sig (x) =

1
1+ e −x is the sigmoid function. Algorithm 5 depicts the detailed procedure of PSO-GRDKP.

In Algorithm 5 , the computational complexities of sorting operation and GR-DKP algorithm are O (n log 2 n) and O (n), respec-

tively. Thus, the time complexity of PSO-GRDKP is O (n log 2 n) + 3 O (nN) + T × [O (nN) + O (N)] . Because N < n and T < n , the

computational complexity of PSO-GRDKP is O (n 3).

5. Experimental comparison on 4 instances of D{0-1}KP

This section conducts the exhaustive experiments to compare the performances of OE-DKP [12] , NE-DKP, Poly-DKP, App-

2-DKP , and PSO-GRDKP based on 4 kinds of large scale D{0-1}KP instances, 1 i.e., u ncorrelated instances of D{0-1}KP (udkp),

w eakly correlated instances of D{0-1}KP (wdkp), s trongly correlated instances of D{0-1}KP (sdkp), and i nverse strongly cor-

related instances of D{0-1}KP (idkp) [22,32] . All algorithms in this article are implemented with C++ language running on a
1 Available at http://sncet.com/FourKindsOfLarge-scalePInstances.rar .

http://sncet.com/FourKindsOfLarge-scalePInstances.rar

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 643

Table 1

Solving performances of 5 algorithms on 10 data sets of udkp.

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5

udkp1 289,761 505,592 0.798 316,225 0.516 289,761 0.078 239,760 0.0 289,746 289,157 289489.4 219.0 0.134

udkp2 510,131 769,649 2.316 676,296 2.078 510,131 0.218 472,233 0.0 509,981 509,503 509790.6 170.9 0.522

udkp3 817,713 1,396,990 6.368 955,123 4.328 817,713 0.453 676,286 0.0 817,300 816,431 816961.6 298.4 1.156

udkp4 1,122,074 1,965,668 11.913 1,284,269 7.611 1,122,068 0.813 907,900 0.0 1,121,812 1,121,469 1121632.0 109.9 2.025

udkp5 1,233,057 2,054,733 15.469 1,573,966 11.626 1,233,035 1.297 1,085,503 0.008 1,232,740 1,232,490 1232591.5 100.5 3.196

udkp6 1,399,458 2,168,210 19.653 1,921,342 16.868 1,399,458 1.922 1,256,462 0.015 1,398,909 1,398,707 1398767.6 73.2 4.659

udkp7 1,826,261 3,096,369 32.692 2,205,688 22.630 1,826,258 2.609 1,576,358 0.015 1,825,711 1,824,834 1825424.6 320.5 6.248

udkp8 1,920,409 3,016,327 36.476 2,552,592 30.579 1,920,409 3.343 1,743,346 0.015 1,919,810 1,918,752 1919359.4 395.6 8.241

udkp9 2,458,318 4,097,285 55.711 2,914,816 38.315 2,458,308 4.297 2,061,688 0.015 2,456,686 2,454,768 2455811.8 793.6 10.432

udkp10 2,886,506 5,092,146 76.961 3,217,412 47.674 2,886,491 4.984 2,292,272 0.016 2,884,139 2,880,678 2882292.0 974.3 12.794

Table 2

Solving performances of 5 algorithms on 10 data sets of wdkp.

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5

wdkp1 310,805 255,619 0.422 416,119 0.721 310,805 0.11 310,740 0.0 310,805 310,768 310790.2 18.1 0.137

wdkp2 504,177 389,984 1.218 860,530 2.746 504,177 0.297 504,022 0.0 504,177 504,044 504100.4 62.6 0.519

wdkp3 840,609 679,302 3.079 1,240,929 5.891 840,609 0.625 840,518 0.0 840,597 840,539 840573.8 28.4 1.149

wdkp4 1,041,019 799,741 4.797 1,667,887 10.298 1,041,010 1.093 1,041,010 0.0 1,041,019 1,041,010 1041011.8 3.6 2.003

wdkp5 1,606,341 1,302,412 9.704 2,059,185 15.797 1,606,341 1.672 1,606,332 0.005 1,606,332 1,606,332 1606332.0 0.0 3.106

wdkp6 1,875,732 1,519,313 13.845 2,503,869 22.954 1,875,732 2.407 1,875,604 0.010 1,875,717 1,875,657 1875685.6 21.0 4.519

wdkp7 1,726,671 1,340,978 13.969 2,928,683 30.923 1,726,662 3.297 1,726,556 0.010 1,726,662 1,726,636 1726648.2 11.7 6.134

wdkp8 2,589,429 2,139,106 25.829 3,343,326 40.393 2,589,425 4.297 2,589,336 0.010 2,589,411 2,589,376 2589394.8 16.3 7.891

wdkp9 2,551,957 2,027,672 27.501 3,705,219 50.252 2,551,940 5.344 2,551,897 0.015 2,551,928 2,551,908 2551918.4 8.5 10.203

wdkp10 2,718,419 2,159,925 32.424 4,176,473 62.487 2,718,419 6.672 2,718,305 0.015 2,718,388 2,718,367 2718383.0 8.1 12.559

Acer Aspire E1-570G PC with Windows 8 running on a Intel(R) Core(TM) i5-3337u 1.8 GHz processor with 4 GB DDR3 RAM.

Each instance includes 10 different data sets with sizes 3 n = 30 0 , 60 0 , · · · , 30 0 0 . For each data set, the value coefficients,

weight coefficients, and knapsack capacity are generated as follows [32] .

1. udkp instance. p 3 i , p 3 i +1 ∈ R [128 , 3072] , p 3 i < p 3 i +1 , p 3 i +2 = p 3 i + p 3 i +1 (i = 0 , 1 , · · · , n − 1) ; w 3 i , w 3 i +1 ∈ R [256 , 4098] ,

w 3 i < w 3 i +1 , w 3 i +2 ∈ R [w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1] ; C = r
∑ n −1

i =0 w 3 i +2 , where r is a random decimal within interval [0.5,

0.75] and x ∈ R [A , B] denotes x is a random integer within interval [A , B].

2. wdkp instance. w 3 i , w 3 i +1 ∈ R [256 , 4098] , w 3 i < w 3 i +1 , w 3 i +2 ∈ R [w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1] (i = 0 , 1 , · · · , n − 1) ;

p 3 i ∈ R [w 3 i − 100 , w 3 i + 100] , p 3 i +1 ∈ R [w 3 i +1 − 100 , w 3 i +1 + 100] , p 3 i < p 3 i +1 , p 3 i +2 = p 3 i + p 3 i +1 ; C = r
∑ n −1

i =0 w 3 i +2 .

3. sdkp instance. w 3 i , w 3 i +1 ∈ R [256 , 4098] , w 3 i < w 3 i +1 , w 3 i +2 ∈ R [w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1] (i = 0 , 1 , · · · , n − 1) ; p 3 i =
w 3 i + 100 , p 3 i +1 = w 3 i +1 + 100 , p 3 i +2 = p 3 i + p 3 i +1 ; C = r

∑ n −1
i =0 w 3 i +2 .

4. idkp instance. p 3 i , p 3 i +1 ∈ R [256 , 4098] , p 3 i < p 3 i +1 , p 3 i +2 = p 3 i + p 3 i +1 (i = 0 , 1 , · · · , n − 1) ; w 3 i = p 3 i + 100 , w 3 i +1 =
p 3 i +1 + 100 , w 3 i +2 ∈ R [w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1] ; C = r

∑ n −1
i =0 w 3 i +2 .

The exact algorithms, i.e., OE-DKP and NE-DKP, which can solve the optimal solution and value for D{0-1}KP, are time-

consuming when handling instances with the large value and weight coefficients, thus they are suitable for the instances

with smaller C or S . Our experiment mainly test the impact of C and S on the solving times of OE-DKP and NE-DKP. For

Poly-DKP, App-2-DKP , and PSO-GRDKP, we don’t guarantee these three approximate algorithms can always find the op-

timal solutions of instances. Thus, their solving performances are evaluated with the approximate ratio and solving time.

The lower the approximate ratio is and the lower the solving time is, the better the performance of algorithm is. In addi-

tion, PSO-GRDKP is a random algorithm and thus often gets the different solving results for the independent running. In

order to evaluate the performance of PSO-GRDKP more reliably, we calculate the approximate ratios of the best and worst

approximate solutions with the optimal solution.

Theoretically, ε in Poly-DKP can be an arbitrary positive real number. However, if ε is extremely small, it will lead to the

small K or K = 1 for K = max
[

εp
2 n , 1

]
. In this case, S

K =

∑ n −1
i =0

p 3 i +2
K is very large and then it causes the out of memory when

Poly-DKP calls NE-DKP in Algorithm 2 . In our experiments, we set ε =

20 n
p and then we can get K = 10 . For PSO-GRDKP, the

parameters are N = 30 , L = −5 , U = 5 , c 1 = c 2 = 2 , and T = n, where n is the number of item groups. For each algorithm,

we repeatedly run it 20 times on the identical data set and use the average value as the final result. Tables 1 –4 summarize

the calculated values and solving times corresponding to 5 different D{0-1}KP algorithms on instances of udkp, wdkp, sdkp,

idkp, respectively, where C is the knapsack capacity, S =

∑ n −1
i =0 p 3 i +2 , App 1 is the approximate value of the approximate

algorithm Poly-DKP, App 2 is the approximate value of the approximate algorithm App-2-DKP , App Best , App Worst , App Mean , and

App are the best value, worst value, mean value, and standard deviation of PSO-GRDKP for 20 times independent running.
Std

644 Y.-C. He et al. / Information Sciences 369 (2016) 634–647

Table 3

Solving performances of 5 algorithms on 10 data sets of sdkp.

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5

sdkp1 352,019 265,233 0.421 456,879 0.781 351,992 0.078 351,140 0.0 352,003 351,928 351973.4 25.6 0.137

sdkp2 545,255 389,495 1.188 910,978 2.765 545,250 0.281 545,147 0.0 545,243 545,231 545235.5 4.5 0.504

sdkp3 986,019 741,4 4 4 3.359 1,379,036 6.140 986,008 0.625 984,581 0.0 985,905 985,602 985786.0 101.3 1.112

sdkp4 1,247,191 916,070 5.501 1,791,499 10.626 1,247,157 1.109 1,244,851 0.005 1,247,041 1,246,432 1246780.6 206.3 1.941

sdkp5 1,759,075 1,317,721 9.969 2,316,659 17.016 1,759,075 1.829 1,757,387 0.010 1,758,664 1,758,391 1758543.2 91.0 3.031

sdkp6 1,795,393 1,296,459 11.719 2,697,496 23.642 1,795,375 2.516 1,794,156 0.010 1,795,373 1,795,170 1795270.6 78.4 4.416

sdkp7 2,264,218 1,673,102 17.814 3,203,071 33.001 2,264,215 3.484 2,263,043 0.010 2,264,026 2,263,652 2263803.8 127.0 5.997

sdkp8 2,236,703 1,621,874 19.532 3,607,252 42.581 2,236,694 4.547 2,235,634 0.010 2,236,471 2,236,106 2236318.8 150.3 7.863

sdkp9 3,034,816 2,277,132 30.752 4,084,681 54.174 3,034,795 5.781 3,030,311 0.015 3,034,111 3,033,149 3033813.0 347.3 9.963

sdkp10 2,916,217 2,098,311 31.596 4,611,874 66.706 2,916,181 7.204 2,915,218 0.019 2,916,071 2,915,753 2915883.2 108.4 12.325

Table 4

Solving performances of 5 algorithms on 10 data sets of idkp.

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5

idkp1 277,642 225,675 0.359 435,982 0.696 277,633 0.109 277,581 0.0 277,642 277,633 277639.0 4.2 0.138

idkp2 541,724 428,422 1.313 880,465 2.753 541,724 0.313 541,604 0.0 541,724 541,653 541683.8 32.9 0.527

idkp3 1,016,524 823,711 3.765 1,313,736 6.150 1,016,524 0.688 1,016,457 0.0 1,016,518 1,016,464 1016500.4 22.5 1.137

idkp4 1,220,338 987,047 6.031 1,743,255 11.078 1,220,322 1.141 1,220,269 0.0 1,220,327 1,220,296 1220317.0 10.9 2.046

idkp5 1,342,480 1,051,968 8.016 2,159,116 16.938 1,342,474 1.812 1,342,175 0.005 1,342,454 1,342,443 1342446.6 4.5 3.184

idkp6 1,922,488 1,559,698 14.579 2,513,375 23.173 1,922,488 2.532 1,922,381 0.010 1,922,451 1,922,400 1922420.4 17.0 4.534

idkp7 2,190,780 1,775,465 18.923 3,011,804 32.439 2,190,763 3.453 2,190,681 0.015 2,190,759 2,190,709 2190733.2 18.6 6.128

idkp8 2,719,899 2,222,463 27.282 3,455,865 42.408 2,719,879 5.078 2,719,593 0.015 2,719,881 2,719,815 2719851.4 22.3 8.200

idkp9 2,377,631 1,852,115 25.095 3,911,824 53.253 2,377,619 5.656 2,377,328 0.015 2,377,631 2,377,526 2377586.6 35.5 10.281

idkp10 3,123,425 2,506,055 38.111 4,259,048 64.519 3,123,425 7.016 3,123,335 0.015 3,123,417 3,123,339 3123373.2 27.3 12.534

Fig. 1. Comparison between C
S

and Time 1
Time 2

on 4 instances.

From Tables 1 –4 , we can easily find that the developed approximate algorithms (i.e., Poly-DKP, App-2-DKP , and PSO-GRDKP)

based on the newly-designed exact algorithm (i.e., NE-DKP) obtain the better solving performances than the existing exact

algorithm (OE-DKP): more accurate values and lower solving times.

Fig. 1 presents the comparison between

C
S and

T ime 1
T ime 2

on 4 kinds of instances, where S =

∑ n −1
i =0 p 3 i +2 . This comparison is

to show the impact of C and S on the solving times of OE-DKP and NE-DKP. Tables 1–4 reflects that the solving time of

OE-DKP is lower than NE-DKP for instances with C < S and higher than NE-DKP for the instance with C > S . This indicates

that OE-DKP is more suitable for instances with the smaller C and NE-DKP is more suitable for instances with the smaller

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 645

Fig. 2. Comparison of approximate ratios among Poly-DKP, App-2-DKP, and PSO-GRDKP on 4 instances.

Fig. 3. Comparison of solving time among 5 algorithms on 4 instances.

S . In addition, Fig. 1 shows that the curve of C
S is completely identical to the curve of

T ime 1
T ime 2

, where Time 1 and Time 2 are

the solving times of OE-DKP and NE-DKP, respectively. This indicates that the time ratio of OE-DKP and NE-DKP is indeed
C
S as shown in Theorem 1 . Fig. 2 lists the comparative results of approximate ratios among Poly-DKP, App-2-DKP , and PSO-

GRDKP on 4 kinds of instances. From Fig. 2 , we can see that Poly-DKP has the better results, because its approximate ratios

are nearly equal to 1 on each data set. App-2-DKP obtains the worse results compared with Poly-DKP and PSO-GRDKP. Fig. 3

gives the comparison of solving time among 5 algorithms on each data set. When C and S are all very large, we can get

O (n log 2 n) < O (n 3) < O

(
n 3

ε

)
< O (nC) or O (n log 2 n) < O (n 3) < O

(
n 3

ε

)
< O (nS). This reflects that App-2-DKP has the fastest

solving speed and OE-DKP and NE-DKP are slowest. The solving speeds of Poly-DKP and PSO-GRDKP are slower than App-

2-DKP and faster than OE-DKP and NE-DKP. The experimental results in Tables 1 –4 and Fig. 3 confirm this conclusion. Even

for the D{0-1}KP instance with scale 3 n = 30 0 0 , the solving times of App-2-DKP are lower than 0.02 s. The solving times of

Poly-DKP and PSO-GRDKP are unrelated to value and weight coefficients, which increase with the increase of instance scale.

646 Y.-C. He et al. / Information Sciences 369 (2016) 634–647

OE-DKP and NE-DKP has the highest solving times. Especially for the instances with large value and weight coefficients, the

solving speeds of OE-DKP and NE-DKP are very slow.

Above all, we conclude the experimental results and analysis as follows. For the small scale D{0-1}KP instance with small

value and weight coefficients, OE-DKP is the first choice when C < S and NE-DKP is more excellent when C > S . For the

large scale D{0-1}KP instance with large value and weight coefficients, Poly-DKP or PSO-GRDKP should be used to obtain a

fast solving, where PSO-GRDKP is more appropriate to the instances with extremely large scales. If there is not the higher

requirement to result, App-2-DKP is the best choice, because this approximate algorithm has the fastest solving speed among

all approximate algorithms.

6. Conclusions and further works

This article studied one exact and three approximate algorithms for solving Discounted {0-1} K napsack P roblem (D{0-

1}KP). Unlike the existing exact algorithm, The new exact algorithm (NE-DKP) was firstly designed based on the principle of

minimizing the total weight with the given sum of value coefficients. Then, three approximate algorithms were developed

based on the designed exact algorithm: fully Poly nomial-time approximation scheme (Poly-DKP), 2 - App roximation algo-

rithm (App-2-DKP), and PSO based G reedy R epair algorithm (PSO-GRDKP). On four kinds of well-known real applications

of D{0-1}KP, we finally tested and analyzed the solving performances of proposed exact and approximate algorithms and

provided the useful instructions for the application scenarios of proposed D{0-1}KP algorithms.

Our future research will be addressed as the following two issues. First, we will study the uncertainty measure criterion

for a D{0-1}KP instance and further use the uncertainty minimization theory [2,13–15,38,39,44] to design the D{0-1}KP

algorithm. Second, we will design the differential evolution [16,35] and artificial bee colony optimization [19,41] based on

GR-DKP to solve D{0-1}KP.

Acknowledgments

We thank Editor-in-Chief and anonymous reviewers whose valuable comments and suggestions help us significantly

improve this article. The first author and corresponding authors contributed equally the same to this article which was

supported by Basic Research Project of Knowledge Innovation Program in Shenzhen (JCYJ20150324140036825), China Post-

doctoral Science Foundations (2015M572361 and 2016T90799), National Natural Science Foundations of China (61503252

and 71371063), Scientific Research Project Program of Colleges and Universities in Hebei Province (ZD2016005), and Natural

Science Foundation of Hebei Province (F2016403055).

References

[1] M.H. Alsuwaiyel , Algorithms Design Techniques and Analysis, World Scientific Publishing Company, Singapore, 2009 .

[2] R.A.R. Ashfaq, X.Z. Wang, J.Z.X. Huang, H. Abbas, Y.L. He, Fuzziness based semi-supervised learning approach for intrusion detection system, in: Infor-
mation Sciences, 2016 . In press, doi: 10.1016/j.ins.2016.04.019 .

[3] R. Bellman , Dynamic Programming, Princeton University Press, Princeton, 1957 .
[4] M.C. Chih , Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem, Appl. Soft Comput.

26 (2015) 378–389 .
[5] P.C. Chu , J.E. Beasley , A genetic algorithm for the multidimensional knapsack problem, J. Heuristics 4 (1998) 63–86 .

[6] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , Introduction to Algorithms, The MIT Press, Cambridge, 2009 .

[7] P.W. David , B.S. David , The Design of Approximation Algorithms, Cambridge University Press, Cambridge, 2011 .
[8] B.P. De , R. Kar , D. Mandal , S.P. Ghoshal , Optimal selection of components value for analog active filter design using simplex particle swarm optimiza-

tion, Int. J. Mach. Learn. Cybern. 6 (4) (2015) 621–636 .
[9] B.P. De , R. Kar , D. Mandal , S.P. Ghoshal , An efficient design of CMOS comparator and folded cascode op-amp circuits using particle swarm optimization

with an aging leader and challengers algorithm, Int. J. Mach. Learn. Cybern. 7 (2016) 325–344 .
[10] D.Z. Du , K.I. Ko , Theory of Computational Complexity, Wiley-Interscience, New York, 20 0 0 .

[11] D.Z. Du , K.I. Ko , X.D. Hu , Design and Analysis of Approximation Algorithms, Springer Science Business Media LLC, Berlin, 2012 .

[12] B. Guldan , Heuristic and exact algorithms for discounted knapsack problems, University of Erlangen-Nürnberg, Germany, 2007 Master thesis .
[13] Y.L. He , J.N.K. Liu , Y.H. Hu , X.Z. Wang , OWA operator based link prediction ensemble for social network, Expert Syst. Appl. 42 (1) (2015) 21–50 .

[14] Y.L. He, X.Z. Wang, J.Z.X. Huang, Fuzzy nonlinear regression analysis using a random weight network, Inf. Sci. (2016a) . In press, doi: 10.1016/j.ins.2016.
01.037 .

[15] Y.L. He, X.Z. Wang, J.Z.X. Huang, Recent advances in multiple criteria decision making techniques, Int. J. Mach. Learn. Cybern. (2016b) . In press, doi:
10.1007/s13042-015-0490-y .

[16] Y.C. He , X.Z. Wang , K.Q. Liu , Y.Q. Wang , Convergent analysis and algorithmic improvement of differential evolution, J. Softw. 21 (5) (2010) 875–885 .

[17] Y.C. He , X.L. Zhang , W.B. Li , X. Li , W.L. Wu , S.G. Gao , Algorithms for randomized time-varying knapsack problems, J. Comb. Optim. 31 (1) (2016) 95–117 .
[18] Y.C. He , L. Zhou , C.P. Shen , A greedy particle swarm optimization for solving knapsack problem, in: Proceedings of 2007 International Conference on

Machine Learning and Cybernetics, 2007, pp. 995–998 .
[19] D. Karaboga , An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06, 2005 .

[20] J. Kennedy , R.C. Eberhart , Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948 .
[21] J. Kennedy , R.C. Eberhart , A discrete binary version of the particle swarm optimization, in: Proceedings of 1997 Conference on System, Man, and

Cybernetices, 1997, pp. 4104–4109 .

[22] H. Kellerer , U. Pferschy , D. Pisinger , Knapsack Problems, Springer, Berlin, 2004 .
[23] Z.P. Liang , R.Z. Song , Q.Z. Lin , Z.H. Du , J.Y. Chen , Z. Ming , J.P. Yu , A double-module immune algorithm for multi-objective optimization problems, Appl.

Soft Comput. 35 (2015) 161–174 .
[24] Q.Z. Lin , Q.L. Zhu , P.Z. Huang , J.Y. Chen , Z. Ming , J.P. Yu , A novel hybrid multi-objective immune algorithm with adaptive differential evolution, Comput.

Oper. Res. 62 (2015) 95–111 .
[25] J.Q. Liu , Y.C. He , Q.Q. Gu , Solving knapsack problem based on discrete particle swarm optimization, Comput. Eng. Des. 28 (13) (2007) 3189–3191 . 3204.

http://dx.doi.org/10.13039/501100003787
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0001
http://10.1016/j.ins.2016.04.019
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0013
http://10.1016/j.ins.2016.01.037
http://10.1007/s13042-015-0490-y
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0025

Y.-C. He et al. / Information Sciences 369 (2016) 634–647 647

[26] W.M. Ma , M.M. Wang , X.X. Zhu , Improved particle swarm optimization based approach for bilevel programming problem-an application on supply
chain model, Int. J. Mach. Learn. Cybern. 5 (2) (2014) 281–292 .

[27] S. Martello , Knapsack Problem: Algorithms and Computer Implementations, JohnWiley & Sons, New York, 1990 .
[28] Z. Michalewicz , M. Schoenauer , Evolutionary algorithms for parameter optimization problems, Evol. Comput. 4 (1) (1996) 1–32 .

[29] D. Pisinger , The quadratic knapsack problem-a survey, Discrete Appl. Math. 155 (2007) 623–648 .
[30] V. Poirriez , N. Yanev , R. Andonov , A hybrid algorithm for the unbounded knapsack problem, Discrete Optim. 6 (2009) 110–124 .

[31] A . Rajasekhar , A . Abraham , M. Pant , A Hybrid Differential Artificial Bee Colony Algorithm based tuning of fractional order controller for Permanent

Magnet Synchronous Motor drive, Int. J. Mach. Learn. Cybern. 5 (3) (2014) 327–337 .
[32] A.Y. Rong , J.R. Figueira , K. Klamroth , Dynamic programming based algorithms for the discounted {0–1} knapsack problem, Appl. Math. Comput. 218

(2012) 6921–6933 .
[33] A. Sbihi , A best first search exact algorithm for the multiple-choice multidimensional knapsack problem, J. Comb. Optim. 13 (2007) 337–351 .

[34] D. Souravlias , K.E. Parsopoulos , Particle swarm optimization with neighborhood-based budget allocation, Int. J. Mach. Learn. Cybern. 7 (3) (2016)
451–477 .

[35] R. Storn , K.V. Price , Differential Evolution-A Sim ple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, Tech. Report
TR-95–012, Institute of Company Secretaries of India, Chennai, Tamil Nadu, 1995 .

[36] N. Tian , Z.C. Ji , C.H. Lai , Simultaneous estimation of nonlinear parameters in parabolic partial differential equation using quantum-behaved particle

swarm optimization with gaussian mutation, Int. J. Mach. Learn. Cybern. 6 (2) (2015) 307–318 .
[37] N. Tian , C.H. Lai , Parallel quantum-behaved particle swarm optimization, Int. J. Mach. Learn. Cybern. 5 (2) (2014) 309–318 .

[38] X.Z. Wang , Learning from big data with uncertainty - editorial, J. Intell. Fuzzy Syst. 28 (5) (2015) 2329–2330 .
[39] X.Z. Wang , R.A.R. Ashfaq , A.M. Fu , Fuzziness based sample categorization for classifier performance improvement, J. Intell. Fuzzy Syst. 29 (3) (2015)

1185–1196 .
[40] S.E. Wang , Z.Z. Han , F.C. Liu , Y.G. Tang , Nonlinear system identification using least squares support vector machine tuned by an adaptive particle swarm

optimization, Int. J. Mach. Learn. Cybern. 6 (6) (2015) 981–992 .

[41] R.J. Wang , Y.J. Zhan , H.F. Zhou , Q.L. Cai , Application of artificial bee colony optimization algorithm in complex blind separation source, Sci. China. Inf.
Sci. 44 (2) (2014) 199–220 .

[42] J.C. Zeng , J. Jie , Z.H. Cui , Particle Swarm Optimization, Science Press, Beijing, 2004 .
[43] Z.X. Zhu , J.R. Zhou , Z. Ji , Y.H. Shi , DNA sequence compression using adaptive particle swarm optimization-based memetic algorithm, IEEE Trans. Evol.

Comput. 15 (5) (2011) 643–658 .
[44] X. Zhu , X. Li , Iterative search method for total flowtime minimization no-wait flowshop problem, Int. J. Mach. Learn. Cybern. 6 (5) (2015) 747–761 .

http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0041
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031a
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031a
http://refhub.elsevier.com/S0020-0255(16)30518-7/sbref0031a

	Exact and approximate algorithms for discounted 0-1 knapsack problem
	1 Introduction
	2 Preliminary
	3 NE-DKP: the new exact algorithm for D0-1KP
	4 Three approximate algorithms for D0-1KP
	4.1 Poly-DKP: the fully polynomial-time approximation scheme for D0-1KP
	4.2 App-2-DKP : the 2-approximation algorithm for D0-1KP
	4.3 PSO-GRDKP: the particle swarm optimization based approximation algorithm for D0-1KP
	4.3.1 GR-DKP: the greedy repair algorithm for D0-1KP
	4.3.2 PSO-GRDKP: the PSO based approximation algorithm for D0-1KP

	5 Experimental comparison on 4 instances of D0-1KP
	6 Conclusions and further works
	 Acknowledgments
	 References

