
Int. J. Bio-Inspired Computation, Vol. 10, No. 4, 2017 219

Copyright © 2017 Inderscience Enterprises Ltd.

Discrete differential evolutions for the discounted
{0–1} knapsack problem

Hong Zhu
Faculty of Information Technology,
Macau University of Science and Technology,
Macau, China
Email: xszhuhong@163.com

Yichao He
College of Information and Engineering,
Hebei GEO University,
050031, Shijiazhuang, China
Email: heyichao@hgu.edu.cn

Xizhao Wang*
College of Computer Science and Software Engineering,
Shenzhen University,
518060, Shenzhen, China
Email: xizhaowang@ieee.org
*Corresponding author

Eric C.C. Tsang
Faculty of Information Technology,
Macao University of Science and Technology,
Macau, China
Email: cctsang@must.edu.mo

Abstract: This paper first proposes a discrete differential evolution algorithm for discounted
{0–1} knapsack problems (D{0–1}KP) based on feasible solutions represented by the 0–1 vector.
Subsequently, based on two encoding mechanisms of transforming a real vector into an integer
vector, two new algorithms for solving D{0–1}KP are given through using integer vectors
defined on {0, 1, 2, 3}n to represent feasible solutions of the problem. Finally, the paper conducts
a comparative study on the performance between our proposed three discrete differential
evolution algorithms and those developed by common genetic algorithms for solving several
types of large scale D{0–1}KP problems. The paper confirms the feasibility and effectiveness of
designing discrete differential evolution algorithms for D{0–1}KP by encoding conversion
approaches.

Keywords: discounted {0–1} knapsack problem; differential evolution; encoding conversion
method; repairing and optimisation.

Reference to this paper should be made as follows: Zhu, H., He, Y., Wang, X. and Tang, E.C.C.
(2017) ‘Discrete differential evolutions for the discounted {0–1} knapsack problem’, Int. J.
Bio-Inspired Computation, Vol. 10, No. 4, pp.219–238.

Biographical notes: Hong Zhu received her BSc and MSc degrees from Hebei University,
Baoding, China, in 2012 and 2015, respectively. She is currently a PhD candidate at the Faculty
of Information Technology, Macao University of Science and Technology. Her main research
interests include decision tree and neural networks.

Yichao He is a Professor at Hebei GEO University, China. He is a CCF member and CAAI
member. His research interest includes evolutionary algorithm and its applications,
approximation algorithm, combinatorial optimization, group testing theory. He has published
over 60 publications including Information Sciences, Journal of Combinatorial Optimization,
Journal of Computational Biology, Chinese Journal of Computers and so on.

220 H. Zhu et al.

Xizhao Wang received his PhD in Computer Science from the Harbin Institute of Technology on
September 1998. His major research interests include uncertainty modelling and machine
learning for big data. He has edited 10+ special issues and published three monographs, two
textbooks, and 200+ peer-reviewed research papers. By the Google Scholar, the total number of
citations is over 5,000 and the maximum number of citation for a single paper is over 200. He is
on the list of Elsevier 2015/2016 most cited Chinese authors. As a principle investigator (PI) or
co-PI, he has completed 30+ research projects.

Eric C.C. Tsang received his BSc degree in Computer Studies from the City University of Hong
Kong in 1990 and PhD degree in Computing at the Hong Kong Polytechnic University in 1996.
He is an Associate Professor of the Faculty of Information Technology, Macao University of
Science and Technology. His main research interests include fuzzy systems, rough sets, fuzzy
rough sets and multiple classifier systems.

1 Introduction

Differential evolution (DE), proposed by Storn and Price
(1997a, 1997b, 2005), is a powerful evolutionary algorithm
(EA) for optimisation problems (Ekbal and Saha, 2016;
Abe, 2016; Souravlias and parsopoulos, 2016). It not only
has the general characteristics of EAs (Bäck et al., 2000;
Yao et al., 1999), such as robust and reliable performance,
global search capability and little or no information
requirement of optimisation problem, etc., but also has less
control parameters and is easy to be implemented. At
present, people have done a lot of researches on DE. For
example, Qin et al. (2009) did the adaptive adjustment of
the control parameters F and CR based on the optimal
individual obtained in the previous work of DE and then
proposed an improved DE named SaDE. Kaelo and Ali
(2006) used the tournament competitive mechanism to
generate a new population and improved the local search
ability by the reflection and shrink operations. Noman and
Iba (2008) introduced the adaptive local search operation to
improve the convergence speed of DE. Das et al. (2009)
introduced the neighbourhood mutation to enhance the local
search ability of DE. Wang et al. (2011) improved the
global and local search capabilities based on trial vector
generation strategies and control parameters. Zhang et al.
(2013) improved the local search capability of DE based on
abstract convex lower approximation. Fan and Lampinen
(2003) introduced trigonometry mutation, which can
improve the probability of DE jumping out of local extreme
points. He et al. (2010) analysed the asymptotic
convergence of DE and divided the mutation strategy into
three equivalence classes to achieve cooperative operations,
which can improve the global optimisation ability of DE.
Based on Pareto competition, Abbas et al. (2001) and Abbas
(2002) proposed self-adaptive Pareto DE algorithm to solve
multi-objective optimisation problems. Simulation results
showed that the algorithm could get better Pareto solutions.
In order to deal with integer programming problems by
means of DE, Nearchou and Omirou (2006) proposed a
method to solve the sequence and schedule problem by DE
which uses the sub-range encoding method. He and Han
(2007) used 0–1 string to represent individuals; they
replaced the arithmetic operations in the standard DE with
logic operations and proposed a binary DE. Based on the

encoding conversion method which can transfer the real
vector into a binary vector, He et al. (2007) proposed a
hybrid-encoding binary differential evolution algorithm
(HBDE) to solve the 0–1 knapsack problem (0–1KP) and
satisfiability problem (SAT). Greenwood (2009) converted
a real vector into a binary vector based on the method of
transferring real number segmentation into binary number
and proposed a binary DE and used it to solve problems in
graph theory. Due to the good searching ability, DE has
been widely used to solve many combinatorial optimisation
problems.

Knapsack problem (KP) (Kellerer et al. 2004; Du and
Ko, 2000) is an important combinatorial optimisation
problem (Sarkar et al. 2016; De et al., 2015; Tian et al.,
2015) and it is also a classic NP-complete problem in
computer science. It has an important application
background in investment decision-making and resource
allocation (Azada et al., 2014; Haddar et al., 2016). There
are many different classical extended forms of KP, such as
bounded knapsack problem (BKP), unbounded knapsack
problem (UKP), multidimensional knapsack problem
(MKP), multiple-choice knapsack problem (MCKP),
quadratic knapsack problem (QKP) (Kellerer et al., 2004)
and 0–1 KP (Kulkarni, 2016), etc. Because KP is an
NP-complete problem, exact algorithms with polynomial
time complexity does not exist unless P = NP. Therefore,
the non-exact algorithms with polynomial time complexity
are paid more attention to. Currently, numerous studies have
shown that EAs is a class of stochastic approximation
algorithms that are suitable for solving combinatorial
optimisations and it has been successfully used to solve KP.
For example, He et al. (2001) used HBDE to solve 0–1 KP;
Lai et al. (2014) solved MKP by using genetic algorithms
(GA) (Zhang et al., 2015; Martínez-Soto and Castillo,
2015); Kong et al. (2008) proposed the ant colony
optimisation algorithm to solve MKP; Azad et al. (2014)
solved the 0–1 QKP by a binary artificial fish swarm
algorithm; Chih et al. (2014) advanced a particle swarm
optimisation with time-varying acceleration coefficients to
solve MKP. Therefore, EAs is an obviously effective
method for solving KP.

Recently, many expanded forms of KP have been
proposed one after another, such as stochastic knapsack
problem (SKP), dynamic knapsack problem (DKP), 0–1KP

 Discrete differential evolutions for the discounted {0–1} knapsack problem 221

with a single continuous variable (KPC) and discounted
{0–1} knapsack problem (D{0–1}KP) (Lin et al., 2008;
Dizdar et al., 2011; Goldberg and Smith, 1987; Haddad and
Erick, 1997; He et al., 2016, 2017; Marchand and Wolsey,
1999; Lin et al., 2011; Zhao and Li, 2014; Guldan, 2007;
Rong et al., 2012), which have more practical backgrounds
and begin to attract people’s attention. For example, Lin
et al. (2008) studied deeply the exchange policy and
dynamic pricing problem of SKP; Dizdar et al. (2011)
researched the applications of SKP to the tax maximisation;
Goldberg and Smith (1987) proposed the time-varying
knapsack problems (TVKP) in which the capacity of
knapsack oscillates between two fixed values and they
solved TVKP by the use of GA (Sun and Shen, 2016) with
diploid form; Hadad and Lewis et al. (1997) solved TVKP
by using the GA which has a polyploid form individually
and compared the advantages and disadvantages of several
polyploid forms of an individual; He et al. (2016, 2017)
extended TVKP to randomised time-varying knapsack
problems (RTVKP) and solved RTVKP by using dynamic
programming, approximation algorithm and GA separately;
Marchand and Wolsey (1999) proposed KPC and analysed
its mathematical properties; Lin et al. (2011) gave a
deterministic algorithm for solving KPC; Zhao and Li
(2014) proposed an 2-approximation algorithm for solving
KPC; Guldan (2007) proposed D{0–1}KP and gave a
dynamic programming algorithm to solve it; Rong et al.
(2012) studied the core problem of D{0–1}KP and
combined it with the dynamic programming to solve
D{0–1}KP; He et al. (2016) proposed a new mathematical
model for D{0–1}KP and two effective algorithms, named
FirEGA and SecEGA, by using GA and they indicated the
performance of FirEGA is better than ones of SecEGA.

The D{0–1}KP (Guldan, 2007) is a variant of the
classical 0–1KP by extending the number of choices for
each item group based on the concept of discount. The
discount discussed here originates from economies of scale,
which refers to the cost advantages that a business obtains
due to expansion. Although the D{0–1}KP has not received
much attention in the literature, the discount introduced in
the D{0–1}KP is close to the reality of the real world
problem. Economies of scale are a practical concept that
may explain real world phenomena such as patterns of
international trade and the investment scales of the business
(Rong et al., 2012). It means that the D{0–1}KP may find
applications in investment, project selection and budget
control. The number of choices for the D{0–1}KP in each
item group is four: either one of the three items is selected
or no item is selected. On the one hand, if an item group is
selected, it needs to be determined which item in the group
is selected. On the other hand, the condition for not
selecting an item group is hardly known since the weight
and profit range of the three items may be large. It implies
that D{0–1}KP is harder than 0–1 KP. In addition, because
the exact algorithms (Guldan, 2007; Rong et al., 2012)
solving D{0–1}KP have all pseudo-polynomial time
complexity, for a large number of D{0–1}KP instances with
profit and weight coefficients distributing in larger intervals,

the high time complexity leads to poor usability of this
algorithms. As a matter of fact, the NP-hard problems in
practical application are almost always required to be solved
fast. The exact solution is not necessary and only one
approximate solution is needed which satisfies the
approximate ratio requirement (Michael, 2002). Noting
many successful applications of EAs to solving 0–1KP, we
believe that using EAs to solve D{0–1}KP is an
inexpensive and efficient method which is worth being
explored. For solving D{0–1}KP by HBDE is given based
on our previous work (He et al., 2007) firstly; then, two
discrete DE algorithms, named FDDE and SDDE, are
proposed by using the encoding conversion method.

The rest of the paper is organised as follows: in
Section 2 the definition and mathematical models of
D{0–1}KP is introduced. In Section 3, based on the first
mathematical model of D{0–1}KP, the binary DE algorithm
HBDE is given by combining with GROA (He et al., 2016)
(see Appendix 1). In Section 4, based on the second
mathematical model of D{0–1}KP, the FDDE and SDDE
are introduced separately by using the encoding conversion
method and the NROA algorithm (He et al., 2016) (see
Appendix 2). In Section 5, four types of large-scale
D{0–1}KP instances discussed in (He et al., 2016) are
calculated with HBDE, FDDE and SDDE. Then the result is
compared with those of FirEGA and SecEGA (He et al.,
2016). Based on the comparison and analysis of the results,
we indicate that HBDE, FDDE and SDDE are more suitable
for solving all kinds of D{0–1}KP instances than FirEGA
and SecEGA. Moreover, it is not only feasible, but also
efficient to discretise the DE based on the coding
transformation. At last, the whole content of the paper is
summarised and further research ideas are prospected.

2 Definition and mathematical models of
D{0–1}KP

Guldan (2007) proposed D{0–1}KP in 2007 and established
its first mathematical model based on the linear
programming theory; He et al. (2016) put forward the
second and the third mathematical model of D{0–1}KP
based on the integer programming theory. Since in this
paper, we will discuss how to use DE to solve D{0–1}KP
based on the first and the second mathematical model of
D{0–1}KP and the definition of D{0–1}KP will be
proposed first and then its two mathematical models will be
introduced.

Definition: D{0–1}KP (He et al., 2016):

Given a set of n item groups and each group i (i = 0, 1, …,
n – 1) consists of three items 3i, 3i + 1 and 3i + 2 and the
first two items 3i and 3i + 1 with weights w3i and w3i+1 and
profits p3i and p3i+1 are paired to derive a third item 3i + 2
with discounted weight w3i+2 < w3i + w3i+1 and profit
p3i+2 = p3i + p3i+1. In each group, at most one of the three
items can be selected to be placed in the knapsack with
capacity C so that the total weight of the selected items
cannot exceed C and the total profit is maximised.

222 H. Zhu et al.

Suppose the scale of D{0–1}KP instances is the number of
the items, 3n. The D{0–1}KP instant consists of profit
coefficient set P = {pj| 0 ≤ j ≤ 3n – 1}, weight coefficient set
W = {wj| 0 ≤ j ≤ 3n – 1} and the knapsack capacity C.
Without loss of generality, it may be assumed that all profit
coefficients (p3i, p3i+1 and p3i+2), weight coefficients (w3i,
w3i+1 and w3i+2) and knapsack capacity C are positive
integers and all the weight coefficients are not larger than

the capacity C,
1

3i 20
.

n

i
w C

−
+

=
>∑

2.1 First mathematical model

Let X = [x0, x1, …, x3n–1] ∈ {0, 1}3n be a binary vector. The
first mathematical model of D{0–1} (Guldan, 2007; Rong
et al., 2012) KP is:

1 3i 3i 3i 1 3i 1

0 3i 2 3i 2
Maximize ()

n

i

x p x p
f X

x p
− + +

= + +

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠
∑ (1)

3i 3i 1 3i 2Subject to 1, 0, 1, , 1x x x i n+ ++ + ≤ = −… (2)

()1
3i 3i 3i 1 3i 1 3i 2 3i 20

n

i
x w x w x w C

−
+ + + +

=
+ + ≤∑ (3)

3i 3i 1 3i 2, , {0, 1}, 0, 1, , 1.x x x i n+ + ∈ = −… (4)

Where, the binary decision variables xj(0 ≤ j ≤ 3n – 1) are
used to indicate whether the item j is included in the
knapsack or not. The item j is loaded into the knapsack if
and only if xj = 1. Obviously, any 0–1 vector X = [x0, x1, …,
x3n–1] ∈ {0, 1}3n merely represents a potential solution to
D{0–1}KP. It is a feasible solution only when it satisfies the
constraints (2) and (3) at the same time. Otherwise, it is an
infeasible solution to D{0–1}KP.

2.2 Second mathematical model

Let X = [x0, x1, …, xn–1] ∈ {0, 1, 2, 3}n be an integer vector.
The second mathematical model of D{0–1}KP (He et al.,
2016) is:

()
1

3 10
Maximize () / 3

i

n
i i xi

f X x p
−

+ −=
= ⎡ ⎤⎢ ⎥∑ (5)

()
1

3 10
Subject to / 3

i

n
i i xi

x w C
−

+ −=
≤⎡ ⎤⎢ ⎥∑ (6)

{0, 1, 2, 3}, 0, 1, , 1.ix i n∈ = −… (7)

Where, ⎡x⎤ is a top function. The integer variables
xi(0 ≤ i ≤ n – 1) indicate whether there is an item of the item
group i to be loaded into the knapsack or not. No items of
item group i is loaded into the knapsack when xi = 0. The
item 3i is loaded into the knapsack when xi = 1. The item
3i + 1 is loaded into the knapsack when xi = 2. The item
3i + 2 is loaded into the knapsack when xi = 3. Obviously,
arbitrary integer vector X = [x0, x1, …, xn–1] ∈ {0, 1, 2, 3}n
only represents a potential solution of D{0–1}KP and it is a
feasible solution to the problem if and only if it satisfies the
inequality (6).

3 Binary DEs for solving D{0–1}KP

In the first mathematical model of D{0–1}KP, the feasible
solution is a binary vector, but the individual coding of the
standard DE is a real vector. So it is impossible to solve
D{0–1}KP by using the standard DE directly. Therefore, a
binary version DE named HBDE for solving D{0–1}KP is
proposed based on our previous work (He et al., 2007) and
we will use the algorithm GROA introduced in (He et al.,
2016) to handle infeasible solutions of D{0–1}KP in
HBDE.

To solve the D{0–1}KP, we make four improvements
for HBDE as follows:

1 Firstly, we use a 3n-dimensional real vector to
represent an individual in HBDE. To get a potential
solution of D{0–1}KP, we use the encoding conversion
function to transform the 3n-dimensional real vector
into a 3n-dimensional binary vector.

2 Secondly, we give a simple implement method of
encoding conversion function which equals to one in
(He et al., 2007) and is easier to be implemented. The
computational complexity can be greatly reduced when
a real vector was converted into a binary vector.

3 By Gauss-Seidel method (Michael, 2002), the
temporary population is no longer used in HBDE. We
immediately compare the offspring individual with the
parent individual after the offspring individual is
generated through the mutation and crossover of
standard DE. If the offspring individual is better than
the parent one, then it replaces the parent individual
immediately, otherwise remain the parent individual
without change. This not only can make more new
outstanding individuals participate in the evolution
process as soon as possible but also decreases the space
complexity of HBDE.

4 To make the potential solution (i.e., 3n-dimensional
binary vector) be a high-quality feasible solution, we
use the GROA (He et al., 2016) algorithm to repair and
optimise all individuals in HBDE. At the same time, the
objective function value is calculated as the fitness of
the corresponding individual.

The description of the algorithm principle and pseudo-code
based on the DE/rand/1/bin model is shown as follows:

Let Xi = [xi0, xi1, …, xi,3n–1] ∈ S1 represents the ith
individual of the current population in HBDE, where

3
1

1
[,],

n

j
S low high

=
= ∏ low and high are all real numbers,

low < 0 and low = –high; 1 ≤ i ≤ N, N is the population size;
n is the number of item groups in the D{0–1}KP instance.

The encoding conversion function of HBDE is defined
as W = g1(V). Its expression is described as follows:

j
j

1, if 0;
0,

v
w

otherwise
≥⎧

= ⎨
⎩

 (8)

 Discrete differential evolutions for the discounted {0–1} knapsack problem 223

where V = [v0, v1, …, v3n–1] ∈ S1, W = [w0, w1, …,
w3n–1] ∈ {0, 1}3n, vj ∈ V and wj ∈ W, j = 0, 1, …, 3n – 1.

Let Y = [y0, y1, …, y3n–1] ∈ {0, 1}3n represent the binary
vector, which is obtained by using the encoding conversion
function Y = g1(X), where X is an individual in HBDE. It is
clear that Y is a potential solution of D{0–1}KP. We can use
GROA to repair and optimise Y to make it be a feasible
solution to D{0–1}KP and calculate f(Y) as the fitness of
individual X.

For example, suppose the scale of the D{0–1}KP

instance I1 is 3n = 12;
12

1 1
[5.0, 5.0]

j
S

=
= −∏ and X = [1.15,

–4.73, 3.44, –2.32, –0.71, –1.08, 2.29, 4.11, –3.69, 3.15,
–2.66, –4.01] ∈ S1 is an individual in HBDE. The potential
solution Y = [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0] ∈ {0, 1}12
corresponding to X can be obtained by using Y = g1(X). The
schematic diagram of Y = g1(X) is shown as follows:

For the ith (i = 1, 2, …, N) individual Xi = [xi0, xi1, …,
xi,3n–1] ∈ S1 in the current population of HBDE, let Z = [z0,
z1, …, z3n–1] ∈ S1 represent a temporary 3n-dimensional real
vector, which is used to derive the offspring individual of Xi
in the following operation. Thereupon, the mutation and
crossover operations of HBDE are achieved separately by
using (9) and (10).

()j p1, j p2, j p3, j*z x F x x= + − (9)

j
j

ij

, if ();
, .

z r CR or j R i
z

x otherwise
< =⎧

= ⎨
⎩

 (10)

where j = 0, 1, …, 3n – 1; Xp1, Xp2 and Xp3 are three
different individuals in the current population that have
difference with Xi; scaling factor F ∈ (0, 1], r ~ (0, 1) is a
random number; R(i) represents a random positive integer in
interval [1, n]; CR is called cross factor and CR ∈ (0, 1).

In the selection operation of HBDE, we first use the
encoding conversion function U = g1(Z) to transform the
real vector Z = [z0, z1, …, z3n–1] into a binary vector U = [u0,
u1, …, u3n–1] ∈ {0, 1}3n. Since U may not be a feasible
solution to D{0–1}KP, we use GROA (He et al., 2016) to
repair and optimise U, making it be a high-quality feasible
solution. Then, we calculate the objective function value
f(U) as the fitness of Z and then use equation (11) to select
between Xi and Z.

i
i

i

, () ();
, .

Z if f U f Y
X

X otherwise
>⎧

= ⎨
⎩

 (11)

where, Yi = g1(Xi) is a binary vector corresponding to Xi.
By the above description, the algorithm principle of

HBDE is shown as follows:

1 Initialisation: generate the population P(0) = {Xi(0) ∈
S1| 1 ≤ i ≤ N)} randomly. Use Yi(0) = g1(Xi(0)) to
calculate the potential solution Yi(0) ∈ {0, 1}3n. Repair
and optimise Yi(0) (1 ≤ i ≤ N) by using GROA. Then
based on f(Yi(0)) (1 ≤ i ≤ N), determine the global
optimal individual Xb(0) = [xb0(0), xb1(0), …,
xb,3n–1(0)] ∈ S1 in P(0) and its corresponding feasible

solution Yb(0) = [yb0(0), yb1(0), …, yb,3n–1(0)] ∈
{0, 1}3n. Let t be the iteration control variable and set
t = 0.

2 The (t + 1)th iteration evolution process of HBDE: for
each individual Xi(t) (1 ≤ i ≤ N) in P(t), we first
generate a temporary 3n-dimensional real vector
Z ∈ S1 based on (9) and (10). Then, use U = g1(Z) to get
the potential solution U ∈ {0, 1}3n corresponding to Z.
We repair and optimise U by using GROA and
calculate f(U). If f(U) > f(Yi(t)), we replace (Xi(t), Yi(t))
with (Z, U); otherwise keep (Xi(t), Yi(t)) unchanged.
The new population P(t + 1) is generated when all the
individuals of P(t) have finished the above operations.
In P(t + 1) ∪ {(Xb(t), Yb(t))}, determine the global
optimal individual Xb(t + 1) = [xb0(t + 1), xb1(t + 1), …,
xb,3n–1(t + 1)] ∈ S1 and its corresponding feasible
solution Yb(t + 1) = [yb0(t + 1), yb1(t + 1), …, yb,3n–1

(t + 1)] ∈ {0, 1}3n. Let t = t + 1.
3 Termination determination: If t ≤ MaxIt (MaxIt is the

number of iterations of HBDE), go back to (2) to carry
out the next iterative evolution; otherwise output
(Yb(t – 1), f(Yb(t – 1))) and end the algorithm.

Let ‘H[0 … 3n – 1] ← Sort({pj / wj| pj ∈ P, wj ∈ W, 0 ≤ j ≤
3n – 1})’ represent the procedure that sequentially store the
original index of each item into the array H[0 … 3n – 1]
after 3n items are sorted according to the pj / wj (0 ≤ j ≤
3n – 1) descending order. Let rand(0, 1) be a random
number in (0, 1). The pseudo-code of HBDE is described as
follows:

Algorithm 1 HBDE

Input: The D{0–1}KP instances, parameters N, MaxIt, low,
high, F and CR;

Output: Approximate (or optimal) solution Yb(t – 1) and its
objective function value f(Yb(t – 1)).

1 H[0 … 3n – 1] ← Sort({pj / wj| pj ∈ P, wj ∈ W, 0 ≤ j ≤
3n – 1});

2 Generate initial population P(0)={Xi(0) ∈ S1 | 1 ≤ i ≤ N}
randomly;

3 for i = 1 to N do
4 Yi(0) ← g1(Xi(0));
5 (Yi(0), f(Yi(0))) ← GROA(Yi(0), H[0 … 3n – 1])
6 end for
7 Determine (Xb(0), Yb(0)) by f(Yi(0)) (1 ≤ i ≤ N) in P(0);

t ← 0;
8 while (t < MaxIt) do
9 for i = 1 to N do
10 for j = 0 to 3n – 1do
11 if (r ≤ CR∨j = R(i)) then zj ← yp1,j(t) +

F*(yp2,j(t) – yp3,j(t)) else zj ← yij(t);
12 if (zj < low or zj > high) then zj ← rand(0, 1) ∗

(high – low) + low;
13 if zj ≥ 0 then uj ← 1 else uj ← 0;
14 end for

224 H. Zhu et al.

15 (U, f(U)) ← GROA(U, H[0 … 3n – 1]);
16 if f(U) > f(Yi(t)) then (Xi(t), Yi(t)) ← (Z, U);
17 end for
18 Determine (Xb(t + 1), Yb(t + 1)) by f(Yi(t)) (1 ≤ i ≤ N) in

P(t + 1) ∪ {(Xb(t), Yb(t))};
19 t ← t + 1;
20 end while
21 return(Yb(t – 1), f(Yb(t – 1))).

In HBDE, step 1 is implemented by using the QuickSort
algorithm in (Cormen et al., 2001). Its time complexity is
O(nlogn). The time complexity of both step 2 and
step 3–step 6 is O(N*n), since that of GROA is O(n).
Because the time complexity of step 8 – step 20 is
O(MaxIt*N*n), that of HBDE is O(nlogn) + O(MaxIt*N*n).
Since N and MaxIt are linear functions with respect to n, we
have O(MaxIt*N*n) + O(nlogn) = O(n3). HBDE is a
stochastic approximation algorithm with polynomial time
complexity.

4 Discrete DEs for solving D{0–1}KP

Since the feasible solution is an integer vector in {0, 1, 2,
3}n in the second mathematical model, the standard DE
cannot be used directly to solve D{0–1}KP. Therefore, we
draw lessons from the idea of HBDE to propose the discrete
DE. By using two different encoding conversion functions,
which transform the real vector into an integer vector, we
propose two discrete DEs, the first discrete differential
evolution algorithm (FDDE) and the second discrete
differential evolution algorithm (SDDE) for solving
D{0–1}KP, separately.

Now, we first introduce the principle of FDDE and its
pseudo code description based on the model DE/rand/1/bin.

4.1 FDDE algorithm

Let Xi = [xi0, xi1, …, xi(2n – 1)] ∈ S2 represent the ith individual
of the current population in FDDE, where

2
2 1

[,];
n

j
S low high

=
= ∏ low < 0 < high; both low and high

are real numbers; i = 1, 2, …, N; N is the population size; n
represents the number of item groups of D{0–1}KP.

We note that the two bit binary numbers corresponding
to integers 0, 1, 2, 3 are 00, 01, 10 and 11, separately. The
‘0’ and ‘1’ can correspond to the positive and negative.
Therefore, we can define the encoding conversion function
W = g2(V) of FDDE as follows:

0, if 2 0 and 2 1 0;
1, if 2 0 and 2 1 0;
2, if 2 0 and 2 1 0;
3, if 2 0 and 2 1 0.

j

v j v j
v j v j

w
v j v j
v j v j

< + <⎧
⎪ < + ≥⎪= ⎨ < + <⎪
⎪ < + ≥⎩

 (12)

Where，V = [v0, v1, …, v2n–1] ∈ S2 is a 2n-dimensional real
vector and W = [w0, w1, …, wn–1] ∈ {0, 1, 2, 3}n is an
n-dimensional integer vector.

Let Y = [y0, y1, …, yn–1] ∈ {0, 1, 2, 3}n represent the
integer vector which is obtained by using the encoding
conversion function Y = g2(X), X ∈ S2 and X is an individual
in FDDE. Then Y is a potential solution to D{0–1}KP
corresponding to X. By using NROA (He et al., 2016) to
repair and optimise Y, we can make it a feasible solution to
D{0–1}KP. f(Y) is calculated as the fitness of X.

For example, suppose the scale of D{0–1}KP instance I2

is 3n = 15 and
10

2 1
[5.0, 5.0];

j
S

=
= −∏ X = [2.13, –0.51,

–3.93, –2.77, –3.82, 3.29, 4.12, 1.15, –1.22, –2.35] ∈ S2 is
an individual in FDDE. Then, the feasible solution
corresponding to X is Y = [2, 0, 1, 3, 0] ∈ {0, 1, 2, 3}5. The
schematic diagram of Y = g2(X) is shown as Table 2.

For the ith(i = 1, 2, …, N) individual Xi = [x0, x1, …,
x2n–1] ∈ S2 in current population of FDDE, let Z = [z0, z1, …,
z2n–1] ∈ S2 represent a temporary 2n-dimensional real
vector, which is used to derive the offspring individual of Xi
in the following operation. The mutation and crossover
operations of FDDE are achieved based on formulas (9) and
(10) the same as HBDE, so there is no repeat any more. But
it should be emphasised that all individual’s coding are
2n-dimensional real vectors in S2 and the range of index j in
formulas (9) and (10) is from 0 to 2n – 1.

In order to achieve the selection operation in FDDE,
first we use the encoding conversion function U = g2(Z) to
obtain an integer vector U = [u0, u1, …, un–1] ∈ {0, 1, 2, 3}n.
Because U may not be a feasible solution to D{0–1}KP, we
use NROA to repair and optimise U. The objective function
value f(U) is considered as the fitness of Z. Then the current
individuals Xi or Z are selected based on formula (11).

Table 1 The encoding conversion function Y = g1(X)

X x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x11

 1.15 –4.73 3.44 –2.32 –0.71 –1.08 2.29 4.11 –3.69 3.15 –4.01

g1
 1 0 1 0 0 0 1 1 0 1 0

Y y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y11

 Discrete differential evolutions for the discounted {0–1} knapsack problem 225

Table 2 The encoding conversion function Y = g2(X)

X x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

 2.13, –0.51 –3.93, –2.77 –3.82, 3.29 4.12, 1.15 –1.22, –2.35

g2
 2 0 1 3 0

Y y0 y1 y2 y3 y4

By the above exposition, the algorithm principle of FDDE is
described as follows:

1 Initialisation: generate the population P(0) = {Xi(0) ∈
S2| 1 ≤ i ≤ N)} randomly. Use the encoding conversion
function Yi(0) = g2(Xi(0)) to get the potential solution
Yi(0) ∈ {0, 1, 2, 3}n corresponding to the individual
Xi(0). Repair and optimise Yi(0) by using NROA. Then
based on f(Yi(0)) (1 ≤ i ≤ N), determine the current
global optimal individual Xb(0) = [xb0(0), xb1(0), …,
xb,2n–1(0)] ∈ S2 and its corresponding feasible solution
Yb(0) = [yb0(0), yb1(0), …, yb,n–1(0)] ∈ {0, 1, 2, 3}n. Let t
be the loop control variable and set t = 0.

2 The (t + 1)th iteration evolution in FDDE: for each
individual Xi(t) (1 ≤ i ≤ N) in population P(t), firstly we
use (9) and (10) to generate a temporary individual
Z ∈ S2 and get the potential solution U ∈ {0, 1, 2, 3}n
corresponding to Z by using the encoding conversion
function U = g2(Z). Repair and optimise U by using
NROA and then calculate the value of f(U). If
f(U) > f(Yi(t)), replace (Xi(t), Yi(t)) with (Z, U);
otherwise, keep (Xi(t), Yi(t)) unchanged. The new
population P(t + 1) is generated after all the individuals
of P(t) have finished the above operations. In
P(t + 1) ∪ {(Xb(t), Yb(t))}, determine the global optimal
individual Xb(t + 1) = [xb0(t + 1), xb1(t + 1), …, xb,2n–1

(t + 1)] ∈ S2 and its corresponding feasible solution
Yb(t + 1) = [yb0(t + 1), yb1(t + 1), …, yb,n–1(t + 1)] ∈{0, 1,
2, 3}n based on individual fitness. Set t = t + 1.

3 Termination determination: if t ≤ MaxIt, go back to (2)
to execute the next iteration evolution process;
otherwise, output (Yb(t – 1), f(Yb(t – 1))) and end the
algorithm.

The pseudo-code of the FDDE is described as follows:

Algorithm 2 FDDE

Input: The D{0–1}KP instances, parameters N, MaxIt, low,
high, F and CR;

Output: Approximate (or optimal) solution Yb(t – 1) and its
objective function value f(Yb(t – 1)).

1 H[0 … 3n – 1] ← Sort({pj / wj| pj ∈ P, wj ∈ W, 0 ≤ j ≤
3n – 1});

2 Generate initial population P(0) = {Xi(0) ∈ S2 | 1 ≤ i ≤ N}
randomly;

3 for i = 1 to N do
4 Yi(0) ← g2(Xi(0));
5 (Yi(0), f(Yi(0))) ← NROA(Yi(0), H[0 … 3n – 1])

6 end for
7 Determine (Xb(0), Yb(0)) by f(Yi(0)) (1 ≤ i ≤ N) in P(0);

t ← 0;
8 while (t < MaxIt) do
9 for i = 1 to N do
10 for j = 0 to n – 1 do
11 if (r ≤ CR∨j = R(i)) then zj ← yp1,j(t) +

F(yp2,j(t) – yp3,j(t)) else zj ← yij(t);
12 if (zj < low or zj > high) then zj ← rand(0, 1)

* (high-low) + low;
13 end for
14 U ← g2(Z);
15 (U, f(U)) ← NROA(U, H[0 … 3n – 1]);
16 if f(U) > f(Yi(t)) then (Xi(t), Yi(t)) ← (Z, U);
17 end for
18 Determine (Xb(t + 1), Yb(t + 1)) by f(Yi(t)) (1 ≤ i ≤

N) in P(t + 1) ∪ {(Xb(t), Yb(t))};
19 t ← t + 1;
20 end while
21 return (Yb(t – 1), f(Yb(t – 1))).

Because the time complexity of NROA is O(n), similar to
the analysis of HBDE, it is easy to derive the time
complexity of FDDE, which is O(MaxIt*N*n) + O(nlogn) =
O(n3). FDDE is also a stochastic approximation algorithm
with polynomial time complexity.

4.2 SDDE algorithm

Let Xi = [xi0, xi1, …, xi,n–1] ∈ S3 represent the ith (1 ≤ i ≤ N)
individual in the current population of SDDE, where

3 1
[,],

n

j
S low high

=
= ∏ low < 0 < high; both low and high

are real numbers; N is the population size; n is the number
of item groups in D{0–1}KP.

Inspired by He et al. (2007) and Greenwood (2009), the
encoding conversion function W = g3(V) of SDDE is defined
based on dividing interval [low, high] to four segments,
which correspond to 0, 1, 2 and 3, respectively. Its
implementation method is shown as follows:

0, if ;
1, if 0;
2, if 0 ;
3, if .

j

j
j

low v left
left v

w
vj right

right vj high

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤ ≤⎩

 (13)

Where, V = [v0, v1, …, vn–1] ∈ S3 is an n-dimensional real
vector; W = [w0, w1, …, wn–1] ∈ {0, 1, 2, 3}n is an
n-dimensional integer vector. Both left and right are real
numbers and low < left < 0 < right < high.

Obviously, [low, high] = [low, left) ∪ [left, 0) ∪
[0, right) ∪ [right, high]. The intervals [low, left), [left, 0),
[0, right) and [right, high] are numbered as 0, 1, 2 and 3
separately. Based on W = g3(V), the component wj of vector
W is defined as the number of the interval which the
component vj of vector V belongs to. That is, if vj ∈ [low,

226 H. Zhu et al.

left), then wj = 0; if vj ∈ [left, 0), then wj = 1; if vj ∈ [0,
right), then wj = 2; if vj ∈ [right, high], then wj = 3.

For example, suppose the scale of D{0–1}KP instance I3

is 3n = 15.
5

3 1
[5.0, 5.0],

j
S

=
= −∏ left = –2.5, right = 2.5;

X = [3.14, –1.73, 1.29, 2.71, –3.13] ∈ S3 is an individual of
SDDE, then [–5.0, 5.0] = [–5.0, –2.5) ∪ [–2.5, 0) ∪ [0, 2.5)
∪ [2.5, 5.0] is obtained. Therefore, the potential solution
corresponding to X is Y = [3, 1, 2, 3, 0] ∈ {0, 1, 2, 3}5. The
schematic diagram of Y = g3(X) is shown as Table 3.

Table 3 The encoding conversion function Y = g3(X)

X x0 x1 x2 x3 x4

 3.14 –1.73 1.29 2.71 –3.13

g3
 3 1 2 3 0

Y y0 y1 y2 y3 y4

For the ith individual Xi = [x0, x1, …, xn–1] ∈ S3 of SDDE, let
Z = [z0, z1, …, zn–1] ∈ S3 represent a temporary
n-dimensional real vector. The mutation and crossover
operations of SDDE based on DE/rand/1/bin mode are
achieved by using formulas (9) and (10). It should be noted
that the individual encodes involved in the operation are all
n-dimensional real vectors in S3 and the range of index j in
formulas (9) and (10) is from 0 to n – 1.

In order to achieve the selection operation in SDDE, we
first transform the real vector Z = [z0, z1, …, zn–1] ∈ S3 into
an integer vector U = [u0, u1, …, un–1] ∈ {0, 1, 2, 3}n by
using the encoding conversion function U = g3(Z). Since U
may not be a feasible solution to D{0–1}KP, we repair and
optimise it by using NROA and calculate its objective
function value f(U). Then the current individuals Xi or Z are
selected based on formula (11).

The algorithm principle of SDDE is similar to those of
HBDE and FDDE. So it is not repeated any more. Then the
pseudo-code of SDDE based on the DE/rand/1/bin mode is
described as follows:

Algorithm 3 SDDE

Input: The D{0–1}KP instances, parameters N, MaxIt, low,
high, left, right, F and CR;

Output: Approximate (or optimal)solution Yb(t – 1) and its
objective function value f(Yb(t – 1)).

1 H[0 … 3n – 1] ← Sort({pj / wj | pj ∈ P, wj ∈ W, 0 ≤ j ≤ 3n
– 1});

2 Generate initial population P(0) = {Xi(0) ∈ S3 | 1 ≤ i ≤ N}
randomly;

3 for i = 1 to N do
4 Yi(0) ← g3(Xi(0));
5 (Yi(0), f(Yi(0))) ← NROA(Yi(0), H[0 … 3n – 1])
6 end for
7 Determine (Xb(0), Yb(0)) by f(Yi(0)) (1 ≤ i ≤ N) in P(0);

t ← 0;

8 while (t ≤ MaxIt) do
9 for i = 1 to N do
10 for j = 0 to n – 1 do
11 if (r ≤ CR∨j = R(i)) then zj ← yp1,j(t) +

F(yp2,j(t) – yp3,j(t)) else zj ← yij(t);
12 if (zj < low or zj > high) then zj ← rand(0,

1)*(high-low) + low;
13 end for
14 U ← g3(Z);
15 (U, f(U)) ← NROA(U, H[0 … 3n – 1]);
16 if f(U) > f(Yi(t)) then (Xi(t), Yi(t)) ← (Z, U);
17 end for
18 Determine (Xb(t + 1), Yb(t + 1)) by f(Yi(t)) (1 ≤ i ≤

N) in P(t + 1) ∪ {(Xb(t), Yb(t))};
19 t ← t + 1;
20 end while
21 return(Yb(t – 1), f(Yb(t – 1))).

Obviously, the time complexity of SDDE is O(MaxIt*N*n)
+ O(nlogn) = O(n3). SDDE is also a stochastic
approximation algorithm with polynomial time complexity.

5 Computational experiments

The comparison of HBDE, FDDE and SDDE is shown in
Table 4. It can be seen that the three algorithms are
designed in exactly the same way, which are based on the
encoding conversion of real numbers to integer vectors.
HBDE converts a real vector to a 0–1 vector and FDDE and
SDDE transform a real number vector into an integer
vector; HBDE is only applicable to combinatorial
optimisation problems with feasible solutions for 0–1
vectors and FDDE and SDDE are suitable for the
combinatorial optimisation problem with feasible solutions
for integer vectors; for D{0–1}KP problems, HBDE
performs much better than FDDE and SDDE; the
computing speeds of both FDDE and SDDE are faster than
that of HBDE.

In this section, for testing the performances of HBDE,
FDDE and SDDE, we use them to solve the four kinds of
large scale benchmarked instances (He et al., 2016) of
D{0–1}KP and compare the results with those of FirEGA
and SecEGA. The microcomputer used is Acer Aspire
E1-570G notebook; hardware configuration is Intel(R)
Core(TM)i5-3337u CPU-1.8GHz, 4GB DDR3 RAM
(3.82GB available); the operating system is Microsoft
Windows 8 and programming language is C++ and the
compiler environment is Visual C++6.0; Execl 2007 and
MATLAB 7.10.0.499 (R2010a) are used to draw the fitting
curve of approximate ratio (Du et al., 2012) and the
convergence curves of four algorithms, respectively.

Due to the current absence of benchmarks set of
D{0–1}KP, in this paper, four types of large scale
D{0–1}KP instances proposed in (He et al., 2016) are used
to be calculated. They are:

 Discrete differential evolutions for the discounted {0–1} knapsack problem 227

1 Uncorrelated instances of D{0–1}KP named from
UDKP1 to UDKP10.

2 Weakly correlated instances of D{0–1}KP named from
WDKP 1 to WDKP 10.

3 Strongly correlated instances of D{0–1}KP named
from SDKP 1 to SDKP 10.

4 Inverse correlated instances of D{0–1}KP named from
IDKP 1 to IDKP 10. Specific examples of various types
of data see http://pan.baidu.com/s/1o6MJVEq.

Table 4 A comparison among HBDE, FDDE and SDDE

Comparison
objects HBDE FDDE SDDE

Discretisation
method

Convert a real
vector to a

binary vector

Convert a real
vector to an

integer vector

Convert a real
vector to an

integer vector
Applicable
problems

The
combinatorial
optimisation
problem with

feasible
solution as

binary vector

The
combinatorial
optimisation
problem with

feasible
solution as

integer vector

The
combinatorial
optimisation
problem with

feasible
solution as

integer vector
Running
speed

The slowest Medium The fastest

Performance
of solving
D{0-1}KP

The best Medium The worst

The population size of HBDE, FDDE and SDDE is N = 50
and the iteration number is MaxIt = 3n (3n is the items
amount in D{0–1}KP), low = –5.0, high = 5.0. Furthermore,
set F = 0.2 and CR = 0.3 in HBDE, FDDE and SDDE
respectively and left = –2.5 and right = 2.5 are set in SDDE.
The parameter of FirEGA and SecEGA is set the same as
He et al. (2016).

For each D{0–1}KP instance, all algorithms are
executed independently 100 times. The computing results of
each algorithm are given in Tables 5–8, where, columns
under the caption the ‘opt’ report the optimal value found
by the dynamic programming method (referred to as
DPDKP); the ‘best’, ‘worst’ and ‘mean’ report the best
value, the worst value and the average value found by
HBDE, FDDE,SDD and FirEGA among 100 times

execution independently; the ‘StaDe’ reports the standard
deviation of the 100 times execution; the ‘Gap (%)’ reports
the average gap between the best values (best) found by
every algorithm and the optimal value (opt). This gap is
calculated by Gap(%) = 100 ∗ (opt – best) / opt. Because the
performance of FirEGA is better than that of SecEGA,
the results of SecEGA are shown in Tables 5–8 and
Figures 1–3.

The fitting curves of approximation ratio which is
defined by opt/mean for all algorithms are given in
Figures 1–4.

From Table 5, we can see that the worst values of
HBDE, FDDE and SDDE are all better than the best value
of FirEGA. Thus, for the UDKP class instances, HBDE,
FDDE and SDDE all perform much better than FirEGA and
SecEGA.

It can be seen from Table 6 that all the indicators of
HBDE are optimal and all its worst values are better than
the best value of FirEGA; the best, mean and worst values
of FDDE are better than those of FirEGA, respectively; the
Mean and Worst values of SDDE are better than those of
FirEGA correspondingly, besides WDKP1. Therefore, for
the WDKP class instances, HBDE, FDDE and SDDE all
perform much better than FirEGA and SecEGA.

The results in Table 7 show that the best, mean and
worst values of both HBDE and SDDE are better than those
of FirEGA, respectively. Besides, the three indicators’
values of SDKP1, SDKP6 and FDDE are better than those
of FirEGA, which indicates that for the SDKP class
instances, HBDE, FDDE and SDDE all perform much
better than FirEGA and SecEGA.

The results in Table 8 represent that every indicator of
HBDE is the optimal, while FDDE, SDDE and FirEGA are
similar to each other with respect to each indicator. Thus,
for the IDKP class instances, HBDE performs the best
among the four algorithms; FDDE, SDDE and FirEGA
perform similarly and better than SecEGA.

EA is a kind of stochastic approximation algorithm. It
usually uses the off-line performance measure (Kashan
et al., 2013) on mean as the indicator to compare the
convergent performances of different algorithms. In order to
compare the convergent performances of HBDE, FDDE,
SDDE and FirEGA, we will draw the off-line performance
curves on mean of the four algorithms.

Figure 1 The fitting curves of opt/mean for UDKP instances (see online version for colours)

228 H. Zhu et al.

Figure 2 The fitting curves of opt/mean for WDKP instances (see online version for colours)

Figure 3 The fitting curves of opt/mean for SDKP instances (see online version for colours)

Figure 4 The fitting curves of opt/mean for IDKP instances (see online version for colours)

 Discrete differential evolutions for the discounted {0–1} knapsack problem 229

Table 5 Computational results of using the four algorithms to solve UDKP1-UDKP10

Instance Opt Algorithm Best Mean Worst StaDe Gap

UDKP1 85740 HBDE 85,740 85,657.9 85,306 85.04 0
FDDE 85,730 85,521.8 85,211 161.15 0.0117
SDDE 85,740 85,581.6 85,302 129.10 0

FirEGA 80,650 79,313.1 78,198 731.67 5.9366
UDKP2 163744 HBDE 163,744 163,714 163,421 54.99 0

FDDE 163,554 162,903 161,827 328.29 0.1160
SDDE 163,519 162,783 161,523 408.44 0.1374

FirEGA 153,870 151,130 149,649 905.33 6.0301
UDKP3 269393 HBDE 269,125 268,638 267,789 306.07 0.0995

FDDE 268,780 267,583 266,063 582.68 0.2275
SDDE 268,679 267,450 265,670 561.96 0.2650

FirEGA 246,593 240,827 237,780 1,687.92 8.4635
UDKP4 347599 HBDE 347,015 346,381 345,308 344.85 0.1680

FDDE 346,304 344,909 342,813 693.37 0.3726
SDDE 345,906 344,418 341,709 832.35 0.4871

FirEGA 320,572 316,599 313,758 1,446.88 7.7753
UDKP5 442644 HBDE 441,708 440,752 439,752 505.568 0.2115

FDDE 439,668 437,592 434,087 939.93 0.6723
SDDE 439,842 436,975 434,136 1,009.29 0.6330

FirEGA 402,255 398,764 394,716 1,746.24 9.1245
UDKP6 536578 HBDE 535,537 534,315 533,054 539.71 0.1940

FDDE 532,398 530,101 527,239 1,035.71 0.7790
SDDE 532,040 528,607 525,306 1,246.84 0.8457

FirEGA 484,241 478,109 472,852 2,137.30 9.7538
UDKP7 635860 HBDE 634,566 633,229 631,511 627.26 0.2035

FDDE 631,094 628,040 624,212 1,285.20 0.7495
SDDE 629,555 626,562 622,660 1,357.25 0.9916

FirEGA 565,932 560,668 556,327 1,939.30 10.9974
UDKP8 650206 HBDE 648,066 645,904 643,524 804.18 0.3291

FDDE 642,279 639,885 636,820 1,184.57 1.2192
SDDE 641,667 638,261 634,451 1,449.75 1.3133

FirEGA 590,419 584,494 579,453 2,149.00 9.1951
UDKP9 718532 HBDE 717,936 716,798 715,241 488.95 0.0829

FDDE 707,690 703,814 697,238 1,729.29 1.5089
SDDE 705,468 700,988 697,097 1,649.67 1.8182

FirEGA 651,779 646,642 642,409 2,000.70 9.2902
UDKP10 779460 HBDE 717,936 716,798 715,241 488.95 7.8932

FDDE 707,690 703,814 697,238 1,729.29 9.2077
SDDE 705,468 700,988 697,097 1,649.67 9.4927

FirEGA 651,779 646,642 642,409 2,000.70 16.3807

230 H. Zhu et al.

Table 6 Computational results of using the 4 algorithms to solve WDKP1-WDKP10

Instance Opt Algorithm Best Mean Worst StaDe Gap
WDKP1 83,098 HBDE 83,086 83,054.6 82,990 28.94 0.0144

FDDE 82,801 82,178.6 81,428 394.46 0.3574
SDDE 83,098 83,053.1 82,949 38.04 0

FirEGA 82,750 82,611.1 82,443 97.70 0.4188
WDKP2 138,215 HBDE 138,215 138,210 138,155 9.88 0

FDDE 138,139 137,811 136,403 323.16 0.0550
SDDE 138,187 137,951 137,640 108.45 0.0203

FirEGA 137,723 137,360 137,137 114.61 0.3560
WDKP3 256,616 HBDE 256,548 256,373 256,114 89.50 0.0265

FDDE 256,356 255,916 253,567 416.38 0.1013
SDDE 256,414 255,979 255,427 194.46 0.0787

FirEGA 254,240 253,474 253,141 185.76 0.9259
WDKP4 315,657 HBDE 315,469 315,250 314,843 113.76 0.0596

FDDE 315,248 314,856 314,336 158.81 0.1296
SDDE 315,073 314,616 314,168 211.75 0.1850

FirEGA 313,957 312,447 311,577 544.48 0.5386
WDKP5 428,490 HBDE 428,273 427,987 427,522 147.86 0.0506

FDDE 427,967 427,439 426,877 235.87 0.1221
SDDE 427,517 426,870 425,603 342.58 0.2271

FirEGA 425,929 424,176 422,401 907.12 0.5977
WDKP6 466,050 HBDE 466,049 465,947 465,631 90.61 0.0002

FDDE 465,299 464,681 463,872 290.77 0.1611
SDDE 464,592 463,833 462,183 424.77 0.3128

FirEGA 463,586 460,903 456,908 1,794.04 0.5287
WDKP7 547,683 HBDE 547,371 546,656 546,146 219.08 0.0570

FDDE 546,325 545,514 544,786 348.27 0.2480
SDDE 545,526 544,438 543,129 494.23 0.3938

FirEGA 544,371 541,257 536,857 1,695.86 0.6047
WDKP8 576,959 HBDE 576,954 576,776 576,431 108.33 0.0009

FDDE 575,274 574,493 573,278 399.52 0.2920
SDDE 574,437 572,847 571,028 612.60 0.4371

FirEGA 573,448 569,905 560,168 3,128.92 0.6085
WDKP9 650,660 HBDE 650,641 650,431 649,990 131.59 0.0029

FDDE 648,939 647,640 646,460 473.64 0.2645
SDDE 646,999 645,383 643,915 642.99 0.5627

FirEGA 647,419 643,831 627,462 3,090.37 0.4981
WDKP10 678,967 HBDE 678,939 678,770 678,394 107.86 0.0041

FDDE 676,053 675,050 673,441 498.58 0.4292
SDDE 673,622 671,844 669,813 801.08 0.7872

FirEGA 675,558 670,869 648,697 5,542.17 0.5021

 Discrete differential evolutions for the discounted {0–1} knapsack problem 231

Table 7 Computational results obtained by using the 4 algorithms to solve SDKP1-SDKP10

Instance Opt Algorithm Best Mean Worst StaDe Gap

SDKP1 94459 HBDE 94390 94216.8 94022 81.81 0.0730
FDDE 93072 92241.5 91323 433.92 1.4684
SDDE 94440 94277.6 94048 95.19 0.0201

FirEGA 93276 93160.8 93024 68.83 1.2524
SDKP2 160805 HBDE 160801 160486 160196 138.90 0.0025

FDDE 160614 159808 157079 617.85 0.1188
SDDE 160710 160404 159967 146.60 0.0591

FirEGA 159156 158927 158724 96.53 1.0255
SDKP3 238248 HBDE 238079 237750 237508 112.33 0.0709

FDDE 237945 237386 235366 329.60 0.1272
SDDE 237928 237478 236930 178.74 0.1343

FirEGA 235432 235185 235003 88.93 1.1820
SDKP4 340027 HBDE 339628 339360 338821 144.29 0.1173

FDDE 339388 338889 338306 246.73 0.1879
SDDE 339313 338638 337829 256.66 0.2100

FirEGA 336440 335826 335497 156.41 1.0549
SDKP5 463033 HBDE 462497 462080 461642 81.30 0.1158

FDDE 461760 461061 460019 380.29 0.2749
SDDE 461589 460565 459542 419.67 0.3119

FirEGA 451969 447361 443852 1966.46 2.3895
SDKP6 466097 HBDE 465827 464803 464085 323.50 0.0579

FDDE 460414 458636 454923 944.33 1.2193
SDDE 464038 463172 462054 408.05 0.4418

FirEGA 459443 458709 458418 187.82 1.4276
SDKP7 620446 HBDE 619706 619133 618629 213.89 0.1193

FDDE 612681 609081 603513 1506.69 1.2515
SDDE 617974 616413 615031 505.56 0.3984

FirEGA 607430 602683 599765 1613.95 2.0978
SDKP8 670697 HBDE 669606 668875 668180 304.19 0.1627

FDDE 668261 667233 666329 381.79 0.3632
SDDE 666969 665913 664713 448.87 0.5558

FirEGA 661344 659864 659182 501.92 1.3945
SDKP9 739121 HBDE 737819 737252 736558 261.60 0.1762

FDDE 736108 735113 733900 434.44 0.4076
SDDE 735052 733350 732102 566.31 0.5505

FirEGA 729075 727378 726746 425.11 1.3592
SDKP10 765317 HBDE 764912 764482 763904 208.81 0.0529

FDDE 761797 760654 759729 495.40 0.4599
SDDE 760411 758356 756331 733.93 0.6410

FirEGA 755309 752782 749396 1398.75 1.3077

232 H. Zhu et al.

Table 8 Computational results obtained by using the 4 algorithms to solve IDKP1-IDKP10

Opt Algorithm Best Mean Worst StaDe Gap

70,106 HBDE 70,106 70,105.9 70,101 0.85 0
FDDE 70,037 69,460.1 68,261 463.60 0.0984
SDDE 70,106 70,065.7 70,001 33.25 0

FirEGA 70,106 70,074.4 70,022 23.41 0
118,268 HBDE 118,268 118,264 118,169 13.53 0

FDDE 118,235 118,119 117,462 125.46 0.0279
SDDE 118,242 117,952 117,467 191.83 0.0220

FirEGA 118,040 117,535 117,021 179.35 0.1928
234,804 HBDE 234,804 234,629 234,441 75.44 0

FDDE 234,707 234,215 230,310 742.08 0.0413
SDDE 234,571 234,281 233,835 142.59 0.0992

FirEGA 234,607 233,845 233,480 214.82 0.0839
282,591 HBDE 282,591 282,575 282,436 31.59 0

FDDE 282,420 282,102 281,623 175.13 0.0605
SDDE 282,188 281,665 281,114 211.35 0.1426

FirEGA 282,269 280,301 278,407 1,050.47 0.1139
335,584 HBDE 335,584 335,559 335,195 48.70 0

FDDE 335,255 334,773 334,051 232.12 0.0980
SDDE 334,736 334,100 333,386 324.65 0.2527

FirEGA 334,774 332,425 328,796 1,748.59 0.2414
452,463 HBDE 452,211 451,823 451,349 184.48 0.0557

FDDE 451,786 451,252 450,373 280.71 0.1496
SDDE 451,049 450,268 449,018 372.58 0.3125

FirEGA 451,799 449,511 446,355 1,346.80 0.1468
489,149 HBDE 489,149 489,101 488,827 64.24 0

FDDE 488,190 487,468 485,828 362.06 0.1961
SDDE 487,349 485,832 484,667 506.27 0.3680

FirEGA 488,460 484,779 475,214 3,287.98 0.1409
533,841 HBDE 533,841 533,789 533,486 66.62 0

FDDE 532,037 530,944 529,696 503.31 0.3379
SDDE 530,995 529,336 527,160 634.78 0.5331

FirEGA 532,091 528,948 513,442 3,495.65 0.3278
528,144 HBDE 528,144 528,090 527,776 68.52 0

FDDE 525,640 524,188 522,564 572.26 0.4741
SDDE 523,598 518,658 510,621 3,228.41 0.8608

FirEGA 526,103 521,311 501,038 6,242.29 0.3864
581,244 HBDE 581,244 581,174 580,777 87.45 0

FDDE 574,836 568,976 562,190 3,133.03 1.1025
SDDE 576,602 574,012 570,323 1,104.25 0.7986

FirEGA 579,446 548,868 573,401 7,456.98 0.3093

Let Xb(t) be the global optimal individual in the tth iteration
when algorithm A (A is HBDE, FDDE, SDDE or FirEGA)
is used to solve instance I. Yb(t) is the solution
corresponding to Xb(t), fi(Yb(t)) is the objective function
value of Yb(t) in the ith (1 ≤ i ≤ 100) time execution. The
off-line performance of algorithm A for instance I is defined

by
30

1

1() (()),
100 i bi

F t f Y t
=

= ∑ where the values of t are

(k*MaxIt) / 30, k = 0, 1, 2, …, 30. MaxIt = 3n is the iteration
number of algorithm A; n is the amount of item groups in
instance I.

 Discrete differential evolutions for the discounted {0–1} knapsack problem 233

Figure 5 Off-line performance curves of four algorithms for
UDKP2 (see online version for colours)

0 5 10 15 20 25 30
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 6 Off-line performance curves of four algorithms forg
UDKP5 (see online version for colours)

0 5 10 15 20 25 30
3.4

3.6

3.8

4

4.2

4.4

4.6
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 7 Off-line performance curves of four algorithms for
UDKP8 (see online version for colours)

0 5 10 15 20 25 30
5

5.5

6

6.5
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 8 Off-line performance curves of four algorithms for
WDKP2 (see online version for colours)

0 5 10 15 20 25 30
1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 9 Off-line performance curves of four algorithms for
WDKP5 (see online version for colours)

0 5 10 15 20 25 30
3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 10 Off-line performance curves of four algorithms for
WDKP8 (see online version for colours)

0 5 10 15 20 25 30
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

234 H. Zhu et al.

Figure 11 Off-line performance curves of four algorithms for
SDKP2 (see online version for colours)

0 5 10 15 20 25 30
1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 12 Off-line performance curves of four algorithms for
SDKP5 (see online version for colours)

0 5 10 15 20 25 30
4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 13 Off-line performance curves of four algorithms for
SDKP8 (see online version for colours)

0 5 10 15 20 25 30
5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 14 Off-line performance curves of four algorithms for
IDKP2 (see online version for colours)

0 5 10 15 20 25 30
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2
x 105

t

F(
t)

HDBE
FDDE
SDDE
FirEGA

Figure 15 Off-line performance curves of four algorithms for
IDKP5 (see online version for colours)

0 5 10 15 20 25 30
2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4
x 105

t

F(
t)

HBDE
FDDE
SDDE
FirEGA

Figure 16 Off-line performance curves of four algorithms for
IDKP8 (see online version for colours)

0 5 10 15 20 25 30
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4
x 105

t

F(
t)

HBDE
FDDE
CDDE
FirEGA

 Discrete differential evolutions for the discounted {0–1} knapsack problem 235

To illustrate succinctly, we only present the off-line
performance curves of HBDE, FDDE, SDDE and FirEGA
(see from Figure 5–Figure 16) for D{0–1}KP instances with
size 3n = 600, 1,500 and 2,400.

It can be seen form Figure 5–Figure 16 that the
convergence capability of HBDE is the best among those of
the four algorithms. For all the D{0–1}KP instances, HBDE
can always obtain the best Mean value among the four
algorithms after no more than MaxIt/2 iterations; FDDE and
SDDE can always gain a better mean value than FirEGA,
although their convergence speeds are not as fast as that of
FirEGA at the beginning running of the algorithm; though
the convergence speed of FirEGA is very fast at the
beginning, it often prematurely gets stuck in local
optimums, which makes it cannot perform satisfactorily.

The following conclusions can be drawn based on the
above comparison and analysis.

Conclusions: For D{0–1}KP problems, HBDE, FDDE
and SDDE perform obviously better than FirEGA and
SecEGA, which indicates that compared with the GA, the
DE algorithm is more suitable for solving the D {0–1} KP
problem. Therefore, it is not only feasible but also very
efficient to design a discrete DE algorithm based on the
conversion method of converting a real vector into an
integer vector.

6 Conclusions

In this paper, DE is used to solve D{0–1}KP. Based on the
first and the second mathematical model of D{0–1}KP and
the key ideal that makes a real vector transferred to a
discrete vector, three discrete DE algorithms, HBDE, FDDE
and SDDE, are proposed. By comparing the computational
results obtained by using algorithms FirEGA and SecEGA
(He et al., 2016) to solve the four kinds benchmark
instances of D{0–1}KP, it is illustrated that HBDE, FDDE
and SDDE are all suitable for solving D{0–1}KP and
HBDE is the best algorithm to solve D{0–1}KP. It is
indicated that DE is not only an efficient algorithm for
solving D{0–1}KP, but also its discrete methods are highly
efficient. In addition, the algorithms proposed in this paper
are universal and can be applied to the discretisation of
other EAs, such as the fireworks algorithm (FWA) (Tan and
Zhu, 2010), fruit fly optimisation (FFO) (Pan, 2012), grey
wolf optimiser (GWO) (Mirjalili and Mirjalili, 2014) and
artificial algae algorithm (AAA) (Uymaz e tal., 2015).

The history of the D{0–1}KP issue is short and the
research achievement is relatively rare. The design of
algorithm and construction of benchmarks sets need to be
researched further particularly. In addition, for D{0–1}KP
instances with profit and weight coefficients distributed in a
wide range and with large scale, the exiting exact
algorithms are all pseudo-polynomial time. The slow
solving speed is an obvious flaw. Therefore, it is necessary
to design a fast and efficient algorithm for solving
D{0–1}KP. EA will be worth further studying and
discussed. More efficient algorithm for D{0–1}KP is

needed to be studied further based on other EAs (such as
FWA, FFO, GWO and AAA) in the future.

Acknowledgements

The first author and corresponding authors contributed
equally the same to this article which was supported
by the Macao Science and Technology Development Funds
(100/2013/A3 and 081/2015/A3), Basic Research
Project of Knowledge Innovation Program in Shenzhen
(JCYJ20150324140036825), National Natural Science
Foundations of China (61503252 and 71371063), Scientific
Research Project Program of Colleges and Universities in
Hebei Province (ZD2016005), and Natural Science
Foundation of Hebei Province (F2016403055).

References
Abbas, H.A., Sarker, R. and Newton, C. (2001) ‘PDE: a

pareto-frontier differential evolution approach for multi-
objective optimization problems’, in Proceedings of the 2001
Congress on Evolutionary Computation, IEEE Piscataway,
NJ, USA, Vol. 2, pp.971–978, ISBN 0-7803-6657- 3.

Abbass, H. (2002) ‘The self-adaptive Pareto differential evolution
algorithm’, in Procedings of the IEEE congress on
Evolutionary Computation, IEEE Press, pp.831–836.

Abe, S. (2016) ‘Fusing sequential minimal optimization and
Newton’s method for support vector training’, International
Journal of Machine Learning and Cybernetics, Vol. 7, No. 3,
pp.345–364.

Azad, A.K. Rocha, A.M.A.C. and Fernandes, E.M.G.P (2014)
‘Asimplified binary artificial fish swarm algorithm for 0–1
quadratic knapsack problems’, Journal of Computer and
Applied Mathematics, Vol. 259, No. 4, pp.897–904.

Azada, A.K., Rochaa, A.M.A.C. and Fernandes, E.M.G.P. (2014)
‘A simplified binary artificial fish swarm algorithm for 0-
1quadratic knapsack problems’, Journal of Computational
and Applied Mathematics, Vol. 259, No. 4, pp.897–904.

Bäck, T., Fogel, D.B. and Michalewicz, Z. (Eds.) (2007)
Evolutionary Computation2: Advanced Algorithms and
Operators, Institute of Physics, Bristol, UK.

Chih, C-J.M., Chen, M-S. and Ou, T-Y. (2014) ‘Particle swarm
optimization with time-varying acceleration coefficients for
the multidimensional knapsack problem’, Applied
Mathematical Modelling, Vol. 38, No. 4, pp.1338–1350.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001)
Introduction to Algorithms, 2nd ed., MIT Press, Cambridge.

Das, S., Abraham, A., Chakraborty, U.K. and Konar, A. (2009)
‘Differential evolution using a neighborhood-basedmutation
operator’, IEEE Trans. on Evolutionary Computation, Vol.
13, No.3, pp.526–553.

De, B.P., Kar, R. and Mandal, D. (2015) ‘Optimal selection of
components value for analog active filter design using
simplex particle swarm optimization’, International Journal
of Machine Learning and Cybernetics, Vol. 6, No. 4,
pp.621–636.

Dizdar, D., Gershkov, A. and Moldovanu, B. (2011) ‘Revenue
maximization in the dynamic knapsack problem’, Theoretical
Economics, Vol. 6, No. 2, pp.157–184.

236 H. Zhu et al.

Du, D-Z. and Ko, K-I. (2000) Theory of Computational
Complexity, Wiley-Interscience, New York.

Du, D-Z., Ko, K-I. and Hu, X (2012) Design and Analysis of
Approximation Algorithms, Springer Science Business Media
LLC, Berlin.

Ekbal, A. and Saha, S. (2016) ‘Simultaneous feature and parameter
selection using multiobjective optimization: application to
named entity recognition’, International Journal of Machine
Learning and Cybernetics, Vol. 7, No. 4, pp.597–611.

Fan, H.Y. and Lampinen, J. (2003) ‘A trigonometric
mutationoperation to differential evolution’, J. of Global
Optimization, Vol. 27, No. 1, pp.105–129.

Goldberg, D.E. and Smith, R.E. (1987) ‘Nonstationary function
optimization using genetic algorithms with dominance and
diploidy’, International Conference on Genetic Algorithms,
L. Erlbaum Associates Inc., Hillsdale, pp.59–68.

Greenwood, G.W. (2009) ‘Using differential evolution for a
subclass of graph theory problems’, IEEE Trans. on
Evolutionary Computation, Vol. 13, No. 2, pp.1190–1192.

Guldan, B. (2007) Heuristic and Exact Algorithms for Discounted
Knapsack Problems, Master thesis, University of Erlangen-
Nürnberg, Germany.

Guoming, L., Yuan, D. and Yang, S. (2014) ‘A new hybrid
combinatorial genetic algorithm for multidimensional
knapsack problems’, J. Supercomput., Vol. 70, No. 2,
pp.930–945.

Hadad, B.S. and Eick, C.F. (1997) ‘Supporting polyploidy in
genetic algorithms using dominance vectors’, in Proceeding
of the Sixth International Conference on Evolutionary
Computation, pp.223–234.

Haddar, B., Khemakhem, M., Hanafi, S. and Wilbaut, C. (2016) ‘A
hybrid quantum particle swarm optimization for the
multidimensional knapsack problem’, Engineering
Applications of Artificial Intelligence, Vol. 55,, No. C,
pp.1–13.

He, X. and Han, L. (2007) ‘A novel binary differential evolution
algorithm based on artificial immune system’, in IEEE
Congress on Evolutionary Computation (CEC2007), Vol. 2,
pp.67–272.

He, Y., Zhang, X., Li, W. et al. (2016) ‘Algorithms for randomized
time-varying knapsack problems’, Journal of Combinatorial
Optimization, Vol. 31, No. 1, pp.95–117.

He, Y.，Wang, X., Kou, Y. (2007) ‘A binary differential evolution
algorithm with hybrid encoding’, Journal of Computer
Research and Development, Vol. 44, No. 9, pp.1476–1484, in
Chinese.

He, Y.C., Wang, X.Z., Li, W.B. and Zhao, S.L. (2017) ‘Exact
algorithms and evolutionary algorithms for randomized
time-varying knapsack problem’, Journal of Software,
Vol. 28, No. 2, pp.185–202, in Chinese [online]
http://www.jos.org.cn/1000-9825/4937.htm (accessed 31 July
2017).

He, Y.C., Wang, X.Z., Liu, K.Q. and Wang, Y.Q. (2010)
‘Convergent analysis and algorithmic improvement of
differentialevolution’, Journal of Software, Vol. 21, No. 5,
pp.875–885, in Chinese.

He, Y-C., Wang, X.-Z., Li, W-B., et al. (2016) ‘Research on
genetic algorithms for the discounted {0-1} knapsack
problem’, Chinese Journal of Computers, Vol. 39, No. 12,
pp.2614–2630.

Kaelo, P. and Ali, M.M. (2006) ‘A numerical study of some
modifieddifferential evolution algorithms’, European J. of
Operational Research, Vol. 169, No. 3, pp.1176–1184.

Kashan, A.H., Kashan, M.H. and Karimiyan, S. (2013) ‘A particle
swarm optimizer for grouping problems’, Information
Sciences, Vol. 252, No. 17, pp.81–95.

Kellerer, H., Pferschy, U. and Pisinger, D. (2004) Knapsack
Problems, Springer, Berlin.

Kong, M., Tian, P. and Kao, Y. (2008) ‘A new ant colony
optimization algorithm for the multidimensional knapsack
problem’, Computer & Operations Research, Vol. 35, No. 8,
pp.2672–2683.

Kulkarni, A.J. (2016) ‘Solving 0–1 knapsack problem using cohort
intelligence algorithm’, International Journal of Machine
Learning and Cybernetics, Vol. 7, No. 3,
pp.427–441.

Lin, G., Zhu, W. and Ali, M.M. (2011) ‘An exact algorithm for the
0–1 knapsack problem with a single continuous variable’, J.
Glob. Optim., Vol. 50, No. 4, pp.657–673.

Lin, G.Y., Lu, Y. and Yao, D.D. (2008) ‘The stochastic knapsack
revisited: switch-over policies and dynamic pricing’,
Operations Research, Vol. 56, No. 4, pp.945–957.

Marchand, H. and Wolsey, L.A. (1999) ‘The 0–1 knapsack
problem with a single continuous variable’, Math Program,
Vol. 85, No. 1, pp.15–33.

Martínez-Soto, R. and Castillo, O. (2015) ‘A hybrid optimization
method with PSO and GA to automatically design Type-1 and
Type-2 fuzzy logic controllers’, International Journal of
Machine Learning and Cybernetics, Vol. 6, No. 2,
pp.175–196.

Michael, T. (2002) Heath. Scientific Computing: A Introductory
Survey, McGraw-Hill Companies, Inc., New York.

Mirjalili, S. and Mirjalili, S.M. (2014) ‘Andrew Lewis. Grey wolf
optimizer’, Advances in Engineering Software, Vol. 69,
pp.46–61.

Nearchou, A.C. and Omirou, S.L. (2006) ‘Differential evolution
for sequencing and scheduling optimization’, Journal of
Heuristics, Vol. 12, No. 6, pp.395–411.

Noman, N. and Iba, H. (2008) ‘Accelerating differential evolution
using an adaptive local search’, IEEE Trans. on Evolutionary
Computation, Vol. 12, No. 1, pp.107–125.

Pan, W-T. (2012) ‘A new fruit fly optimization algorithm: taking
the financial distress model as an example’, Knowledge-
Based Systems, Vol. 26, No. 2, pp.69–74.

Qin, A.K., Huang, V.L. and Suganthan, P.N. (2009) ‘Differential
evolution algorithm with strategy adaptation for global
numerical optimization’, IEEE Trans. on Evolutionary
Computation, Vol. 13, No. 2, pp.398–417.

Rong, A., Figueira, J.R. and Klamroth, K. (2012) ‘Dynamic
programming based algorithms for the discounted {0–1}
knapsack problem’, Applied Mathematics and Computation,
Vol. 218, No. 12, pp.6921–6933.

Sarkar, B., Sarkar, S. and Yu, W.Y. (2016) ‘Retailer’s optimal
strategy for fixed lifetime products’, International Journal of
Machine Learning and Cybernetics, Vol. 7, No. 1,
pp.121–133.

Souravlias, D. and Parsopoulos, K.E. (2016) ‘Particle swarm
optimization with neighborhood-based budget allocation’,
International Journal of Machine Learning and Cybernetics,
Vol. 7, No. 3, pp.451–477.

 Discrete differential evolutions for the discounted {0–1} knapsack problem 237

Storn, R. and Price, K.V. (1997q) ‘Differential evolution – a
simple and efficient heuristic for global optimization over
continuous spaces’, J. Global Optimization, Vol. 11, No. 4,
pp.341–359.

Storn, R. and Price, K.V. (1997b) Differential Evolution – A
Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Spaces’, Tech. Report
TR-95-012, 1995, Institute of Company Secretaries of India,
Chennai, Tamil Nadu.

Storn, R., Price, K.V. and Lampinen, J. (2005) Differential
Evolution – A Practical Approach to Global Optimization,
Springer-Verlag, Berlin, Germany.

Sun, G. and Shen, J. (2016) ‘Towards organizing smart
collaboration and enhancing teamwork performance: a
GA-supported system oriented to mobile learning through
cloud-based online course’, International Journal of Machine
Learning and Cybernetics, Vol. 7, No. 3, pp.391–409.

Tan, Y. and Zhu, Y. (2010) Fireworks Algorithm for Optimization,
in Tan, Y., Shi, Y. and Tan, K.C. (Eds), ICSI, LNCS,
Springer, Heidelberg, Vol. 6145, p. 355–64.

Tian, N., Ji, Z. and Lai, C-H. (2015) ‘Simultaneous estimation of
nonlinear parameters in parabolic partial differential equation
using quantum-behaved particle swarm optimization with
Gaussian mutation’, International Journal of Machine
Learning and Cybernetics, Vol. 6, No. 2, pp.307–318.

Uymaz, S.A., Tezel, G. and Yel, E. (2015) ‘Artificial algae
algorithm (AAA) for nonlinear global optimization’, Applied
Soft Computing, Vol. 31, No. C, pp.153–171.

Wang, Y., Cai, Z. and Zhang, Q. (2011) ‘Differential evolution
with composite trial vector generation strategies and control
parameters’, IEEE Trans. on Evolutionary Computation,
Vol. 15, No. 1, pp.55–66.

Yao, X., Liu, Y. and Liu, G. (1999) ‘Evolutionary programming
made faster’, IEEE Trans. Evol. Comput., Vol. 3, No. 2,
pp.82–102.

Zhang, G.J., He, Y.J., Guo, H.F., Feng, Y.J., Xu, J.M. (2013)
‘Differential evolution algorithm for multimodal optimization
basedon abstract convex underestimation’, Journal of
Software, Vol. 24, No. 6, pp.1177–1195, in Chinese.

Zhang, H., Song, S. and Zhou, A. (2015) ‘A multiobjective cellular
genetic algorithm based on 3D structure and cosine crowding
measurement’, International Journal of Machine Learning
and Cybernetics, Vol. 6, No. 3, pp.487–500.

Zhao, C. and Li, X. (2014) ‘Approximation algorithms on 0-1
linear knapsack problem with a single continuous variable’,
J. Comb. Optim., Vol. 28, No. 4, pp.910–916.

Appendix 1

GROA algorithm

Let Flag[0 … n – 1] be a Boolean array used to note
whether there is an item of the item group i that has been
put into the knapsack. When Flag[i] = 1, there is exactly
one item in the knapsack; when Flag[i] = 0, there is no item
of item group j put into the knapsack. Suppose both
X = [x0, x1, …, x3n–1] and Y = [y0, y1, …, y3n–1] are binary
vectors in [0, 1]3n. The pseudo-code of algorithm GROA is
described as follows:

Algorithm 4 GROA

Input: X = [x0, x1, …, x3n–1] ∈ [0, 1]3n and array H[0 …
3n – 1];

Output: Binary vector Y = [y0, y1, …, y3n–1] and its objective
function value f(Y).

1 for i ← 0 to 3n – 1 do yi ← 0;
2 for i ← 0 to n – 1 do Flag[i] ← 0;
3 fweight ← 0; fvalue ← 0; i ← 0;
4 while (fweight < C∧i ≤ 3n – 1) do
5 if (xH[i] = 1) ∧ (fweight + wH[i] ≤ C) ∧ (Flag[⎣H[i] /

3⎦] = 0) then
6 fweight ← fweight + wH[i];
7 yH[i] ← 1; Flag[⎣H[i] → 1;
8 end if
9 i ← i + 1;
10 end while
11 for i ← 0 to 3n – 1 do
12 if (fweight + wH[i] ≤ C) ∧ (Flag[⎣H[i] / 3⎦] = 0) then
13 fweight ← fweight + wH[i];
14 yH[i] ← 1; Flag[⎣H[i] ← 1;
15 end if
16 end for
17 for i ← 0 to 3n – 1 do fvalue ← fvalue + yk*pk;
18 return (Y, fvalue).

Source: He et al. (2016)

The output fvalue of algorithm GROA is the value of f(Y).
That is the feasible solution Y corresponds to the profit sum
of the items that have been put into the knapsack.
Obviously, the time complexity of algorithm GROA is
O(n).

Appendix 2

NROA (He et al., 2016)

The pseudo-code of NROA algorithm is described as
follows:

Algorithm 5 NROA

Input: Individual X = [x0, x1, …, xn–1] ∈ {0, 1, 2, 3}n and
array H[0 … 3n – 1];

Output: X = [x0, x1, …, xn–1] after repaired and optimised and
its objective function value f(X).

1 fweight ← 0; fvalue ← 0; k ← 0;
2

()
1

3 10
/ 3

i

n
i i xi

temp x w
−

+ −=
← ⎡ ⎤⎢ ⎥∑

3 if temp > C then
4 while (fweight < C) ∧ (k ≤ 3n – 1) do
5 if (x⎡H[k]/3⎤ = H[k](mod3) + 1)) ∧ (fweight + wH[k]

≤ C) then fweight ← fweight + wH[k];
6 else if x⎡H[k]/3⎤ = H[k](mod3) + 1) then x⎡H[k]/3⎤ ←

0;

238 H. Zhu et al.

7 k ← k + 1;
8 end while
9 else fweight ← temp;
10 for i ← 0 to 3n – 1 do
11 if (x⎡H[k]/3⎤ = 0) ∧ (fweight + wH[k] ≤ C) then
12 x⎡H[k]/3⎤ ← H[k](mod3) + 1; fweight ← fweight +

wH[k];
13 end if
14 end for
15

()
1

3 10
/ 3 ;

i

n
i i xi

fvalue x p
−

+ −=
← ⎡ ⎤⎢ ⎥∑

16 return (X, fvalue).

The output fvalue of NROA algorithm is the value of f(X).
That is the feasible solution X corresponds to the profit sum
of the items that have been put into the knapsack.
Obviously, the time complexity of algorithm NROA is
O(n).

