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Abstract: This paper first proposes a discrete differential evolution algorithm for discounted  
{0–1} knapsack problems (D{0–1}KP) based on feasible solutions represented by the 0–1 vector. 
Subsequently, based on two encoding mechanisms of transforming a real vector into an integer 
vector, two new algorithms for solving D{0–1}KP are given through using integer vectors 
defined on {0, 1, 2, 3}n to represent feasible solutions of the problem. Finally, the paper conducts 
a comparative study on the performance between our proposed three discrete differential 
evolution algorithms and those developed by common genetic algorithms for solving several 
types of large scale D{0–1}KP problems. The paper confirms the feasibility and effectiveness of 
designing discrete differential evolution algorithms for D{0–1}KP by encoding conversion 
approaches. 
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1 Introduction 

Differential evolution (DE), proposed by Storn and Price 
(1997a, 1997b, 2005), is a powerful evolutionary algorithm 
(EA) for optimisation problems (Ekbal and Saha, 2016; 
Abe, 2016; Souravlias and parsopoulos, 2016). It not only 
has the general characteristics of EAs (Bäck et al., 2000; 
Yao et al., 1999), such as robust and reliable performance, 
global search capability and little or no information 
requirement of optimisation problem, etc., but also has less 
control parameters and is easy to be implemented. At 
present, people have done a lot of researches on DE. For 
example, Qin et al. (2009) did the adaptive adjustment of 
the control parameters F and CR based on the optimal 
individual obtained in the previous work of DE and then 
proposed an improved DE named SaDE. Kaelo and Ali 
(2006) used the tournament competitive mechanism to 
generate a new population and improved the local search 
ability by the reflection and shrink operations. Noman and 
Iba (2008) introduced the adaptive local search operation to 
improve the convergence speed of DE. Das et al. (2009) 
introduced the neighbourhood mutation to enhance the local 
search ability of DE. Wang et al. (2011) improved the 
global and local search capabilities based on trial vector 
generation strategies and control parameters. Zhang et al. 
(2013) improved the local search capability of DE based on 
abstract convex lower approximation. Fan and Lampinen 
(2003) introduced trigonometry mutation, which can 
improve the probability of DE jumping out of local extreme 
points. He et al. (2010) analysed the asymptotic 
convergence of DE and divided the mutation strategy into 
three equivalence classes to achieve cooperative operations, 
which can improve the global optimisation ability of DE. 
Based on Pareto competition, Abbas et al. (2001) and Abbas 
(2002) proposed self-adaptive Pareto DE algorithm to solve 
multi-objective optimisation problems. Simulation results 
showed that the algorithm could get better Pareto solutions. 
In order to deal with integer programming problems by 
means of DE, Nearchou and Omirou (2006) proposed a 
method to solve the sequence and schedule problem by DE 
which uses the sub-range encoding method. He and Han 
(2007) used 0–1 string to represent individuals; they 
replaced the arithmetic operations in the standard DE with 
logic operations and proposed a binary DE. Based on the 

encoding conversion method which can transfer the real 
vector into a binary vector, He et al. (2007) proposed a 
hybrid-encoding binary differential evolution algorithm 
(HBDE) to solve the 0–1 knapsack problem (0–1KP) and 
satisfiability problem (SAT). Greenwood (2009) converted 
a real vector into a binary vector based on the method of 
transferring real number segmentation into binary number 
and proposed a binary DE and used it to solve problems in 
graph theory. Due to the good searching ability, DE has 
been widely used to solve many combinatorial optimisation 
problems. 

Knapsack problem (KP) (Kellerer et al. 2004; Du and 
Ko, 2000) is an important combinatorial optimisation 
problem (Sarkar et al. 2016; De et al., 2015; Tian et al., 
2015) and it is also a classic NP-complete problem in 
computer science. It has an important application 
background in investment decision-making and resource 
allocation (Azada et al., 2014; Haddar et al., 2016). There 
are many different classical extended forms of KP, such as 
bounded knapsack problem (BKP), unbounded knapsack 
problem (UKP), multidimensional knapsack problem 
(MKP), multiple-choice knapsack problem (MCKP), 
quadratic knapsack problem (QKP) (Kellerer et al., 2004) 
and 0–1 KP (Kulkarni, 2016), etc. Because KP is an  
NP-complete problem, exact algorithms with polynomial 
time complexity does not exist unless P = NP. Therefore, 
the non-exact algorithms with polynomial time complexity 
are paid more attention to. Currently, numerous studies have 
shown that EAs is a class of stochastic approximation 
algorithms that are suitable for solving combinatorial 
optimisations and it has been successfully used to solve KP. 
For example, He et al. (2001) used HBDE to solve 0–1 KP; 
Lai et al. (2014) solved MKP by using genetic algorithms 
(GA) (Zhang et al., 2015; Martínez-Soto and Castillo, 
2015); Kong et al. (2008) proposed the ant colony 
optimisation algorithm to solve MKP; Azad et al. (2014) 
solved the 0–1 QKP by a binary artificial fish swarm 
algorithm; Chih et al. (2014) advanced a particle swarm 
optimisation with time-varying acceleration coefficients to 
solve MKP. Therefore, EAs is an obviously effective 
method for solving KP. 

Recently, many expanded forms of KP have been 
proposed one after another, such as stochastic knapsack 
problem (SKP), dynamic knapsack problem (DKP), 0–1KP 
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with a single continuous variable (KPC) and discounted  
{0–1} knapsack problem (D{0–1}KP) (Lin et al., 2008; 
Dizdar et al., 2011; Goldberg and Smith, 1987; Haddad and 
Erick, 1997; He et al., 2016, 2017; Marchand and Wolsey, 
1999; Lin et al., 2011; Zhao and Li, 2014; Guldan, 2007; 
Rong et al., 2012), which have more practical backgrounds 
and begin to attract people’s attention. For example, Lin  
et al. (2008) studied deeply the exchange policy and 
dynamic pricing problem of SKP; Dizdar et al. (2011) 
researched the applications of SKP to the tax maximisation; 
Goldberg and Smith (1987) proposed the time-varying 
knapsack problems (TVKP) in which the capacity of 
knapsack oscillates between two fixed values and they 
solved TVKP by the use of GA (Sun and Shen, 2016) with 
diploid form; Hadad and Lewis et al. (1997) solved TVKP 
by using the GA which has a polyploid form individually 
and compared the advantages and disadvantages of several 
polyploid forms of an individual; He et al. (2016, 2017) 
extended TVKP to randomised time-varying knapsack 
problems (RTVKP) and solved RTVKP by using dynamic 
programming, approximation algorithm and GA separately; 
Marchand and Wolsey (1999) proposed KPC and analysed 
its mathematical properties; Lin et al. (2011) gave a 
deterministic algorithm for solving KPC; Zhao and Li 
(2014) proposed an 2-approximation algorithm for solving 
KPC; Guldan (2007) proposed D{0–1}KP and gave a 
dynamic programming algorithm to solve it; Rong et al. 
(2012) studied the core problem of D{0–1}KP and 
combined it with the dynamic programming to solve  
D{0–1}KP; He et al. (2016) proposed a new mathematical 
model for D{0–1}KP and two effective algorithms, named 
FirEGA and SecEGA, by using GA and they indicated the 
performance of FirEGA is better than ones of SecEGA. 

The D{0–1}KP (Guldan, 2007) is a variant of the 
classical 0–1KP by extending the number of choices for 
each item group based on the concept of discount. The 
discount discussed here originates from economies of scale, 
which refers to the cost advantages that a business obtains 
due to expansion. Although the D{0–1}KP has not received 
much attention in the literature, the discount introduced in 
the D{0–1}KP is close to the reality of the real world 
problem. Economies of scale are a practical concept that 
may explain real world phenomena such as patterns of 
international trade and the investment scales of the business 
(Rong et al., 2012). It means that the D{0–1}KP may find 
applications in investment, project selection and budget 
control. The number of choices for the D{0–1}KP in each 
item group is four: either one of the three items is selected 
or no item is selected. On the one hand, if an item group is 
selected, it needs to be determined which item in the group 
is selected. On the other hand, the condition for not 
selecting an item group is hardly known since the weight 
and profit range of the three items may be large. It implies 
that D{0–1}KP is harder than 0–1 KP. In addition, because 
the exact algorithms (Guldan, 2007; Rong et al., 2012) 
solving D{0–1}KP have all pseudo-polynomial time 
complexity, for a large number of D{0–1}KP instances with 
profit and weight coefficients distributing in larger intervals, 

the high time complexity leads to poor usability of this 
algorithms. As a matter of fact, the NP-hard problems in 
practical application are almost always required to be solved 
fast. The exact solution is not necessary and only one 
approximate solution is needed which satisfies the 
approximate ratio requirement (Michael, 2002). Noting 
many successful applications of EAs to solving 0–1KP, we 
believe that using EAs to solve D{0–1}KP is an 
inexpensive and efficient method which is worth being 
explored. For solving D{0–1}KP by HBDE is given based 
on our previous work (He et al., 2007) firstly; then, two 
discrete DE algorithms, named FDDE and SDDE, are 
proposed by using the encoding conversion method. 

The rest of the paper is organised as follows: in  
Section 2 the definition and mathematical models of  
D{0–1}KP is introduced. In Section 3, based on the first 
mathematical model of D{0–1}KP, the binary DE algorithm 
HBDE is given by combining with GROA (He et al., 2016) 
(see Appendix 1). In Section 4, based on the second 
mathematical model of D{0–1}KP, the FDDE and SDDE 
are introduced separately by using the encoding conversion 
method and the NROA algorithm (He et al., 2016) (see 
Appendix 2). In Section 5, four types of large-scale  
D{0–1}KP instances discussed in (He et al., 2016) are 
calculated with HBDE, FDDE and SDDE. Then the result is 
compared with those of FirEGA and SecEGA (He et al., 
2016). Based on the comparison and analysis of the results, 
we indicate that HBDE, FDDE and SDDE are more suitable 
for solving all kinds of D{0–1}KP instances than FirEGA 
and SecEGA. Moreover, it is not only feasible, but also 
efficient to discretise the DE based on the coding 
transformation. At last, the whole content of the paper is 
summarised and further research ideas are prospected. 

2 Definition and mathematical models of  
D{0–1}KP 

Guldan (2007) proposed D{0–1}KP in 2007 and established 
its first mathematical model based on the linear 
programming theory; He et al. (2016) put forward the 
second and the third mathematical model of D{0–1}KP 
based on the integer programming theory. Since in this 
paper, we will discuss how to use DE to solve D{0–1}KP 
based on the first and the second mathematical model of 
D{0–1}KP and the definition of D{0–1}KP will be 
proposed first and then its two mathematical models will be 
introduced. 

Definition: D{0–1}KP (He et al., 2016): 

Given a set of n item groups and each group i (i = 0, 1, …,  
n – 1) consists of three items 3i, 3i + 1 and 3i + 2 and the 
first two items 3i and 3i + 1 with weights w3i and w3i+1 and 
profits p3i and p3i+1 are paired to derive a third item 3i + 2 
with discounted weight w3i+2 < w3i + w3i+1 and profit  
p3i+2 = p3i + p3i+1. In each group, at most one of the three 
items can be selected to be placed in the knapsack with 
capacity C so that the total weight of the selected items 
cannot exceed C and the total profit is maximised. 
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Suppose the scale of D{0–1}KP instances is the number of 
the items, 3n. The D{0–1}KP instant consists of profit 
coefficient set P = {pj| 0 ≤ j ≤ 3n – 1}, weight coefficient set  
W = {wj| 0 ≤ j ≤ 3n – 1} and the knapsack capacity C. 
Without loss of generality, it may be assumed that all profit 
coefficients (p3i, p3i+1 and p3i+2), weight coefficients (w3i, 
w3i+1 and w3i+2) and knapsack capacity C are positive 
integers and all the weight coefficients are not larger than 

the capacity C, 
1

3i 20
.

n

i
w C

−
+

=
>∑  

2.1 First mathematical model 

Let X = [x0, x1, …, x3n–1]  ∈ {0, 1}3n be a binary vector. The 
first mathematical model of D{0–1} (Guldan, 2007; Rong  
et al., 2012) KP is: 
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Where, the binary decision variables xj(0 ≤ j ≤ 3n – 1) are 
used to indicate whether the item j is included in the 
knapsack or not. The item j is loaded into the knapsack if 
and only if xj = 1. Obviously, any 0–1 vector X = [x0, x1, …, 
x3n–1] ∈ {0, 1}3n merely represents a potential solution to 
D{0–1}KP. It is a feasible solution only when it satisfies the 
constraints (2) and (3) at the same time. Otherwise, it is an 
infeasible solution to D{0–1}KP. 

2.2 Second mathematical model 

Let X = [x0, x1, …, xn–1] ∈ {0, 1, 2, 3}n be an integer vector. 
The second mathematical model of D{0–1}KP (He et al., 
2016) is: 

( )
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i

n
i i xi

f X x p
−

+ −=
= ⎡ ⎤⎢ ⎥∑  (5) 

( )
1

3 10
Subject to / 3

i

n
i i xi

x w C
−

+ −=
≤⎡ ⎤⎢ ⎥∑  (6) 

{0, 1, 2, 3}, 0, 1, , 1.ix i n∈ = −…  (7) 

Where,  ⎡x⎤ is a top function. The integer variables  
xi(0 ≤ i ≤ n – 1) indicate whether there is an item of the item 
group i to be loaded into the knapsack or not. No items of 
item group i is loaded into the knapsack when xi = 0. The 
item 3i is loaded into the knapsack when xi = 1. The item  
3i + 1 is loaded into the knapsack when xi = 2. The item  
3i + 2 is loaded into the knapsack when xi = 3. Obviously, 
arbitrary integer vector X = [x0, x1, …, xn–1] ∈ {0, 1, 2, 3}n 
only represents a potential solution of D{0–1}KP and it is a 
feasible solution to the problem if and only if it satisfies the 
inequality (6). 

3 Binary DEs for solving D{0–1}KP 

In the first mathematical model of D{0–1}KP, the feasible 
solution is a binary vector, but the individual coding of the 
standard DE is a real vector. So it is impossible to solve 
D{0–1}KP by using the standard DE directly. Therefore, a 
binary version DE named HBDE for solving D{0–1}KP is 
proposed based on our previous work (He et al., 2007) and 
we will use the algorithm GROA introduced in (He et al., 
2016) to handle infeasible solutions of D{0–1}KP in 
HBDE. 

To solve the D{0–1}KP, we make four improvements 
for HBDE as follows: 

1 Firstly, we use a 3n-dimensional real vector to 
represent an individual in HBDE. To get a potential 
solution of D{0–1}KP, we use the encoding conversion 
function to transform the 3n-dimensional real vector 
into a 3n-dimensional binary vector. 

2  Secondly, we give a simple implement method of 
encoding conversion function which equals to one in 
(He et al., 2007) and is easier to be implemented. The 
computational complexity can be greatly reduced when 
a real vector was converted into a binary vector. 

3  By Gauss-Seidel method (Michael, 2002), the 
temporary population is no longer used in HBDE. We 
immediately compare the offspring individual with the 
parent individual after the offspring individual is 
generated through the mutation and crossover of 
standard DE. If the offspring individual is better than 
the parent one, then it replaces the parent individual 
immediately, otherwise remain the parent individual 
without change. This not only can make more new 
outstanding individuals participate in the evolution 
process as soon as possible but also decreases the space 
complexity of HBDE. 

4 To make the potential solution (i.e., 3n-dimensional 
binary vector) be a high-quality feasible solution, we 
use the GROA (He et al., 2016) algorithm to repair and 
optimise all individuals in HBDE. At the same time, the 
objective function value is calculated as the fitness of 
the corresponding individual. 

The description of the algorithm principle and pseudo-code 
based on the DE/rand/1/bin model is shown as follows: 

Let Xi = [xi0, xi1, …, xi,3n–1] ∈ S1 represents the ith 
individual of the current population in HBDE, where 

3
1

1
[ , ],

n

j
S low high

=
= ∏  low and high are all real numbers, 

low < 0 and low = –high; 1 ≤ i ≤ N, N is the population size; 
n is the number of item groups in the D{0–1}KP instance. 

The encoding conversion function of HBDE is defined 
as W = g1(V). Its expression is described as follows: 

j
j

1, if 0;
0,

v
w

otherwise
≥⎧

= ⎨
⎩

 (8) 
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where V = [v0, v1, …, v3n–1] ∈ S1, W = [w0, w1, …,  
w3n–1] ∈ {0, 1}3n, vj ∈ V and wj ∈ W, j = 0, 1, …, 3n – 1. 

Let Y = [y0, y1, …, y3n–1] ∈ {0, 1}3n represent the binary 
vector, which is obtained by using the encoding conversion 
function Y = g1(X), where X is an individual in HBDE. It is 
clear that Y is a potential solution of D{0–1}KP. We can use 
GROA to repair and optimise Y to make it be a feasible 
solution to D{0–1}KP and calculate f(Y) as the fitness of 
individual X. 

For example, suppose the scale of the D{0–1}KP 

instance I1 is 3n = 12; 
12

1 1
[ 5.0, 5.0]

j
S

=
= −∏  and X = [1.15, 

–4.73, 3.44, –2.32, –0.71, –1.08, 2.29, 4.11, –3.69, 3.15,  
–2.66, –4.01] ∈ S1 is an individual in HBDE. The potential 
solution Y = [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0] ∈ {0, 1}12 
corresponding to X can be obtained by using Y = g1(X). The 
schematic diagram of Y = g1(X) is shown as follows: 

For the ith (i = 1, 2, …, N) individual Xi = [xi0, xi1, …,  
xi,3n–1] ∈ S1 in the current population of HBDE, let Z = [z0, 
z1, …, z3n–1] ∈ S1 represent a temporary 3n-dimensional real 
vector, which is used to derive the offspring individual of Xi 
in the following operation. Thereupon, the mutation and 
crossover operations of HBDE are achieved separately by 
using (9) and (10). 

( )j p1, j p2, j p3, j*z x F x x= + −  (9) 

j
j

ij

, if ( );
, .

z r CR or j R i
z

x otherwise
< =⎧

= ⎨
⎩

 (10) 

where j = 0, 1, …, 3n – 1; Xp1, Xp2 and Xp3 are three 
different individuals in the current population that have 
difference with Xi; scaling factor F ∈ (0, 1], r ~ (0, 1) is a 
random number; R(i) represents a random positive integer in 
interval [1, n]; CR is called cross factor and CR ∈ (0, 1). 

In the selection operation of HBDE, we first use the 
encoding conversion function U = g1(Z) to transform the 
real vector Z = [z0, z1, …, z3n–1] into a binary vector U = [u0, 
u1, …, u3n–1] ∈ {0, 1}3n. Since U may not be a feasible 
solution to D{0–1}KP, we use GROA (He et al., 2016) to 
repair and optimise U, making it be a high-quality feasible 
solution. Then, we calculate the objective function value 
f(U) as the fitness of Z and then use equation (11) to select 
between Xi and Z. 

i
i

i

, ( ) ( );
, .

Z if f U f Y
X

X otherwise
>⎧

= ⎨
⎩

 (11) 

where, Yi = g1(Xi) is a binary vector corresponding to Xi. 
By the above description, the algorithm principle of 

HBDE is shown as follows: 

1 Initialisation: generate the population P(0) = {Xi(0) ∈ 
S1| 1 ≤ i ≤ N)} randomly. Use Yi(0) = g1(Xi(0)) to 
calculate the potential solution Yi(0) ∈ {0, 1}3n. Repair 
and optimise Yi(0) (1 ≤ i ≤ N) by using GROA. Then 
based on f(Yi(0)) (1 ≤ i ≤ N), determine the global 
optimal individual Xb(0) = [xb0(0), xb1(0), …,  
xb,3n–1(0)] ∈ S1 in P(0) and its corresponding feasible 

solution Yb(0) = [yb0(0), yb1(0), …, yb,3n–1(0)] ∈  
{0, 1}3n. Let t be the iteration control variable and set  
t = 0. 

2 The (t + 1)th iteration evolution process of HBDE: for 
each individual Xi(t) (1 ≤ i ≤ N) in P(t), we first 
generate a temporary 3n-dimensional real vector  
Z ∈ S1 based on (9) and (10). Then, use U = g1(Z) to get 
the potential solution U ∈ {0, 1}3n corresponding to Z. 
We repair and optimise U by using GROA and 
calculate f(U). If f(U) > f(Yi(t)), we replace (Xi(t), Yi(t)) 
with (Z, U); otherwise keep (Xi(t), Yi(t)) unchanged. 
The new population P(t + 1) is generated when all the 
individuals of P(t) have finished the above operations. 
In P(t + 1) ∪ {(Xb(t), Yb(t))}, determine the global 
optimal individual Xb(t + 1) = [xb0(t + 1), xb1(t + 1), …, 
xb,3n–1(t + 1)] ∈ S1 and its corresponding feasible 
solution Yb(t + 1) = [yb0(t + 1), yb1(t + 1), …, yb,3n–1 

(t + 1)] ∈ {0, 1}3n. Let t = t + 1. 
3 Termination determination: If t ≤ MaxIt (MaxIt is the 

number of iterations of HBDE), go back to (2) to carry 
out the next iterative evolution; otherwise output  
(Yb(t – 1), f(Yb(t – 1))) and end the algorithm. 

Let ‘H[0 … 3n – 1] ← Sort({pj / wj| pj ∈ P, wj ∈ W, 0 ≤ j ≤ 
3n – 1})’ represent the procedure that sequentially store the 
original index of each item into the array H[0 … 3n – 1] 
after 3n items are sorted according to the pj / wj (0 ≤ j ≤  
3n – 1) descending order. Let rand(0, 1) be a random 
number in (0, 1). The pseudo-code of HBDE is described as 
follows: 

Algorithm 1 HBDE 

Input: The D{0–1}KP instances, parameters N, MaxIt, low, 
high, F and CR; 

Output: Approximate (or optimal) solution Yb(t – 1) and its 
objective function value f(Yb(t – 1)). 

1 H[0 … 3n – 1] ← Sort({pj / wj| pj ∈ P, wj ∈ W, 0 ≤ j ≤  
3n – 1}); 

2 Generate initial population P(0)={Xi(0) ∈ S1 | 1 ≤ i ≤ N} 
randomly; 

3  for i = 1 to N do 
4   Yi(0) ← g1(Xi(0)); 
5   (Yi(0), f(Yi(0))) ← GROA(Yi(0), H[0 … 3n – 1]) 
6  end for 
7  Determine (Xb(0), Yb(0)) by f(Yi(0)) (1 ≤ i ≤ N) in P(0); 

t ← 0; 
8  while (t < MaxIt) do 
9   for i = 1 to N do 
10    for j = 0 to 3n – 1do 
11    if (r ≤ CR∨j = R(i)) then zj ← yp1,j(t) +  

F*(yp2,j(t) – yp3,j(t)) else zj ← yij(t); 
12    if (zj < low or zj > high) then zj ← rand(0, 1) ∗ 

(high – low) + low; 
13    if zj ≥ 0 then uj ← 1 else uj ← 0; 
14   end for 



224 H. Zhu et al.  

15   (U, f(U)) ← GROA(U, H[0 … 3n – 1]); 
16   if f(U) > f(Yi(t)) then (Xi(t), Yi(t)) ← (Z, U); 
17  end for 
18  Determine (Xb(t + 1), Yb(t + 1)) by f(Yi(t)) (1 ≤ i ≤ N) in 

P(t + 1) ∪ {(Xb(t), Yb(t))}; 
19  t ← t + 1; 
20 end while 
21 return(Yb(t – 1), f(Yb(t – 1))). 

In HBDE, step 1 is implemented by using the QuickSort 
algorithm in (Cormen et al., 2001). Its time complexity is 
O(nlogn). The time complexity of both step 2 and  
step 3–step 6 is O(N*n), since that of GROA is O(n). 
Because the time complexity of step 8 – step 20 is 
O(MaxIt*N*n), that of HBDE is O(nlogn) + O(MaxIt*N*n). 
Since N and MaxIt are linear functions with respect to n, we 
have O(MaxIt*N*n) + O(nlogn) = O(n3). HBDE is a 
stochastic approximation algorithm with polynomial time 
complexity. 

4 Discrete DEs for solving D{0–1}KP 

Since the feasible solution is an integer vector in {0, 1, 2, 
3}n in the second mathematical model, the standard DE 
cannot be used directly to solve D{0–1}KP. Therefore, we 
draw lessons from the idea of HBDE to propose the discrete 
DE. By using two different encoding conversion functions, 
which transform the real vector into an integer vector, we 
propose two discrete DEs, the first discrete differential 
evolution algorithm (FDDE) and the second discrete 
differential evolution algorithm (SDDE) for solving  
D{0–1}KP, separately. 

Now, we first introduce the principle of FDDE and its 
pseudo code description based on the model DE/rand/1/bin. 

4.1 FDDE algorithm 

Let Xi = [xi0, xi1, …, xi(2n – 1)] ∈ S2 represent the ith individual 
of the current population in FDDE, where 

2
2 1

[ , ];
n

j
S low high

=
= ∏  low < 0 < high; both low and high 

are real numbers; i = 1, 2, …, N; N is the population size; n 
represents the number of item groups of D{0–1}KP. 

We note that the two bit binary numbers corresponding 
to integers 0, 1, 2, 3 are 00, 01, 10 and 11, separately. The 
‘0’ and ‘1’ can correspond to the positive and negative. 
Therefore, we can define the encoding conversion function 
W = g2(V) of FDDE as follows: 

0, if 2 0 and 2 1 0;
1, if 2 0 and 2 1 0;
2, if 2 0 and 2 1 0;
3, if 2 0 and 2 1 0.

j

v j v j
v j v j

w
v j v j
v j v j

< + <⎧
⎪ < + ≥⎪= ⎨ < + <⎪
⎪ < + ≥⎩

 (12) 

Where，V = [v0, v1, …, v2n–1] ∈ S2 is a 2n-dimensional real 
vector and W = [w0, w1, …, wn–1] ∈ {0, 1, 2, 3}n is an  
n-dimensional integer vector. 

Let Y = [y0, y1, …, yn–1] ∈ {0, 1, 2, 3}n represent the 
integer vector which is obtained by using the encoding 
conversion function Y = g2(X), X ∈ S2 and X is an individual 
in FDDE. Then Y is a potential solution to D{0–1}KP 
corresponding to X. By using NROA (He et al., 2016) to 
repair and optimise Y, we can make it a feasible solution to 
D{0–1}KP. f(Y) is calculated as the fitness of X. 

For example, suppose the scale of D{0–1}KP instance I2 

is 3n = 15 and 
10

2 1
[ 5.0, 5.0];

j
S

=
= −∏  X = [2.13, –0.51,  

–3.93, –2.77, –3.82, 3.29, 4.12, 1.15, –1.22, –2.35] ∈ S2 is 
an individual in FDDE. Then, the feasible solution 
corresponding to X is Y = [2, 0, 1, 3, 0] ∈ {0, 1, 2, 3}5. The 
schematic diagram of Y = g2(X) is shown as Table 2. 

For the ith(i = 1, 2, …, N) individual Xi = [x0, x1, …,  
x2n–1] ∈ S2 in current population of FDDE, let Z = [z0, z1, …, 
z2n–1] ∈ S2 represent a temporary 2n-dimensional real 
vector, which is used to derive the offspring individual of Xi 
in the following operation. The mutation and crossover 
operations of FDDE are achieved based on formulas (9) and 
(10) the same as HBDE, so there is no repeat any more. But 
it should be emphasised that all individual’s coding are  
2n-dimensional real vectors in S2 and the range of index j in 
formulas (9) and (10) is from 0 to 2n – 1. 

In order to achieve the selection operation in FDDE, 
first we use the encoding conversion function U = g2(Z) to 
obtain an integer vector U = [u0, u1, …, un–1] ∈ {0, 1, 2, 3}n. 
Because U may not be a feasible solution to D{0–1}KP, we 
use NROA to repair and optimise U. The objective function 
value f(U) is considered as the fitness of Z. Then the current 
individuals Xi or Z are selected based on formula (11). 

Table 1 The encoding conversion function Y = g1(X) 

X x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 

 1.15 –4.73 3.44 –2.32 –0.71 –1.08 2.29 4.11 –3.69 3.15 –4.01 

g1      
 1 0 1 0 0 0 1 1 0 1 0 

Y y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y11 
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Table 2 The encoding conversion function Y = g2(X) 

X x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 

 2.13, –0.51 –3.93, –2.77 –3.82, 3.29 4.12, 1.15 –1.22, –2.35

g2      
 2 0 1 3 0 

Y y0 y1 y2 y3 y4 

By the above exposition, the algorithm principle of FDDE is 
described as follows: 

1 Initialisation: generate the population P(0) = {Xi(0) ∈ 
S2| 1 ≤ i ≤ N)} randomly. Use the encoding conversion 
function Yi(0) = g2(Xi(0)) to get the potential solution 
Yi(0) ∈ {0, 1, 2, 3}n corresponding to the individual 
Xi(0). Repair and optimise Yi(0) by using NROA. Then 
based on f(Yi(0)) (1 ≤ i ≤ N), determine the current 
global optimal individual Xb(0) = [xb0(0), xb1(0), …, 
xb,2n–1(0)] ∈ S2 and its corresponding feasible solution 
Yb(0) = [yb0(0), yb1(0), …, yb,n–1(0)] ∈ {0, 1, 2, 3}n. Let t 
be the loop control variable and set t = 0. 

2 The (t + 1)th iteration evolution in FDDE: for each 
individual Xi(t) (1 ≤ i ≤ N) in population P(t), firstly we 
use (9) and (10) to generate a temporary individual  
Z ∈ S2 and get the potential solution U ∈ {0, 1, 2, 3}n 
corresponding to Z by using the encoding conversion 
function U = g2(Z). Repair and optimise U by using 
NROA and then calculate the value of f(U). If  
f(U) > f(Yi(t)), replace (Xi(t), Yi(t)) with (Z, U); 
otherwise, keep (Xi(t), Yi(t)) unchanged. The new 
population P(t + 1) is generated after all the individuals 
of P(t) have finished the above operations. In  
P(t + 1) ∪ {(Xb(t), Yb(t))}, determine the global optimal 
individual Xb(t + 1) = [xb0(t + 1), xb1(t + 1), …, xb,2n–1 

(t + 1)] ∈ S2 and its corresponding feasible solution  
Yb(t + 1) = [yb0(t + 1), yb1(t + 1), …, yb,n–1(t + 1)] ∈{0, 1, 
2, 3}n based on individual fitness. Set t = t + 1. 

3 Termination determination: if t ≤ MaxIt, go back to (2) 
to execute the next iteration evolution process; 
otherwise, output (Yb(t – 1), f(Yb(t – 1))) and end the 
algorithm. 

The pseudo-code of the FDDE is described as follows: 

Algorithm 2 FDDE 

Input: The D{0–1}KP instances, parameters N, MaxIt, low, 
high, F and CR; 

Output: Approximate (or optimal) solution Yb(t – 1) and its 
objective function value f(Yb(t – 1)).  

1 H[0 … 3n – 1] ← Sort({pj / wj| pj ∈ P, wj ∈ W, 0 ≤ j ≤  
3n – 1}); 

2 Generate initial population P(0) = {Xi(0) ∈ S2 | 1 ≤ i ≤ N} 
randomly; 

3  for i = 1 to N do 
4   Yi(0) ← g2(Xi(0)); 
5   (Yi(0), f(Yi(0))) ← NROA(Yi(0), H[0 … 3n – 1]) 

6  end for 
7  Determine (Xb(0), Yb(0)) by f(Yi(0)) (1 ≤ i ≤ N) in P(0); 

t ← 0; 
8  while (t < MaxIt) do 
9   for i = 1 to N do 
10    for j = 0 to n – 1 do 
11     if (r ≤ CR∨j = R(i)) then zj ← yp1,j(t) + 

F(yp2,j(t) – yp3,j(t)) else zj ← yij(t);  
12     if (zj < low or zj > high) then zj ← rand(0, 1) 

* (high-low) + low; 
13    end for 
14    U ← g2(Z); 
15    (U, f(U)) ← NROA(U, H[0 … 3n – 1]); 
16    if f(U) > f(Yi(t)) then (Xi(t), Yi(t)) ← (Z, U); 
17   end for 
18   Determine (Xb(t + 1), Yb(t + 1)) by f(Yi(t)) (1 ≤ i ≤ 

N) in P(t + 1) ∪ {(Xb(t), Yb(t))}; 
19   t ← t + 1; 
20 end while 
21 return (Yb(t – 1), f(Yb(t – 1))). 

Because the time complexity of NROA is O(n), similar to 
the analysis of HBDE, it is easy to derive the time 
complexity of FDDE, which is O(MaxIt*N*n) + O(nlogn) = 
O(n3). FDDE is also a stochastic approximation algorithm 
with polynomial time complexity. 

4.2 SDDE algorithm 

Let Xi = [xi0, xi1, …, xi,n–1] ∈ S3 represent the ith (1 ≤ i ≤ N) 
individual in the current population of SDDE, where 

3 1
[ , ],

n

j
S low high

=
= ∏  low < 0 < high; both low and high 

are real numbers; N is the population size; n is the number 
of item groups in D{0–1}KP. 

Inspired by He et al. (2007) and Greenwood (2009), the 
encoding conversion function W = g3(V) of SDDE is defined 
based on dividing interval [low, high] to four segments, 
which correspond to 0, 1, 2 and 3, respectively. Its 
implementation method is shown as follows: 

0, if ;
1, if 0;
2, if 0 ;
3, if .

j

j
j

low v left
left v

w
vj right

right vj high

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤ ≤⎩

 (13) 

Where, V = [v0, v1, …, vn–1] ∈ S3 is an n-dimensional real 
vector; W = [w0, w1, …, wn–1] ∈ {0, 1, 2, 3}n is an  
n-dimensional integer vector. Both left and right are real 
numbers and low < left < 0 < right < high. 

Obviously, [low, high] = [low, left) ∪ [left, 0) ∪  
[0, right) ∪ [right, high]. The intervals [low, left), [left, 0), 
[0, right) and [right, high] are numbered as 0, 1, 2 and 3 
separately. Based on W = g3(V), the component wj of vector 
W is defined as the number of the interval which the 
component vj of vector V belongs to. That is, if vj ∈ [low, 
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left), then wj = 0; if vj ∈ [left, 0), then wj = 1; if vj ∈ [0, 
right), then wj = 2; if vj ∈ [right, high], then wj = 3. 

For example, suppose the scale of D{0–1}KP instance I3 

is 3n = 15. 
5

3 1
[ 5.0, 5.0],

j
S

=
= −∏  left = –2.5, right = 2.5;  

X = [3.14, –1.73, 1.29, 2.71, –3.13] ∈ S3 is an individual of 
SDDE, then [–5.0, 5.0] = [–5.0, –2.5) ∪ [–2.5, 0) ∪ [0, 2.5) 
∪ [2.5, 5.0] is obtained. Therefore, the potential solution 
corresponding to X is Y = [3, 1, 2, 3, 0] ∈ {0, 1, 2, 3}5. The 
schematic diagram of Y = g3(X) is shown as Table 3. 

Table 3 The encoding conversion function Y = g3(X) 

X x0 x1 x2 x3 x4 

 3.14 –1.73 1.29 2.71 –3.13 

g3     
 3 1 2 3 0 

Y y0 y1 y2 y3 y4 

For the ith individual Xi = [x0, x1, …, xn–1] ∈ S3 of SDDE, let 
Z = [z0, z1, …, zn–1] ∈ S3 represent a temporary  
n-dimensional real vector. The mutation and crossover 
operations of SDDE based on DE/rand/1/bin mode are 
achieved by using formulas (9) and (10). It should be noted 
that the individual encodes involved in the operation are all 
n-dimensional real vectors in S3 and the range of index j in 
formulas (9) and (10) is from 0 to n – 1. 

In order to achieve the selection operation in SDDE, we 
first transform the real vector Z = [z0, z1, …, zn–1] ∈ S3 into 
an integer vector U = [u0, u1, …, un–1] ∈ {0, 1, 2, 3}n by 
using the encoding conversion function U = g3(Z). Since U 
may not be a feasible solution to D{0–1}KP, we repair and 
optimise it by using NROA and calculate its objective 
function value f(U). Then the current individuals Xi or Z are 
selected based on formula (11). 

The algorithm principle of SDDE is similar to those of 
HBDE and FDDE. So it is not repeated any more. Then the 
pseudo-code of SDDE based on the DE/rand/1/bin mode is 
described as follows: 

Algorithm 3 SDDE 

Input: The D{0–1}KP instances, parameters N, MaxIt, low, 
high, left, right, F and CR; 

Output: Approximate (or optimal)solution Yb(t – 1) and its 
objective function value f(Yb(t – 1)). 

1 H[0 … 3n – 1] ← Sort({pj / wj | pj ∈ P, wj ∈ W, 0 ≤ j ≤ 3n 
– 1}); 

2 Generate initial population P(0) = {Xi(0) ∈ S3 | 1 ≤ i ≤ N} 
randomly; 

3 for i = 1 to N do 
4   Yi(0) ← g3(Xi(0)); 
5   (Yi(0), f(Yi(0))) ← NROA(Yi(0), H[0 … 3n – 1]) 
6  end for 
7  Determine (Xb(0), Yb(0)) by f(Yi(0)) (1 ≤ i ≤ N) in P(0); 

t ← 0; 

8  while (t ≤ MaxIt) do 
9   for i = 1 to N do 
10    for j = 0 to n – 1 do 
11     if (r ≤ CR∨j = R(i)) then zj ← yp1,j(t) + 

F(yp2,j(t) – yp3,j(t)) else zj ← yij(t); 
12     if (zj < low or zj > high) then zj ← rand(0, 

1)*(high-low) + low; 
13    end for 
14    U ← g3(Z); 
15    (U, f(U)) ← NROA(U, H[0 … 3n – 1]); 
16    if f(U) > f(Yi(t)) then (Xi(t), Yi(t)) ← (Z, U); 
17   end for 
18   Determine (Xb(t + 1), Yb(t + 1)) by f(Yi(t)) (1 ≤ i ≤ 

N) in P(t + 1) ∪ {(Xb(t), Yb(t))}; 
19   t ← t + 1; 
20 end while 
21 return(Yb(t – 1), f(Yb(t – 1))). 

Obviously, the time complexity of SDDE is O(MaxIt*N*n) 
+ O(nlogn) = O(n3). SDDE is also a stochastic 
approximation algorithm with polynomial time complexity. 

5 Computational experiments 

The comparison of HBDE, FDDE and SDDE is shown in 
Table 4. It can be seen that the three algorithms are 
designed in exactly the same way, which are based on the 
encoding conversion of real numbers to integer vectors. 
HBDE converts a real vector to a 0–1 vector and FDDE and 
SDDE transform a real number vector into an integer 
vector; HBDE is only applicable to combinatorial 
optimisation problems with feasible solutions for 0–1 
vectors and FDDE and SDDE are suitable for the 
combinatorial optimisation problem with feasible solutions 
for integer vectors; for D{0–1}KP problems, HBDE 
performs much better than FDDE and SDDE; the 
computing speeds of both FDDE and SDDE are faster than 
that of HBDE. 

In this section, for testing the performances of HBDE, 
FDDE and SDDE, we use them to solve the four kinds of 
large scale benchmarked instances (He et al., 2016) of  
D{0–1}KP and compare the results with those of FirEGA 
and SecEGA. The microcomputer used is Acer Aspire  
E1-570G notebook; hardware configuration is Intel(R) 
Core(TM)i5-3337u CPU-1.8GHz, 4GB DDR3 RAM 
(3.82GB available); the operating system is Microsoft 
Windows 8 and programming language is C++ and the 
compiler environment is Visual C++6.0; Execl 2007 and 
MATLAB 7.10.0.499 (R2010a) are used to draw the fitting 
curve of approximate ratio (Du et al., 2012) and the 
convergence curves of four algorithms, respectively. 

Due to the current absence of benchmarks set of  
D{0–1}KP, in this paper, four types of large scale  
D{0–1}KP instances proposed in (He et al., 2016) are used 
to be calculated. They are: 
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1 Uncorrelated instances of D{0–1}KP named from 
UDKP1 to UDKP10. 

2 Weakly correlated instances of D{0–1}KP named from 
WDKP 1 to WDKP 10. 

3 Strongly correlated instances of D{0–1}KP named 
from SDKP 1 to SDKP 10. 

4 Inverse correlated instances of D{0–1}KP named from 
IDKP 1 to IDKP 10. Specific examples of various types 
of data see http://pan.baidu.com/s/1o6MJVEq. 

Table 4 A comparison among HBDE, FDDE and SDDE 

Comparison 
objects HBDE FDDE SDDE 

Discretisation 
method 

Convert a real 
vector to a 

binary vector 

Convert a real 
vector to an 

integer vector 

Convert a real 
vector to an 

integer vector 
Applicable 
problems 

The 
combinatorial 
optimisation 
problem with 

feasible 
solution as 

binary vector 

The 
combinatorial 
optimisation 
problem with 

feasible 
solution as 

integer vector 

The 
combinatorial 
optimisation 
problem with 

feasible 
solution as 

integer vector 
Running 
speed 

The slowest Medium The fastest 

Performance 
of solving 
D{0-1}KP 

The best Medium The worst 

The population size of HBDE, FDDE and SDDE is N = 50 
and the iteration number is MaxIt = 3n (3n is the items 
amount in D{0–1}KP), low = –5.0, high = 5.0. Furthermore, 
set F = 0.2 and CR = 0.3 in HBDE, FDDE and SDDE 
respectively and left = –2.5 and right = 2.5 are set in SDDE. 
The parameter of FirEGA and SecEGA is set the same as 
He et al. (2016). 

For each D{0–1}KP instance, all algorithms are 
executed independently 100 times. The computing results of 
each algorithm are given in Tables 5–8, where, columns 
under the caption the ‘opt’ report the optimal value found 
by the dynamic programming method (referred to as 
DPDKP); the ‘best’, ‘worst’ and ‘mean’ report the best 
value, the worst value and the average value found by 
HBDE, FDDE,SDD and FirEGA among 100 times 

execution independently; the ‘StaDe’ reports the standard 
deviation of the 100 times execution; the ‘Gap (%)’ reports 
the average gap between the best values (best) found by 
every algorithm and the optimal value (opt). This gap is 
calculated by Gap(%) = 100 ∗ (opt – best) / opt. Because the 
performance of FirEGA is better than that of SecEGA,  
the results of SecEGA are shown in Tables 5–8 and  
Figures 1–3. 

The fitting curves of approximation ratio which is 
defined by opt/mean for all algorithms are given in  
Figures 1–4. 

From Table 5, we can see that the worst values of 
HBDE, FDDE and SDDE are all better than the best value 
of FirEGA. Thus, for the UDKP class instances, HBDE, 
FDDE and SDDE all perform much better than FirEGA and 
SecEGA. 

It can be seen from Table 6 that all the indicators of 
HBDE are optimal and all its worst values are better than 
the best value of FirEGA; the best, mean and worst values 
of FDDE are better than those of FirEGA, respectively; the 
Mean and Worst values of SDDE are better than those of 
FirEGA correspondingly, besides WDKP1. Therefore, for 
the WDKP class instances, HBDE, FDDE and SDDE all 
perform much better than FirEGA and SecEGA. 

The results in Table 7 show that the best, mean and 
worst values of both HBDE and SDDE are better than those 
of FirEGA, respectively. Besides, the three indicators’ 
values of SDKP1, SDKP6 and FDDE are better than those 
of FirEGA, which indicates that for the SDKP class 
instances, HBDE, FDDE and SDDE all perform much 
better than FirEGA and SecEGA. 

The results in Table 8 represent that every indicator of 
HBDE is the optimal, while FDDE, SDDE and FirEGA are 
similar to each other with respect to each indicator. Thus, 
for the IDKP class instances, HBDE performs the best 
among the four algorithms; FDDE, SDDE and FirEGA 
perform similarly and better than SecEGA. 

EA is a kind of stochastic approximation algorithm. It 
usually uses the off-line performance measure (Kashan  
et al., 2013) on mean as the indicator to compare the 
convergent performances of different algorithms. In order to 
compare the convergent performances of HBDE, FDDE, 
SDDE and FirEGA, we will draw the off-line performance 
curves on mean of the four algorithms. 

 

Figure 1 The fitting curves of opt/mean for UDKP instances (see online version for colours) 
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Figure 2 The fitting curves of opt/mean for WDKP instances (see online version for colours) 

 

Figure 3 The fitting curves of opt/mean for SDKP instances (see online version for colours) 

 

Figure 4 The fitting curves of opt/mean for IDKP instances (see online version for colours) 
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Table 5 Computational results of using the four algorithms to solve UDKP1-UDKP10 

Instance Opt Algorithm Best Mean Worst StaDe Gap 

UDKP1 85740 HBDE 85,740 85,657.9 85,306 85.04 0 
FDDE 85,730 85,521.8 85,211 161.15 0.0117 
SDDE 85,740 85,581.6 85,302 129.10 0 

FirEGA 80,650 79,313.1 78,198 731.67 5.9366 
UDKP2 163744 HBDE 163,744 163,714 163,421 54.99 0 

FDDE 163,554 162,903 161,827 328.29 0.1160 
SDDE 163,519 162,783 161,523 408.44 0.1374 

FirEGA 153,870 151,130 149,649 905.33 6.0301 
UDKP3 269393 HBDE 269,125 268,638 267,789 306.07 0.0995 

FDDE 268,780 267,583 266,063 582.68 0.2275 
SDDE 268,679 267,450 265,670 561.96 0.2650 

FirEGA 246,593 240,827 237,780 1,687.92 8.4635 
UDKP4 347599 HBDE 347,015 346,381 345,308 344.85 0.1680 

FDDE 346,304 344,909 342,813 693.37 0.3726 
SDDE 345,906 344,418 341,709 832.35 0.4871 

FirEGA 320,572 316,599 313,758 1,446.88 7.7753 
UDKP5 442644 HBDE 441,708 440,752 439,752 505.568 0.2115 

FDDE 439,668 437,592 434,087 939.93 0.6723 
SDDE 439,842 436,975 434,136 1,009.29 0.6330 

FirEGA 402,255 398,764 394,716 1,746.24 9.1245 
UDKP6 536578 HBDE 535,537 534,315 533,054 539.71 0.1940 

FDDE 532,398 530,101 527,239 1,035.71 0.7790 
SDDE 532,040 528,607 525,306 1,246.84 0.8457 

FirEGA 484,241 478,109 472,852 2,137.30 9.7538 
UDKP7 635860 HBDE 634,566 633,229 631,511 627.26 0.2035 

FDDE 631,094 628,040 624,212 1,285.20 0.7495 
SDDE 629,555 626,562 622,660 1,357.25 0.9916 

FirEGA 565,932 560,668 556,327 1,939.30 10.9974 
UDKP8 650206 HBDE 648,066 645,904 643,524 804.18 0.3291 

FDDE 642,279 639,885 636,820 1,184.57 1.2192 
SDDE 641,667 638,261 634,451 1,449.75 1.3133 

FirEGA 590,419 584,494 579,453 2,149.00 9.1951 
UDKP9 718532 HBDE 717,936 716,798 715,241 488.95 0.0829 

FDDE 707,690 703,814 697,238 1,729.29 1.5089 
SDDE 705,468 700,988 697,097 1,649.67 1.8182 

FirEGA 651,779 646,642 642,409 2,000.70 9.2902 
UDKP10 779460 HBDE 717,936 716,798 715,241 488.95 7.8932 

FDDE 707,690 703,814 697,238 1,729.29 9.2077 
SDDE 705,468 700,988 697,097 1,649.67 9.4927 

FirEGA 651,779 646,642 642,409 2,000.70 16.3807 
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Table 6 Computational results of using the 4 algorithms to solve WDKP1-WDKP10 

Instance Opt Algorithm Best Mean Worst StaDe Gap 
WDKP1 83,098 HBDE 83,086 83,054.6 82,990 28.94 0.0144 

FDDE 82,801 82,178.6 81,428 394.46 0.3574 
SDDE 83,098 83,053.1 82,949 38.04 0 

FirEGA 82,750 82,611.1 82,443 97.70 0.4188 
WDKP2 138,215 HBDE 138,215 138,210 138,155 9.88 0 

FDDE 138,139 137,811 136,403 323.16 0.0550 
SDDE 138,187 137,951 137,640 108.45 0.0203 

FirEGA 137,723 137,360 137,137 114.61 0.3560 
WDKP3 256,616 HBDE 256,548 256,373 256,114 89.50 0.0265 

FDDE 256,356 255,916 253,567 416.38 0.1013 
SDDE 256,414 255,979 255,427 194.46 0.0787 

FirEGA 254,240 253,474 253,141 185.76 0.9259 
WDKP4 315,657 HBDE 315,469 315,250 314,843 113.76 0.0596 

FDDE 315,248 314,856 314,336 158.81 0.1296 
SDDE 315,073 314,616 314,168 211.75 0.1850 

FirEGA 313,957 312,447 311,577 544.48 0.5386 
WDKP5 428,490 HBDE 428,273 427,987 427,522 147.86 0.0506 

FDDE 427,967 427,439 426,877 235.87 0.1221 
SDDE 427,517 426,870 425,603 342.58 0.2271 

FirEGA 425,929 424,176 422,401 907.12 0.5977 
WDKP6 466,050 HBDE 466,049 465,947 465,631 90.61 0.0002 

FDDE 465,299 464,681 463,872 290.77 0.1611 
SDDE 464,592 463,833 462,183 424.77 0.3128 

FirEGA 463,586 460,903 456,908 1,794.04 0.5287 
WDKP7 547,683 HBDE 547,371 546,656 546,146 219.08 0.0570 

FDDE 546,325 545,514 544,786 348.27 0.2480 
SDDE 545,526 544,438 543,129 494.23 0.3938 

FirEGA 544,371 541,257 536,857 1,695.86 0.6047 
WDKP8 576,959 HBDE 576,954 576,776 576,431 108.33 0.0009 

FDDE 575,274 574,493 573,278 399.52 0.2920 
SDDE 574,437 572,847 571,028 612.60 0.4371 

FirEGA 573,448 569,905 560,168 3,128.92 0.6085 
WDKP9 650,660 HBDE 650,641 650,431 649,990 131.59 0.0029 

FDDE 648,939 647,640 646,460 473.64 0.2645 
SDDE 646,999 645,383 643,915 642.99 0.5627 

FirEGA 647,419 643,831 627,462 3,090.37 0.4981 
WDKP10 678,967 HBDE 678,939 678,770 678,394 107.86 0.0041 

FDDE 676,053 675,050 673,441 498.58 0.4292 
SDDE 673,622 671,844 669,813 801.08 0.7872 

FirEGA 675,558 670,869 648,697 5,542.17 0.5021 
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Table 7 Computational results obtained by using the 4 algorithms to solve SDKP1-SDKP10 

Instance Opt Algorithm Best Mean Worst StaDe Gap 

SDKP1 94459 HBDE 94390 94216.8 94022 81.81 0.0730 
FDDE 93072 92241.5 91323 433.92 1.4684 
SDDE 94440 94277.6 94048 95.19 0.0201 

FirEGA 93276 93160.8 93024 68.83 1.2524 
SDKP2 160805 HBDE 160801 160486 160196 138.90 0.0025 

FDDE 160614 159808 157079 617.85 0.1188 
SDDE 160710 160404 159967 146.60 0.0591 

FirEGA 159156 158927 158724 96.53 1.0255 
SDKP3 238248 HBDE 238079 237750 237508 112.33 0.0709 

FDDE 237945 237386 235366 329.60 0.1272 
SDDE 237928 237478 236930 178.74 0.1343 

FirEGA 235432 235185 235003 88.93 1.1820 
SDKP4 340027 HBDE 339628 339360 338821 144.29 0.1173 

FDDE 339388 338889 338306 246.73 0.1879 
SDDE 339313 338638 337829 256.66 0.2100 

FirEGA 336440 335826 335497 156.41 1.0549 
SDKP5 463033 HBDE 462497 462080 461642 81.30 0.1158 

FDDE 461760 461061 460019 380.29 0.2749 
SDDE 461589 460565 459542 419.67 0.3119 

FirEGA 451969 447361 443852 1966.46 2.3895 
SDKP6 466097 HBDE 465827 464803 464085 323.50 0.0579 

FDDE 460414 458636 454923 944.33 1.2193 
SDDE 464038 463172 462054 408.05 0.4418 

FirEGA 459443 458709 458418 187.82 1.4276 
SDKP7 620446 HBDE 619706 619133 618629 213.89 0.1193 

FDDE 612681 609081 603513 1506.69 1.2515 
SDDE 617974 616413 615031 505.56 0.3984 

FirEGA 607430 602683 599765 1613.95 2.0978 
SDKP8 670697 HBDE 669606 668875 668180 304.19 0.1627 

FDDE 668261 667233 666329 381.79 0.3632 
SDDE 666969 665913 664713 448.87 0.5558 

FirEGA 661344 659864 659182 501.92 1.3945 
SDKP9 739121 HBDE 737819 737252 736558 261.60 0.1762 

FDDE 736108 735113 733900 434.44 0.4076 
SDDE 735052 733350 732102 566.31 0.5505 

FirEGA 729075 727378 726746 425.11 1.3592 
SDKP10 765317 HBDE 764912 764482 763904 208.81 0.0529 

FDDE 761797 760654 759729 495.40 0.4599 
SDDE 760411 758356 756331 733.93 0.6410 

FirEGA 755309 752782 749396 1398.75 1.3077 
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Table 8 Computational results obtained by using the 4 algorithms to solve IDKP1-IDKP10 

Opt Algorithm Best Mean Worst StaDe Gap 

70,106 HBDE 70,106 70,105.9 70,101 0.85 0 
FDDE 70,037 69,460.1 68,261 463.60 0.0984 
SDDE 70,106 70,065.7 70,001 33.25 0 

FirEGA 70,106 70,074.4 70,022 23.41 0 
118,268 HBDE 118,268 118,264 118,169 13.53 0 

FDDE 118,235 118,119 117,462 125.46 0.0279 
SDDE 118,242 117,952 117,467 191.83 0.0220 

FirEGA 118,040 117,535 117,021 179.35 0.1928 
234,804 HBDE 234,804 234,629 234,441 75.44 0 

FDDE 234,707 234,215 230,310 742.08 0.0413 
SDDE 234,571 234,281 233,835 142.59 0.0992 

FirEGA 234,607 233,845 233,480 214.82 0.0839 
282,591 HBDE 282,591 282,575 282,436 31.59 0 

FDDE 282,420 282,102 281,623 175.13 0.0605 
SDDE 282,188 281,665 281,114 211.35 0.1426 

FirEGA 282,269 280,301 278,407 1,050.47 0.1139 
335,584 HBDE 335,584 335,559 335,195 48.70 0 

FDDE 335,255 334,773 334,051 232.12 0.0980 
SDDE 334,736 334,100 333,386 324.65 0.2527 

FirEGA 334,774 332,425 328,796 1,748.59 0.2414 
452,463 HBDE 452,211 451,823 451,349 184.48 0.0557 

FDDE 451,786 451,252 450,373 280.71 0.1496 
SDDE 451,049 450,268 449,018 372.58 0.3125 

FirEGA 451,799 449,511 446,355 1,346.80 0.1468 
489,149 HBDE 489,149 489,101 488,827 64.24 0 

FDDE 488,190 487,468 485,828 362.06 0.1961 
SDDE 487,349 485,832 484,667 506.27 0.3680 

FirEGA 488,460 484,779 475,214 3,287.98 0.1409 
533,841 HBDE 533,841 533,789 533,486 66.62 0 

FDDE 532,037 530,944 529,696 503.31 0.3379 
SDDE 530,995 529,336 527,160 634.78 0.5331 

FirEGA 532,091 528,948 513,442 3,495.65 0.3278 
528,144 HBDE 528,144 528,090 527,776 68.52 0 

FDDE 525,640 524,188 522,564 572.26 0.4741 
SDDE 523,598 518,658 510,621 3,228.41 0.8608 

FirEGA 526,103 521,311 501,038 6,242.29 0.3864 
581,244 HBDE 581,244 581,174 580,777 87.45 0 

FDDE 574,836 568,976 562,190 3,133.03 1.1025 
SDDE 576,602 574,012 570,323 1,104.25 0.7986 

FirEGA 579,446 548,868 573,401 7,456.98 0.3093 

 
Let Xb(t) be the global optimal individual in the tth iteration 
when algorithm A (A is HBDE, FDDE, SDDE or FirEGA) 
is used to solve instance I. Yb(t) is the solution 
corresponding to Xb(t), fi(Yb(t)) is the objective function 
value of Yb(t) in the ith (1 ≤ i ≤ 100) time execution. The  
off-line performance of algorithm A for instance I is defined 

by 
30

1

1( ) ( ( )),
100 i bi

F t f Y t
=

= ∑  where the values of t are 

(k*MaxIt) / 30, k = 0, 1, 2, …, 30. MaxIt = 3n is the iteration 
number of algorithm A; n is the amount of item groups in 
instance I. 
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Figure 5 Off-line performance curves of four algorithms for 
UDKP2 (see online version for colours) 

 

0 5 10 15 20 25 30
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 105

t

F(
t)

 

 

HBDE
FDDE
SDDE
FirEGA

 

Figure 6 Off-line performance curves of four algorithms forg 
UDKP5 (see online version for colours) 
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Figure 7 Off-line performance curves of four algorithms for 
UDKP8 (see online version for colours) 
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Figure 8 Off-line performance curves of four algorithms for 
WDKP2 (see online version for colours) 
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Figure 9 Off-line performance curves of four algorithms for 
WDKP5 (see online version for colours) 
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Figure 10 Off-line performance curves of four algorithms for 
WDKP8 (see online version for colours) 
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Figure 11 Off-line performance curves of four algorithms for 
SDKP2 (see online version for colours) 
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Figure 12 Off-line performance curves of four algorithms for 
SDKP5 (see online version for colours) 
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Figure 13 Off-line performance curves of four algorithms for 
SDKP8 (see online version for colours) 
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Figure 14 Off-line performance curves of four algorithms for 
IDKP2 (see online version for colours) 
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Figure 15 Off-line performance curves of four algorithms for 
IDKP5 (see online version for colours) 
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Figure 16 Off-line performance curves of four algorithms for 
IDKP8 (see online version for colours) 
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To illustrate succinctly, we only present the off-line 
performance curves of HBDE, FDDE, SDDE and FirEGA 
(see from Figure 5–Figure 16) for D{0–1}KP instances with 
size 3n = 600, 1,500 and 2,400. 

It can be seen form Figure 5–Figure 16 that the 
convergence capability of HBDE is the best among those of 
the four algorithms. For all the D{0–1}KP instances, HBDE 
can always obtain the best Mean value among the four 
algorithms after no more than MaxIt/2 iterations; FDDE and 
SDDE can always gain a better mean value than FirEGA, 
although their convergence speeds are not as fast as that of 
FirEGA at the beginning running of the algorithm; though 
the convergence speed of FirEGA is very fast at the 
beginning, it often prematurely gets stuck in local 
optimums, which makes it cannot perform satisfactorily. 

The following conclusions can be drawn based on the 
above comparison and analysis. 

Conclusions: For D{0–1}KP problems, HBDE, FDDE 
and SDDE perform obviously better than FirEGA and 
SecEGA, which indicates that compared with the GA, the 
DE algorithm is more suitable for solving the D {0–1} KP 
problem. Therefore, it is not only feasible but also very 
efficient to design a discrete DE algorithm based on the 
conversion method of converting a real vector into an 
integer vector. 

6 Conclusions 

In this paper, DE is used to solve D{0–1}KP. Based on the 
first and the second mathematical model of D{0–1}KP and 
the key ideal that makes a real vector transferred to a 
discrete vector, three discrete DE algorithms, HBDE, FDDE 
and SDDE, are proposed. By comparing the computational 
results obtained by using algorithms FirEGA and SecEGA 
(He et al., 2016) to solve the four kinds benchmark 
instances of D{0–1}KP, it is illustrated that HBDE, FDDE 
and SDDE are all suitable for solving D{0–1}KP and 
HBDE is the best algorithm to solve D{0–1}KP. It is 
indicated that DE is not only an efficient algorithm for 
solving D{0–1}KP, but also its discrete methods are highly 
efficient. In addition, the algorithms proposed in this paper 
are universal and can be applied to the discretisation of 
other EAs, such as the fireworks algorithm (FWA) (Tan and 
Zhu, 2010), fruit fly optimisation (FFO) (Pan, 2012), grey 
wolf optimiser (GWO) (Mirjalili and Mirjalili, 2014) and 
artificial algae algorithm (AAA) (Uymaz e tal., 2015). 

The history of the D{0–1}KP issue is short and the 
research achievement is relatively rare. The design of 
algorithm and construction of benchmarks sets need to be 
researched further particularly. In addition, for D{0–1}KP 
instances with profit and weight coefficients distributed in a 
wide range and with large scale, the exiting exact 
algorithms are all pseudo-polynomial time. The slow 
solving speed is an obvious flaw. Therefore, it is necessary 
to design a fast and efficient algorithm for solving  
D{0–1}KP. EA will be worth further studying and 
discussed. More efficient algorithm for D{0–1}KP is 

needed to be studied further based on other EAs (such as 
FWA, FFO, GWO and AAA) in the future. 
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Appendix 1 

GROA algorithm 

Let Flag[0 … n – 1] be a Boolean array used to note 
whether there is an item of the item group i that has been 
put into the knapsack. When Flag[i] = 1, there is exactly 
one item in the knapsack; when Flag[i] = 0, there is no item 
of item group j put into the knapsack. Suppose both  
X = [x0, x1, …, x3n–1] and Y = [y0, y1, …, y3n–1] are binary 
vectors in [0, 1]3n. The pseudo-code of algorithm GROA is 
described as follows: 

 

Algorithm 4 GROA 

Input: X = [x0, x1, …, x3n–1] ∈ [0, 1]3n and array H[0 …  
3n – 1];  

Output: Binary vector Y = [y0, y1, …, y3n–1] and its objective 
function value f(Y). 

1  for i ← 0 to 3n – 1 do yi ← 0; 
2  for i ← 0 to n – 1 do Flag[i] ← 0; 
3  fweight ← 0; fvalue ← 0; i ← 0; 
4  while (fweight < C∧i ≤ 3n – 1) do 
5   if (xH[i] = 1) ∧ (fweight + wH[i] ≤ C) ∧ (Flag[⎣H[i] / 

3⎦] = 0) then 
6    fweight ← fweight + wH[i]; 
7    yH[i] ← 1; Flag[⎣H[i] → 1; 
8   end if 
9   i ← i + 1; 
10 end while 
11 for i ← 0 to 3n – 1 do 
12 if (fweight + wH[i] ≤ C) ∧ (Flag[⎣H[i] / 3⎦] = 0) then 
13    fweight ← fweight + wH[i]; 
14    yH[i] ← 1; Flag[⎣H[i] ← 1; 
15   end if 
16 end for 
17 for i ← 0 to 3n – 1 do fvalue ← fvalue + yk*pk; 
18 return (Y, fvalue). 

Source: He et al. (2016) 

The output fvalue of algorithm GROA is the value of f(Y). 
That is the feasible solution Y corresponds to the profit sum 
of the items that have been put into the knapsack. 
Obviously, the time complexity of algorithm GROA is 
O(n). 

Appendix 2 

NROA (He et al., 2016) 

The pseudo-code of NROA algorithm is described as 
follows: 

Algorithm 5 NROA 

Input: Individual X = [x0, x1, …, xn–1] ∈ {0, 1, 2, 3}n and 
array H[0 … 3n – 1];  

Output: X = [x0, x1, …, xn–1] after repaired and optimised and 
its objective function value f(X). 

1  fweight ← 0; fvalue ← 0; k ← 0; 
2  

( )
1

3 10
/ 3

i

n
i i xi

temp x w
−

+ −=
← ⎡ ⎤⎢ ⎥∑  

3  if temp > C then 
4   while (fweight < C) ∧ (k ≤ 3n – 1) do 
5    if (x⎡H[k]/3⎤ = H[k](mod3) + 1)) ∧ (fweight + wH[k] 

≤ C) then fweight ← fweight + wH[k]; 
6    else if x⎡H[k]/3⎤ = H[k](mod3) + 1) then x⎡H[k]/3⎤ ← 

0; 
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7    k ← k + 1; 
8   end while 
9  else fweight ← temp; 
10 for i ← 0 to 3n – 1 do 
11 if (x⎡H[k]/3⎤ = 0) ∧ (fweight + wH[k] ≤ C) then 
12    x⎡H[k]/3⎤ ← H[k](mod3) + 1; fweight ← fweight + 

wH[k]; 
13  end if 
14 end for 
15 

( )
1

3 10
/ 3 ;

i

n
i i xi

fvalue x p
−

+ −=
← ⎡ ⎤⎢ ⎥∑  

16 return (X, fvalue). 

The output fvalue of NROA algorithm is the value of f(X). 
That is the feasible solution X corresponds to the profit sum 
of the items that have been put into the knapsack. 
Obviously, the time complexity of algorithm NROA is 
O(n). 


