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B
ig data refers to data sets that are so large 
that conventional database management 
and data analysis tools are insufficient to 
work with them [1]. Presently, we are in an 
era of big data, which exists in various 

fields, such as social media, telecom, finance, medicine, bi-
informatics, and power networks. Big data results mainly 
from the evolutionary development of data storage and 
data collection techniques in recent years. Big data has 
become a bigger-than-ever problem with the quick develop-
ments of data collection technologies. In fact, the word  
big is a fuzzy concept. So far, we do not have a mathemati-
cal definition of big data. But we can use several features 
or coordinates to describe it, for example, the well-known 
5V characteristics.

The 5V characteristics of big data refer to huge vol-
ume, high velocity, much variety, low veracity, and high 
value [2]. 
1) Huge volume indicates that the size of data is extremely 

high. Currently it is very common to have the storage 
systems with TB (c103 GB) and PB (c106 GB) grade 

Learning from 
Uncertainty for  
Big Data

Digital Object Identifier 10.1109/MSMC.2016.2557479 
Date of publication: 23 August 2016

by Xizhao Wang 
and Yulin He

Future Analytical Challenges 
and Strategies



 Apri l  2016    IEEE SyStEmS, man, & CybErnEtICS magazInE 27

©
 is

to
c

k
p

h
o

to
.c

o
m

/t
u

n
g

s
t

e
n

b
lu

e

levels for enterprises due to an exponential growth in 
the data storage. 

2) High velocity means that not only the speed of data collec-
tion but also the speed of analyzing and utilizing data are fast. 
Big data is often available in real time and is batch oriented. 

3) Much variety is also called multimodality of big data, which 
means that the types of data can be very complex. For 
example, consider big data in the clinical and health applica-
tions whose features include numerical data, symbolic data, 
text, image, video, and time series, among others. 

4) Low veracity corresponds to the changed uncertainty 
and the large-scale missing values of big data. Some-
times, along with the growing size of datasets, the uncer-
tainty of data itself often changes sharply, which 
definitely makes the traditional processing tools 
unavailable. Except for the changed uncertainty of data 
itself, the uncertainty in data modeling and data pro-
cessing are also changing very notably. 

5) High value is to say that the value hidden in big data can 
help users obtain “big” results. Mining the value of big 
data will reveal insights that can lead enterprises to 
obtain huge economic benefits.
This article will focus on the fourth V, the veracity, to 

demonstrate the essential impact of modeling uncertainty 
on learning performance improvement.

Challenge of Big Data Analytics
The big data application chain generally includes four 
phases: data generation, data management, data analytics, 
and data application. Big data analytics, which is consid-
ered the most important phase in the whole chain, refers 
to the process of discovering patterns from data. In this 
phase, there are six main challenges (shown in Figure 1), 
making big data analytics much more difficult and compli-
cated than normal-sized data analytics.

◆◆ Complex data representation. How to uniformly repre-
sent various types of features is a great challenge for 
big data with multimodality [3]. We need to process 
the data in a uniform framework. The uniform/struc-
tured representation of data is the first step of data 
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processing; it is indispensable. But due to big 
data’s multimodality, it is very difficult to uniform-
ly represent various types of data. It means that 
using existing methodologies to handle big data is 
almost impossible. It brings the first challenge of 
big data analytics.

◆◆ Super-high dimensionality. Big data in specific 
domains, especially in bio-informatics or life science 
computing areas, is often extra-high dimensional. The 
problem is that existing algorithms are not well- 
scalable to high-dimensional data. Usually, with the 
increase of the data dimension, the required amounts 
of time or memory go up exponentially. This is the so-
called curse of dimensionality. Zhai et al. [4] gave a 
detailed description of the rapid change of the data 
set’s dimensions in the field of scientific research over 
the past 25 years. Many machine learning and data 
mining algorithms are designed based on a distance 
measure in a metric space, for instance, the popular 
k-nearest neighbor. Studies [5] and [6] show that, in a 
high-dimension space, the distance measure has a very 
strange phenomenon; that is, some fixed points are the 
nearest neighbors of every case in the space. It is 
called hubness, which indicates that the distance for-
mula has been ineffective and invalid.

◆◆ Massive classes. In the big data era, we have to deal 
with classification tasks with thousands of classes, 
such as the large-scale recognition problem. The exist-
ing classifiers seem to be qualified for the classification 
tasks, but their performance is seriously downgraded. 
Study [7] clearly describes the scale of the problem.

◆◆ Weak relation. A relation is more general than a map-
ping [8], [9], and finding a relation is more difficult than 
finding a mapping when conducting big data analytics. 
For example, the labels may be missing or cases may be 

labeled erroneously in classification tasks. The high 
expense for labeling cases leads to the weakly super-
vised problem. Traditionally, we need to find a mapping 
from a set of cases to another set. In most situations in a 
big data setting, we only need to find a relation between 
two subsets of cases. This is because sometimes in a big 
data setting, we may not need an exact mapping, and 
often, it is impossible to find such a precise mapping.

◆◆ Unscalable computation ability. The current computa-
tional ability is not scalable to the big data problem. 
Existing learning algorithms cannot adapt themselves 
well to the new big data settings. It means both the 
problem complexity and computational ability 
increase remarkably in the big data era, but the 
increase of computational ability does not match well 
against the increase of problem complexity. When a 
data set is changing from a regular size to a large size 
with many type attributes, some frequently used data 
mining and machine learning algorithms, such as a 
support vector machine, a neural network, a decision 
tree, C-means, and C-modes, will not work well. In 
many domains, a learning/mining algorithm is recog-
nized as being effective for big data only if its complex-
ity is linear or quasi-linear.

◆◆ Ubiquitous uncertainty. Uncertainty exists in every 
phase of big data learning [10]. For example, big data 
often has much noise, and most attribute values of a 
case in big data are missing (e.g., there are 80%~90% 
missing links in social networks and over 90% missing 
attribute values for a doctor diagnosis in clinic and 
health fields). Some traditional learning algorithms have 
obviously not been valid for processing the data with 
90% missing values, and, therefore, how to design the 
new learning algorithm to tackle the large-scale missing 
data is difficult. Moreover, there are many models that 
can be selected for big data processing. Due to the grow-
ing uncertainty existing in the selection process, choos-
ing an appropriate model based on the formulated 
uncertainty is another big challenge. The third difficulty 
is how to well represent the data uncertainty and how to 
take it into the mining process in the data analytics 
phase. From normal-sized data to big data, does the 
uncertainty increase or decrease? It depends. For exam-
ple, for the mean of a random variable, uncertainty will 
decrease due to the large numbers theorem, but for the 
model selection problem, it will increase.

Current Strategies of Big Data Analytics
Fundamental strategies (shown in Figure 2) for big data 
analytics may include divide-and-conquer, parallelization, 
incremental learning, sampling, granular computing, fea-
ture selection, and hierarchical classes.

◆◆ Divide-and-conquer. Just as M. Jordan highlighted in 
[11], divide-and-conquer is one of the fundamental 
strategies of processing big data. It has three basic pro-
cedures: going from big to small, processing in every 
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Figure 1. the six main challenges in big data 
analytics.
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small block, and fusing separate results together. In 
fact, in the fields of high-performance computing and 
very large database, this strategy has been used for 
many years.

◆◆ Parallelization. Parallelization indicates that large prob-
lems are divided into smaller ones, which can then be 
solved individually at the same time. There are several 
different forms of parallel computing, such as bit level, 
instruction level, and task parallelism. It is noteworthy 
that parallelization cannot decrease workload but can 
reduce working hours. It is not such a case that each 
problem/algorithm can be parallelized well. It depends 
strongly on the nature and structure of the problem.

◆◆ Incremental learning. Incremental learning gradually 
improves the parameters in learning algorithms by 
using only new cases rather than using all available 
cases (existing ones plus new ones). Incremental learn-
ing is a step-by-step learning process. Training is con-
ducted only on the new incoming data blocks. One 
data block is used for training only once. It is focusing 
on batch data or streaming data. The major defect of 
incremental learning is that the algorithm is required 
to have good memory. For the data blocks trained 
already, its knowledge is considered as being remem-
bered well and saved within the model. It is an obvi-
ously a limitation of this strategy [12].

◆◆ Sampling. Sampling is an old technique in probability 
and statistics. There are many typical results of sam-
pling, theoretically and technically. Commonly used 
sampling methods include simple random sampling, 
systematic sampling, stratified sampling, cluster sam-
pling, quota sampling, minimum–maximum sampling, 
etc. [13]. Essentially, sampling technology is to study 
the relation between a sample and the population. A 
traditional sampling course does not focus on the 
large-scale data set. With the coming of the big data 
era, many new difficulties emerge.

◆◆ Granular computing. A recent study [14] reveals that 
granular computing (GrC) [15] is a general computa-
tion theory for effectively using granules such as class-
es, clusters, subsets, groups, and intervals to build an 
efficient computational model for complex applica-
tions with huge amounts of data. Intuitively, GrC is to 
reduce the data size into different levels of granularity. 
Under certain circumstance, some big data problems 
can be readily solved in such a way.

◆◆ Feature selection. Feature selection [16] is a kind of 
dimensionality reduction method that aims to obtain a 
representative subset that has fewer features in 
 comparison with the original feature space. High-
dimensional data belongs to the big data area. When 
the scale of features is too large (for example, over 100 
trillion features), some unexpected difficulties may 
emerge during the process of feature selection. The lat-
est study [17] introduced how to scale to ultrahigh 
dimensional feature selection task on big data.

Uncertainty-Based Big Data Learning
During recent years, one can view a rapid growth in the 
hybrid study that integrates uncertainty and learning from 
data (e.g., [18]–[24]). The representation, measure, model-
ing, and handling of uncertainty embedded in the entire 
process of data analytics have a significant impact on the 
performance of learning from big data. Without properly 
dealing with these uncertainties, the performance of learn-
ing strategies may be greatly degraded.

Uncertainty Definition
Presently, there is no general definition for uncertainty 
that fits any situation. We usually consider the uncertainty 
under a specific background. Five types of uncertainty are 
mentioned: Shannon entropy (SE) [21], classification 
entropy (CE) [23], fuzziness [18] [19], nonspecificity [22], 
and rough degree [24].

◆◆ Shannon entropy. Given a random variable X =
, , ,x x xn1 2 f" ,  and its probabi l ity d istr ibut ion 

, , , ,P p p pn1 2 f= " ,  the random uncertainty is mea-
sured by Shannon entropy:
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◆ When ,p p p n
1

n1 2 g= = = =  SE P^ h  attains its maxi-
mum of 1.

◆◆ Classification entropy. For a two-class problem, there is a 
data set S of which each sample can be defined as positive 
class or negative class. Classification entropy means the 
impurity of the class distribution in S and is defined as
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◆ where S  is the number of all samples in S and S+  
and _S , respectively, denote the numbers of positive-
class and negative-class samples in S. When S S= +  
or _ ,S S=  CE P2 ^ h  reaches the minimum of 0; 
when _ ,S S=+  CE P2 ^ h  reaches the maximum of 1. 
Similarly, classification entropy for a C-class problem 
is defined as

 logCE P S
S

S
S

C
k k

k

C

2
1

=-
=

^ h | , 

◆ where Sk  is the number of the kth class samples in S.
◆◆ Fuzziness. Uncertainty always exists in our human 

language, e.g., young and old. Then, what is the bound-
ary between young and old? Fuzzy subsets are used to 
measure this kind of uncertainty in human language. 
For a universe , , , ,U x x xn1 2 f= " ,  a fuzzy subset A of 
U is defined as

 , , , ,A x x xA A A n1 2 fn n n= ^ ^ ^h h h" ,

◆ where ,An  called the membership function of A, 
is  a  mapping function from U to [0, 1]. Assume 
there are three fuzzy subsets: . , . , . ,A 0 7 0 4 0 11 = " ,  

. , . , ,A 0 8 0 2 02 = " ,  and , , .A 1 0 03 = " ,  Fuzziness is a 
measure that can help us determine which one is more 
fuzzy or less fuzzy. The definition of fuzziness of a 
fuzzy subset A is
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◆ Thus, we can know fuzzy subset A1 is the most fuzzy 
because of .Fuzz A Fuzz A Fuzz A1 2 32 2^ ^ ^h h h

◆◆ Nonspecificity. Nonspecificity is also known as ambi-
guity, which is another measure to evaluate the 
 uncertainty of fuzzy subset , , , .A n1 2 fn n n= " ,  The 
non  specificity or ambiguity of fuzzy subset A is 
defined as

 ,A iInAmbig * *
i i

i

n

1
1

n n= - +

=

^ ^h h6 @|

◆ where , , ,A* * * *
n1 2 fn n n= " , is a permutation of member-

ship degree distribution of A such that for any i, 
* *
i i 1#n n +  and .0*

n 1n =+

◆◆ Rough degree. For the rough set ,RX RX^ h of X, its 
rough degree is defined as

 ,RD X
RX
RX

1= -^ h

◆ where RX x U x XR! 3= 6 @" ,  is the lower approxi-
mation of X, RX x U x XR + Q!!= 6 @" ,  is the upper 
approximation of X, U is the universe of discourse, R is 
an equivalence relation, X is a subset of U, and

,x y y U yRxR !=6 @ " ,  is an equivalence class.

Some Studies on Learning  
from Uncertainty for Big Data
Here, we briefly introduce two studies regarding uncertainty-
based learning for big data. One is fuzziness-based semisu-
pervised learning and the other is ambiguity-based model 
tree (AMT) handling mixed attributes. The first study is basi-
cally within the following general framework [19] of uncer-
tainty-based learning for big data (as shown in Figure 3).

Fuzziness-Based Semisupervised Learning
Assume that A is a big data set in which most cases have 
no labels. B is a small part of A, and each case in B has a 
label. We can train a classifier from B, but we cannot 
expect a good prediction performance on A-B. Based on 
the prediction of each case in A-B, we would like to select 
some cases from A-B and then add them (together with 
their predicted labels) into B. It is expected to have the 
improved prediction accuracy on A-B after retraining on 
B. Here, the key problems are what requirements the 
trained classifier should meet and how to select cases 
from A-B. Theoretically, the trained classifier is required 
to have an accuracy of more than 0.5. We focus on the 
sample selection strategy from uncertainty view as shown 
in Algorithm 1.

It is highlighted in our learning scheme that, tradition-
ally, only group G3 is mentioned for learning performance 
improvement, while both G3 and G1 are used.

For demonstration, we collect a big data set for the Chi-
nese chess game scene classification. The file size is 
1.86 GB, including more than 107 records of playing a 
chess game and more than 109 scenes of a chess game. 
This is a typical semisupervised learning with unstructured 
data: there are numerous scenes that need to be labeled. 
Complicated scene labeling usually requires senior 
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Figure 3. the general framework of uncertainty-
based learning for big data. Classifier a has the 
same training accuracy as Classifier b,  but Classifier 
a has a smaller uncertainty (e.g., fuzziness or 
ambiguity) than Classifier b. We say, for some types 
of big data (not for all), Classifier a has the better 
generalization than Classifier b, which provides quite 
a different viewpoint to design the learning algorithm 
in comparison to the traditional pattern-recognition 
viewpoint.
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experts (i.e., chess masters). It is a very costly process. 
Traditionally, the scene evaluation function can be used to 
compute a value, and based on this value one can give a 
class. But the accuracy in this way is really poor. The 
experimental results based on Chinese chess game scene 
classification data show that our fuzziness-based semisu-
pervised learning algorithm can achieve very high predic-
tion accuracy. It further confirms our statement that the 
appropriate processing of uncertainty can significantly 
improve the classification system performance.

Ambiguity-Based Model Tree Handling Mixed Attributes
A model tree is an effective way to process the mixed-
attributes (a special case of big data’s multimodality) 
classification problem in which the mixed attribute 
mainly means the mixture of symbolic data and numeri-
cal data. Globally, a model tree is a tree structure, but in 
each leaf node, the particular model is built. In our 
AMT, the decision tree is established based on the reduc-
tion of ambiguity generated during the dividing process 
from a father node to its child nodes, and the leaf node 
of model tree is a three-layer feed-forward neural net-
work that is trained with an extreme learning machine 
(ELM) algorithm [25]–[27]. In AMT, a decision tree and 
ELM are used to deal with the discrete and continuous 
attributes, respectively. Algorithm 2 gives a brief 
description to the generalization process of AMT. It is 
worth noting that AMT can be extended to the image 
and text attribute by incorporating it into the deep 
learning [28], which is a very hot topic in recent years. 
Deep learning essentially is an automatic feature-selec-
tion strategy that was originally developed for image 
feature extraction and image classification. For a big 
data classification problem with image-valued attri-
butes, the model tree combined with deep learning will 
be very effective. Some recent studies [29], [30] reveal 
that the ELM autoencoder can outperform various 
state-of-art deep-learning methods.

The experimental results on several big data sets 
(more than 2 million samples) show a good perfor-
mance of parallelization of our methodology. The train-
ing time of parallel AMT demonstrates a decreasing 
trend with the increase of computers, which indicates 
feasibility of parallelization in reducing the computa-
tional time. The experimental results also demonstrate 
good performance of our AMT’s generalization ability. 
A comparison of 15 data sets shows that AMTs achieve 
higher testing accuracies than functional trees [31], 
naïve Bayesian trees [32], and logistic model trees [33], 
[34] on most datasets.

Concluding Remarks
Big data so far does not have a mathematical definition 
but can be described by several features such as its 5V 
features. This article focuses on the fourth feature—
veracity—trying to indicate that 1) some problems of 

uncertainty processing, such as over 80% values of each 
case in a data set missing, appear and are possibly tackled 
only in the big data setting; and 2) processing of uncer-
tainty embedded in the entire process of data analytics 
has a significant impact on the performance of learning 
from big data. We summarize most strategies (as shown in 
 Figure 4) of big data computing and highlight the theme: 
going from big to small.
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Step 1:  Randomly divide data set A as training set B and 
testing set A-B

Step 2: Train a base classifier based on set B
Step 3:  For each sample, in both the training set and the 

testing set, obtain the fuzzy vector output based on 
the base classifier

Step 4: Compute the fuzziness for each output
Step 5:  Sort the samples based on the quantity of fuzziness 

in the training set and in the testing set, respectively
Step 6:  Based on the sorting, categorize the training set 

(and the testing set) into three groups: high-fuzziness 
group G1, mid-fuzziness group G2, and low-fuzziness 
group G3

Step 7:  Groups G1 and G3, together with their predicted 
labels, will be added in B for the next round of  
learning

Algorithm 1. Fuzziness-based  
sample selection.

Input:  A big data set S with a mixed-attribute set 
, , , ; , , , ,A D D D C C Cm n1 2 1 2f f= ^ h

  where , , ,D i m1 2i f=^ h  are discrete att ributes and 
, , ,C j n1 2j f=^ h  are continuous  attributes

Output: An AMT

Step 1:  Select the attribute Di  with minimal ambiguity as 
the root node of model tree

Step 2:  Split a parent node into K  child nodes, , , , ,S S SK1 2 g  
according to the values of discrete attribute Di

Step 3:  For every child node Sk, select the discrete attribute 
whose ambiguity is smaller than Di  as the split at-
tribute

Step 4:  Repeat Steps 2 and 3 until the maximal ambiguity 
of the child node is smaller than a given threshold

Step 5:  Treat this child node as a leaf node, and train an 
ELM with continuous attributes on this leaf node.

Algorithm 2. AMT.
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Figure 4. the theme for big data analytics is to 
change big into small. the uncertainty model and 
processing play a key part for these methodologies 
of going from big to small.


