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A cross-selection instance algorithm
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Abstract. Motivated by the idea of cross-validation, a novel instance selection algorithm is proposed in this paper. The novelties
of the proposed algorithm are that (1) it cross selects the important instances from the original data set with a committee, (2)
it can deal with the problem of selecting instance from large data sets. We experimentally compared our algorithm with five
state-of-the-art approaches which are CNN, ENN, RNN, MCS, and ICF on 3 artificial data sets and 6 UCI data sets, including 4
large data sets, ranking from 130K to 4898K in size. The experimental results show that the proposed algorithm is very efficient
and effective, especially on large data sets.

Keywords: Instances selection, extreme learning machine, K-L divergence, large data sets

1. Introduction

Instance selection also named sample selection is to
select a small representative subset from original data
set by removing the redundancy instances. In the frame-
work of classification, the purpose of instance selection
is to reduce computational complexity of classifica-
tion algorithm without degenerating its classification
accuracy. Since Hart’s seminal work (i.e. CNN) [1],
many instance selection algorithms have been proposed
by different researchers. CNN attempts to find a min-
imal consistent subset (MCS) of the training set. A
consistent subset S of a training set T correctly clas-
sifies every instance in T with the same accuracy as T

itself [2]. CNN algorithm can ensure that all instances
in T are classified correctly by S. However, it does
not guarantee that S is a MCS. In addition, CNN is
especially sensitive to noise, because noisy instances
will usually be misclassified by their neighbors, and
thus will be retained [3]. The reduced nearest neighbor
(RNN) rule proposed by Gates [4] starts with S = T and
removes each instance from S if such a removal does
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not cause any other instances in T to be misclassified
by the instances remaining in S. RNN is computation-
ally more expensive than CNN. The selective nearest
neighbor rule (SNN) proposed by Ritter [5] improves
CNN and RNN by ensuring that a MCS can be found.
SNN is much more complex and the computational time
is significantly greater than CNN and RNN. Based on
the relative significance of the instances in the training
set, Dasarathy proposed an algorithm which can iden-
tify MCS [6]. The editing nearest neighbor (ENN) rule
proposed by Wilson [3] employs the so called editing
rule to remove noisy instances in the training set. The
rule is that all instances which are incorrectly classi-
fied by their nearest neighbors are assumed to be noisy
instances. Based on the concepts of coverage and reach
ability, the iterative case filtering (ICF) algorithm was
introduced in [2]. The reachable set depends on the dis-
tance of an instance from its nearest enemy, and the
coverage set of every instance is the list of its associates.

Recently, some new instance selection algorithms
were developed by different authors. Nikolaidis et al.
proposed a class boundary preserving algorithm [7],
which discards center instances while it retains a suit-
able number of border patterns. Based on the concept
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of Voronoi cells and enemies, Angiulli proposed a fast
nearest neighbor condensation (FCNN) algorithm [8]
for large data sets classification. The author claimed
that FCNN is order independent, its worst-case time
complexity is quadratic, and it is likely to select points
very close to the decision boundary. Based on the idea
of so-called chain which is a sequence of nearest neigh-
bors from alternating classes, Fayed et al. presented a
template reduction algorithm [9], the authors make the
point that patterns further down the chain are close to the
classification boundary. Li presented a critical pattern
selection algorithm by considering local geometrical
and statistical information [10]. This algorithm selects
both border and edge patterns from the data set.

Most of the instance selection algorithms are tailored
for nearest neighbor classifier, so the instances selected
with these algorithms are often only suitable for near-
est neighbor classifiers. In addition, the computational
complexities of these algorithms are also very high, for
large data sets some algorithms are impracticable. In
order to deal with this problem, motivated by the idea of
cross validation, we propose a novel instance selection
algorithm, which cross selects the important instances
from the original data set with a committee. For large
data sets, considering the learning efficiency, we use
the single-hidden-layer feed-forward neural networks
(SLFNs) trained with extreme leaning machine (ELM)
[11] as classifiers in the proposed algorithm. ELM has
very fast learning speed and very good generalization
ability, and it has been successfully applied in function
approximation [12, 13], pattern recognition [14, 15], big
data classification [16–18], two comprehensive survey
on ELM can be found in [19, 20].

The paper is organized as follows. Some related
notions and theoretical background are given in Sec-
tion 2. The proposed methods are presented in Section
3. Experimental results and analysis are presented in
Section 4. Section 5 concludes the paper.

2. Preliminaries

ELM is an efficient and practical learning algorithm
used for training the single-hidden-layer feed-forward
neural networks (SLFNs) [11]. In ELM the input
weights and the hidden layer biases can be cho-
sen randomly, the output weights can be analytically
determined with Moore-Penrose generalized inverse
[21] of the hidden layeroutput matrix. Unlike other
gradient-descent based learning algorithms (such as
Back Propagation algorithm [22–24]), ELM does not

require iterative techniques to adjust input weights and
hidden layer biases during training process. ELM can
overcome many drawbacks of the traditional gradient-
based learning algorithms such as local minimal, low
learning speed by randomly selecting input weights and
hidden layer bias [19, 20].

Given a training data set, D = {(xi, yi)|xi ∈ Rd, yi ∈
Rk, i = 1, 2, · · · , n}, where xi is a d × 1 input vector
and yi is a k × 1 target vector, a SLFN with m hidden
nodes is formulated as

f (xi) =
m∑

j=1

βjg(wj · xi + bj), i = 1, 2, · · · , n (1)

where wj = (wj1, wj2, · · · , wjd)T is the weight vector
connecting the jth hidden node with the input nodes. bj

is the threshold of the jth hidden node. wj and bj are
randomly assigned. βj = (βj1, βj2, · · · , βjm)T is the
weight vector connecting the jth hidden node with the
output nodes. The parameters βj (j = 1, 2, · · · , m)
may be estimated by least-square fitting with the given
training data set D, i.e. , satisfying

f (xi) =
m∑

j=1

βjg(wj · xi + bj) = yi (2)

Equation (2) can be written in a more compact format
as

Hβ = Y (3)

where

H =

⎡
⎢⎢⎣

g(w1 · x1 + b1) · · · g(wm · x1 + bm)
...

. . .
...

g(w1 · xn + b1) · · · g(wm · xn + bm)

⎤
⎥⎥⎦ (4)

β = (βT
1 , · · · , βT

m) (5)

and

Y = (yT
1 , · · · , yT

n ) (6)

H is the hidden layer output matrix of the network,
where the jth column of H is the jth hidden nodes out-
put vector with respect to inputs x1, x2, · · · , xn, and
the ith row of H is the output vector of the hidden
layer with respect to input xi. If the number of hidden
nodes is equal to the number of distinct training sam-
ples, the matrix H is square and invertible, and SLFNs
can approximate these training samples with zero error.
But generally, the number of hidden nodes is much less
than the number of training samples. Therefore, H is a
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non-square matrix and one cannot expect an exact solu-
tion of the system (3). Fortunately, it has been proved
in [26] that SLFNs with random hidden nodes have
the universal approximation capability and the hidden
nodes could be randomly generated. The least-square
fitting is to solve the following equation.

min
β

= ‖Hβ − Y‖ (7)

The smallest norm least-squares solution of (7) may be
easily obtained:

β̂ = H†Y (8)

where H† is the Moore-Penrose generalized inverse of
matrix H.

The ELM Algorithm [11] is presented as follows.

Algorithm 1 ELM Algorithm
Input:

Training data set D = {(xi, yi)|xi ∈ Rd, yi ∈
Rk, i = 1, 2, · · · , n}, an activation function g, and
the number of hidden nodes m.

Output:
weights matrix β̂.

1: Randomly assign input weights wj and bj ,
j = 1, 2, · · · , m;

2: Calculate the hidden layer output matrix H;
3: Calculate output weights matrix β̂ = H†Y .

For the trained SLFN, the outputs are transformed
into the interval (0, 1) with softmax function [22], the
transformed results can be viewed as posterior proba-
bility p(wk|xi), where wk is the kth class, and xi is the
ith input vector. The p(wk|xi) is calculated as:

p(wk|xi) = eyij∑k
j=1 eyij

(9)

3. Cross-selection instance algorithm

In this section, we first present the idea of the
proposed algorithm, and then present the proposed
algorithm.

3.1. The idea of the proposed algorithm

The idea of the proposed algorithm is illustrated as
Fig. 1. We firstly partition the data set into n disjoint
subsets, for each subset Si (i = 1, 2, · · · , n), we use a

Fig. 1. The idea of the proposed algorithm.

committee B to select the important instances from Si.
The committee B consists of n − 1 SLFNs which are
trained on other n − 1 subsets. Fig. 2 shows an example
of the algorithm for 1 round, the data set used in this
example includes 50 instances.

The K-L divergence [26] is employed to measure
the significance of the samples, the K-L divergence
also called relative entropy is a measure of distance
between two distributions [26]. Let x be a discrete ran-
dom variable, p(x) and q(x) are its two probability mass
functions, the definition of K-L divergence is given as
follows [26].

D(p|q) =
∑
x∈V

p(x) log
p(x)

q(x)
(10)

In the above definition, we let 0 log2
0
0 = 0, 0 log2

0
q

=
0 and p log2

p
0 = ∞.

Let SLFN1, SLFN2, · · · , SLFNn are the members of
the committee B. The informative instances are selected
with the following criteria.

x∗ = arg max
x

{avg(D(PSLFNi |PB))} (11)
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Fig. 2. An example of the algorithm for 1 round.
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where

avg(D(PSLFNi |PB)) = 1

n

n∑
i=1

D(PSLFNi |PB) (12)

D(PSLFNi |PB)

=
k∑

k=1

PSLFNi (wk|x) log2
PSLFNi (wk|x)

PB(wk|x)

(13)

PB(wk|x) = 1

n

n∑
i=1

PSLFNi (wk|x) (14)

3.2. The cross-selection instance algorithm

The proposed algorithm named ELM-KL is
described as follows.

Algorithm 2 ELM-KL Algorithm
Input:

D, original data set; p, the number of partition;
l, the number of selected instances in a loop; c0,
threshold.

Output:
S: selected subset.

1: Partition D into training set D1 and validation set
D2;

2: Partition training set D1 into p disjoint subsets
S1, S2, · · · , Sp;

3: Let count = 0, S = ?;
4: For each Si, train p − 1 SLFNj(j /= i) with other

p − 1 subsets Sj(j /= i), p − 1 SLFNj constitute
a committee B;

5: For each x ∈ Si and each class ωk, Calculate
PB(wk|x) with (14);

6: For each SLFNi ∈ B, Calculate D(PSLFNi |PB)
with (13);

7: Calculate avg(D(PSLFNi |PB)) with (12);
8: Select l instances with (11), constitute a subset St ;
9: Train a SLFN with ELM on subset S ∪ St ;

10: Calculate the validation accuracy of SLFN trained
with ELM on subset S ∪ St ;

11: If(Va(S ∪ St) > Va(S)), then S = S ∪ St and
count = 0; else count = count + 1;

12: Calculate D1 = D1 − St ;
13: If(count ≥ c0), then Output S; else Goto 2;

In the ELM-KL algorithm, Va(S) denotes the valida-
tion accuracy of a classifier which is trained on data

set S. We also developed another instance selection
algorithm named ELM-KL-ALL, which is similar to
ELM-KL, the only difference is that ELM-KL-ALL
does not introduce validation set, the trained ELM clas-
sifier are validated on training set itself.

4. Experiments and the analysis of the
experimental results

4.1. Experiments settings and the experimental
results

The effectiveness of our proposed method is verified
through numerical experiments in the environment of
Matlab 7.0 on a Pentium 4 PC. In our experiments we
totally select 3 artificial data sets and 6 UCI data sets
[27]. The 3 artificial data sets are mainly used to verify
the feasibility of the proposed algorithm. The 6 UCI
data sets are used to verify the effectiveness and effi-
ciency of the proposed algorithm, we select data sets
letter and shuttle because that they contain many cat-
egories, the number of classes of the two data sets are
27 and 7 respectively, we select data sets MiniBooNE,
skin, artificial 2 and cod rna because that they are large
data sets. The basic information of the 6 UCI data sets
is listed in Table 1.

The first artificial data set is two-dimensional concen-
tric data with two classes which are uniform concentric
circular distributions [28]. The points of the class ω1 are
uniformly distributed into a circle of radius 0.3 centered
on (0.5, 0.5). The points of the class ω2 are uniformly
distributed into a ring centered on (0.5, 0.5) with internal
and external radii equal to 0.3 and 0.5, respectively.

The second artificial data set is two-dimensional
cloud data with two equal priori probable classes [28].
The class ω1 is the sum of three different Gaussian
distributions:

p(x|ω1) = 1

2

(
p1(x)

2
+ p2(x)

2
+ p3(x)

)
(15)

Table 1
The basic information of the 6 UCI data sets

Data sets #Instances #Attributes #Classes

letter 18570 16 26
shuttle 58000 9 7
MiniBooNE 130064 50 2
skin 245057 3 2
artificial 2 250000 10 2
cod rna 488565 8 2
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Where, x = (x1, x2), and

pi(x) = 1

2πσix1σix2

× exp

(
− (x1 − μix1 )2

2σ2
ix1

− (x2 − μix2 )2

2σ2
ix2

) (16)

where μix1 and μix2 are the means of the components
x1 and x2 of the ith distribution, σix1 and σix2 are the
corresponding standard deviations.
The class ω2 is a single Gaussian distribution:

p(x|ω2) = 1

2π
exp

(
−x2

1 + x2
2

2

)
(17)

The third artificial data set is a three-dimensional
Gaussian data denoted Gaussian with four classes
ωi (i = 1, 2, 3, 4), the distribution of ωi is p(x|ωi) ∼
N(μi, �i)

Where,

μ1 = (0, 0, 0), �1 =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

μ2 = (0, 1, 0), �2 =

⎡
⎢⎣

1 0 1

0 2 2

1 2 5

⎤
⎥⎦

μ3 = (−1, 0, 1), �3 =

⎡
⎢⎣

2 0 0

0 6 0

0 0 1

⎤
⎥⎦

μ4 = (0, 0.5, 1), �4 =

⎡
⎢⎣

2 0 0

0 2 0

0 0 3

⎤
⎥⎦

The basic information of the 3 artificial data sets is
listed in Table 2. In our experiments, the values of the
attributes of all the data sets are normalized into [–1, 1].
Two thirds of the instances are used as training set, and
one third of the instances are used as testing set.

The performances of the proposed algorithms ELM-
KL and ELM-KL-ALL are compared with original

Table 2
The basic information of the 3 artificial data sets

Data sets #Instances #Attributes #Classes

concentric 10000 2 2
cloud 10000 2 2
gaussian 40000 3 4

ELM (ORI in short) and ELM-NN on 4 aspects: the
number of selected instances, the optimal number of
hidden nodes of SLFNs, the testing accuracy, and the
training time. ELM-NN is another instance selection
algorithm proposed in our previous work [29]. The
experimental results on 3 artificial data sets are listed
in Table 3, the experimental results on 6 UCI data sets
are listed in Table 4.

From the experimental results listed in Tables 3 and
4, we can find that although the testing accuracies of the
proposed algorithm trained on the selected subset are
lower than the ones trained on the whole data set on all
ten data sets, the difference of the experimental results
are slight, and the requirements of memory space and
the training time are much less than the ones needed
on the whole data set. In the framework of the com-
petence preservation, the proposed algorithm is very
effective and efficient. The numbers of optimal hid-
den nodes in Tables 3 and 4 are determined by using
the method proposed in our previous work [30]. The
curves described the relationship between the testing
accuracy and the number of hidden nodes on the sub-
sets selected from the 3 artificial data sets, and the 6 UCI
data sets with ELM-EN, ELM-KL, ELM-KL-ALL and
original ELM (ORI in short) are shown in Figs.3 and 4
respectively.

We also compare our algorithm with five state-of-
the-art approaches CNN, ENN, RNN, MCS, and ICF.
The comparisons of performances on 3 artificial data
sets are listed in Tables 5 to 7. The comparisons of per-
formance on the 6 UCI data sets are listed in Tables
8 to 13. where “-” means that the results cannot be
obtained. Compared with CNN, ENN, and RNN, our
algorithm removes much more instances while obtain-
ing the similar accuracies. Although ICF and MCS
have lower selected ratio than our algorithm, they run
much slowly than ours. Our algorithm has a compro-
mise between time and selected ratio. What’s more, four
classical algorithms ENN, RNN, ICF, MCS do not work
out results on the two largest data set selected in our
experiments, i.e. artificial 2 and cod rna. Two classical
algorithms MCS and ICF do not work out results on
data sets Shuttle and MiniBooNE. RNN does not work
out results on artificial data set gaussian. Our proposed
algorithms can work well on large data sets.

4.2. The analysis of the experimental results

In this section, we present a theoretical analysis of
the computational time complexity of the proposed
algorithm ELM-KL to specify the possible reasons of
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Table 3
The experimental results on the 3 artificial data sets

Data sets Algorithms #Selected instances #Optimal hidden nodes Testing accuracy Training time

ORI 6666 42 0.9978 0.0694
concentric ELM-EN 288 33 0.9860 0.0087

ELM-KL 780 27 0.9792 0.0087
ELM-KL-ALL 700 39 0.9692 0.0143

ORI 6666 90 0.9008 0.4999
cloud ELM-EN 288 85 0.8596 0.0182

ELM-KL 1680 65 0.8928 0.0409
ELM-KL-ALL 1080 95 0.8882 0.0504

ORI 26666 155 0.5727 4.5966
gaussian ELM-EN 1056 25 0.5245 0.0221

ELM-KL 1560 85 0.5636 0.0942
ELM-KL-ALL 2220 110 0.5684 0.1586

Table 4
The experimental results on the 6 UCI data sets

Data sets Algorithms #Selected instances #Optimal hidden nodes Testing accuracy Training time

ORI 12380 1500 0.9501 61.8324
letter ELM-EN 5820 1800 0.9299 91.0960

ELM-KL 7320 2100 0.9492 131.9845
ELM-KL-ALL 8040 2100 0.9515 133.6210

ORI 38666 390 0.9973 10.8409
shuttle ELM-EN 1200 120 0.9944 0.1541

ELM-KL 1710 180 0.9894 0.2452
ELM-KL-ALL 2940 180 0.9941 0.3602

ORI 86709 252 0.9170 19.2086
MiniBooNE ELM-EN 1200 180 0.9108 0.4199

ELM-KL 1020 276 0.8862 0.6431
ELM-KL-ALL 6132 540 0.9207 4.5385

ORI 163371 90 0.9927 16.4253
skin ELM-EN 7000 180 0.9925 1.7672

ELM-KL 15000 180 0.9808 3.4153
ELM-KL-ALL 27000 90 0.9889 2.5708

ORI 166666 22 0.7191 1.3610
artificial 2 ELM-EN 1500 48 0.6983 0.1734

ELM-KL 480 30 0.7178 0.1037
ELM-KL-ALL 2916 32 0.7187 0.1240

ORI 325710 68 0.9597 16.1655
cod rna ELM-EN 2000 68 0.9556 0.4141

ELM-KL 10000 132 0.9583 1.4635
ELM-KL-ALL 19764 96 0.9609 1.8600

Table 5
The experimental results on the data set concentric

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 5.8510 0.9820 240 0.0360
ENN 8.2481 0.9868 6601 0.9902
RNN 336.3406 0.9820 227 0.0341
MCS 1511.7455 0.9826 271 0.0407
ICF 1398.1360 0.9862 515 0.0773
ELM-KL 10.0628 0.9792 780 0.1170
ELM-KL-ALL 6.6688 0.9692 700 0.1050
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Fig. 3. The curves of testing accuracy on the 3 artificial data sets.

Fig. 4. The curves of testing accuracy on the 6 UCI data sets.

the results of the experiment. The ELM-KL (algorithm
2) consists of 13 steps, it is obviously, the computa-
tional complexity of the step 1, 2 and 3 are O(n), O(n)
and O(1) respectively. The step 4 of algorithm 2 is
actually to train p SLFN with ELM algorithm, it is
well known that the main computational cost of ELM
comes from the calculation of the Moore-Penrose
generalized inverse of hidden layer output matrix H.
Huang et al. [11] pointed out that, when the n training

samples are distinct, the hidden-layer output matrix
H is column full rank with probability one, so the
ELM can be solved as a full-rank least-square problem
[31]. For such a problem, some methods, such as
orthogonal project, Householder triangularization,
and Gram-Schmidt orthogonalization, may be used to
solve it, with computational time complexity O(m2n)
[21]. Hence, the computational time complexity of
ELM algorithm is O(m2n), where m is the number
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Table 6
The experimental results on the data set cloud

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 7.6715 0.8350 1725 0.2588
ENN 7.4860 0.8872 5671 0.8507
RNN 3180.4889 0.8350 1721 0.2582
MCS 1196.2013 0.8734 1029 0.1544
ICF 910.5015 0.8824 775 0.1163
ELM-KL 17.5268 0.8928 1680 0.2520
ELM-KL-ALL 15.5289 0.8882 1080 0.1620

Table 7
The experimental results on the data set gaussian

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 118.5483 0.4494 18449 0.6919
ENN 180.2716 0.5193 12195 0.4573
RNN – – – –
MCS 41967.1556 0.5071 6844 0.2567
ICF 21739.3537 0.5134 6639 0.2490
ELM-KL 88.8690 0.5636 1560 0.0585
ELM-KL-ALL 100.2332 0.5684 2220 0.0833

Table 8
The experimental results on the data set letter

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 39.9782 0.9102 2262 0.1827
ENN 114.1854 0.9367 11768 0.9506
RNN 16002.1794 0.9102 2260 0.1826
MCS 7037.5992 0.9092 2026 0.1637
ICF 9009.4445 0.9283 5083 0.4106
ELM-KL 5450.5569 0.9492 7320 0.5913
ELM-KL-ALL 6978.5808 0.9515 8040 0.6494

Table 9
The experimental results on the data set shuttle

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 37.0411 0.9989 174 0.0045
ENN 737.4826 0.9988 38630 0.9991
RNN 1567.1027 0.9989 160 0.0041
MCS – – – –
ICF – – – –
ELM-KL 258.7930 0.9894 1710 0.0442
ELM-KL-ALL 564.2342 0.9941 2940 0.0760

Table 10
The experimental results on the data set MiniBooNE

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 13084.5546 0.8296 24857 0.2867
ENN 16675.7168 0.8759 74305 0.8569
RNN – – – –
MCS – – – –
ICF – – – –
ELM-KL 1369.0141 0.8862 1020 0.0118
ELM-KL-ALL 9923.2437 0.9207 6132 0.0707



726 J. Zhai et al. / A cross-selection instance algorithm

Table 11
The experimental results on the data set skin

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 166.7861 0.9995 377 0.0023
ENN 8379.5660 0.9997 163287 0.9995
RNN 15106.0892 0.9995 336 0.0021
MCS – – – –
ICF – – – –
ELM-KL 993.5088 0.9808 15000 0.0918
ELM-KL-ALL 11422.5497 0.9889 27000 0.1653

Table 12
The experimental results on the data set artificial 2

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 19924.9839 0.5872 96213 0.5773
ENN – – – –
RNN – – – –
MCS – – – –
ICF – – – –
ELM-KL 289.8407 0.7178 480 0.0029
ELM-KL-ALL 665.9558 0.7187 2916 0.0175

Table 13
The experimental results on the data set cod rna

Algorithms CPU time Testing accuracy #Selected instance Selected ratio

CNN 24811.9301 0.9485 42769 0.1313
ENN – – – –
RNN – – – –
MCS – – – –
ICF – – – –
ELM-KL 2392.7120 0.9583 10000 0.0307
ELM-KL-ALL 25785.4931 0.9609 19764 0.0607

Table 14
The computational time complexity of CNN, ENN, RNN, MCS, ICF and ELM-KL

Algorithms CNN ENN RNN MCS ICF ELM-KL

Computational time complexities O(n2) O(qn2) O(n3) O(n3) O(qn2) O(pn)

of attributes. When m 	 n, the computational time
complexity of ELM can be thought to approach O(n)
[31]. Accordingly, the computational complexity
of the step 4 is O(pn). It is easy to find that the
computational time complexity of step 5, 6, 7 and
8 are O(n), O(kn), O(p) and O(lp), where k is the
number of classes. Obviously, the computational
time complexity of step 9, 10, 11, 12 and 13 are
O(lp), O(1), O(1), O(1) and O(1) respectively. Hence,
the computational time complexity of the proposed
algorithm is O(n) + O(n) + O(1) + O( n

p
) + O(n) +

O(kn) + O(p) + O(lp) + O(lp) + O(1) + O(1) +
O(1) + O(1). Generally, the number of classes k and
the number of selected instances in a loop l are far
less than the number of instances of training set n, so

the computational time complexity of the proposed
algorithm is O(pn).

The computational time complexity of CNN, ENN,
RNN, MCS, and ICF are O(n2), O(qn2), O(n3), O(n3)
and O(qn2) [32], where q is the nearest numbers.
For convenient comparison, the computational time
complexities of the 6 algorithms are summarized in
Table 14.

Based on the above analysis, it can be seen from
Table 14 that the computational time complexity of
ELM-KL is the minimum among the 6 algorithms. The
consequence of theoretical analysis justify the experi-
mental results, for example, it can be seen from Tables
12 and 13 that four classical algorithms ENN, RNN,
ICF, MCS do not work out results on the two largest
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data set selected in our experiments, i.e. artificial 2 and
cod rna. The possible reasons is that the computational
time complexity of the four classical algorithms are to
high to work out results on large data sets.

5. Conclusions

Motivated by the idea of cross-validation, in this
paper, we proposed two instance selection algorithms
which are practicable in large data sets, while some
classical algorithms (e.g. ENN, RNN, ICF, MCS)
are impracticable. Further more, the proposed algo-
rithms have two advantages: fast leaning speed and
low selected ratio. The low selected ratio is achieved
by discarding the new selected instances which can-
not increase the testing accuracy in each loop. The fast
leaning speed is due to the choice of extreme learning
machine. The experimental results have verified that the
proposed algorithms are much more feasible and effec-
tive than five state-of-the-art approaches CNN, ENN,
RNN, MCS, and ICF. There are two problems related to
our work are worth further investigating, the one prob-
lem is how to deploy the proposed algorithms to cloud
computing environment, such as, Hadoop MapReduce
environment? The other problem is how to scale the pro-
posed algorithms to imbalanced data sets? especially
imbalanced big data.
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