
Future Generation Computer Systems 78 (2018) 77–86

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A novel binary artificial bee colony algorithm for the set-union
knapsack problem
Yichao He a, Haoran Xie b, Tak-LamWong b, Xizhao Wang c,*
a College of Information and Engineering, Hebei GEO University, Shijiazhuang 050031, China
b Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong Special Administrative Region
c College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

h i g h l i g h t s

• A novel bee colony method based on the full mapping function is proposed.
• Infeasible solutions are addressed by using a greedy strategy for Knapsack problems.
• The method has better results than extant approximation algorithms to solve SUKP.
• The proposed generic model can be integrated with other evolutionary algorithms.

a r t i c l e i n f o

Article history:
Received 3 September 2016
Received in revised form 19 April 2017
Accepted 19 May 2017
Available online 15 June 2017

Keywords:
Set-union knapsack problem
Artificial bee colony
Infeasible solution
Repairing and optimization

a b s t r a c t

This article investigates how to employ artificial bee colony algorithm to solve Set-Union Knapsack
Problem (SUKP). A mathematical model of SUKP, which is to be easily solved by evolutionary algorithms,
is developed. A novel binary artificial bee colony algorithm (BABC) is also proposed by adopting amapping
function. Furthermore, a greedy repairing and optimization algorithm (S-GROA) for handling infeasible
solutions by employing evolutionary technique to solve SUKP is proposed. The consolidation of S-GROA
and BABC brings about a new approach to solving SUKP. Extensive experiments are conducted upon
benchmark datasets for evaluating the performance of our proposed models. The results verify that the
proposed approach is significantly superior to the baseline evolutionary algorithms for solving SUKP such
as A-SUKP, ABCbin and binDE in terms of both time complexity and solution performance.

© 2017 Published by Elsevier B.V.

1. Introduction and background

The Set-Union Knapsack Problem (SUKP) [1,2], a natural ex-
tension of the standard 0–1 Knapsack Problem (0–1 KP), is an
NP-complete problem. In spite of the difficulty, SUKP has been
identified to be valuable in various domain-specific applications
such as financial decision making [2,3], flexible manufacturing
machine [1,4,5], database partitioning [6,7], smart city [8] and
data stream compression [9]. In particular, a popular application
of SUKP is to build public key prototype (PKC) [10]. To enhance
the security in building PKC based on SUKP, researchers attempt
to hidden the trace of public key through many iterations. There-
fore, intruders are unable to adopt Lenstra integer programming
algorithms to break the key. It is worth to pointing out that Evolu-
tionary Algorithms (EAs) are essentially a random search scheme
in which the search performance is irrelevant to properties of
the problem. Many researchers therefore believe that EA-based

* Corresponding author.
E-mail address: xzwang@szu.edu.cn (X. Wang).

PKC is a promising technique. The extant studies show that the
crucial techniques are how to design quick and efficient algorithm
to solve SUKPs. It is commonly acknowledged that studies about
approaches to solving SUKP based on EAs are quite important to
the area of information security.

Goldschmidt et al. proposed a Dynamic Programming (DP) al-
gorithm for addressing SUKP accurately based on the hypergraph
theory [1]. However, the time complexity of the algorithm is expo-
nential so that it is infeasible for real-world applications.Moreover,
Ashwin developed an approximation algorithm called A-SUKP to
solve SUKP based on the greedy strategy [2]. The approximation
rate of A-SUKP is 1/(1− e−1/d), where d(d ≥ 2) is the upper-bound
of the occurrence of all the elements. Apparently, the approxima-
tion solution of A-SUKP is relatively unsatisfactory and inefficient
when d becomes large.

Artificial Bee Colony (ABC), which is a swarm intelligence ap-
proach developed in 2005 [11–13],mimics the bee colony to search
for quality honey in the natural environment. Karaboga and Bas-
turk analyzed the characteristics and conducted comprehensive

http://dx.doi.org/10.1016/j.future.2017.05.044
0167-739X/© 2017 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.future.2017.05.044
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.044&domain=pdf
mailto:xzwang@szu.edu.cn
http://dx.doi.org/10.1016/j.future.2017.05.044

78 Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86

comparisons between ABC and a number of Evolutionary Algo-
rithms (EAs) including Genetic Algorithm (GA) [14], Differential
Evolution (DE) [15], Particle Swarm Optimization (PSO) [16], etc.
The experimental results illustrate that the ABC has better than
or similar performance to other population-based algorithms. In
addition, ABC has the advantage of employing a few tuning pa-
rameters. Recently, ABC has achieved promising results in sev-
eral optimization problems. For example, Karaboga proposed a
method for digital infinite impulse response (IIR) filters based on
ABC [17]. Karaboga and Ozturk exploited ABC for training network
networks [18]. Kang et al. proposed an algorithmcalledRosenbrock
Artificial Been Colony algorithm to improve the accuracy of ABC
in numerical optimization problems [19]. Karaboga and Ozturk
proposed a novel clustering approach based on ABC [20]. Pan et al.
developed a Discrete Artificial Bee Colony algorithm to address
the lot-streaming flow shop scheduling problem [21]. Tsai adapted
ABC for tackling the constrained optimization problems [22]. Kiran
et al. developed a variable search strategy for continuous opti-
mization problems [23]. Banitalebi et al. presented an approach
called Enhanced Compact Artificial Bee Colony, which improves
the performance of ABC [24]. Kiran proposed a new approach for
the incapacitated facility location problem based on Continuous
Artificial Bee Colony (ABCbin) algorithm [25]. Ozturk et al. proposed
a Binary Artificial Bee Colony (BABC) algorithm for solving the 0–
1 KP problem by adopting genetic operators [26]. Secui designed
an enhanced ABC for solving the economic dispatch problem [27].
Due to the large number of applications of ABC to optimization
problems, this article aims at developing an approach to solving
SUKP based on ABC. We firstly introduce a mathematical model
of SUKP. One characteristic of the model is that EAs can also be
readily integrated to solve SUKP. A novel Binary Artificial Bee
Colony (BABC) algorithm is proposed. Furthermore, we present a
novel method for solving SUKP by an efficient algorithm (named
S-GROA) to tackle the issue of the infeasible solution in SUKP.

The remaining parts of the paper is organized as follows. Sec-
tion 2 presents the definition of SUKP and themathematical model
of SUKP, which facilitate the use of EAs. Section 3 reviews the prin-
ciple of ABC and proposes BABC algorithm. In Section 4, we firstly
present an efficient and generic an efficient algorithm (named S-
GROA) to tackle the issue of the infeasible solution in SUKP. In
addition, we applied S-GROA to BABC to accomplish a new ap-
proach for solving SUKP. It follows by a large-scale comparison be-
tween BABC and other methods including A-SUKP, GA, ABCbin and
binDE [28] for solving three real-world problems in Section 5. The
experimental results show that BABC is superior to A-SUKP with
respect to efficiency and performance. Moreover, the performance
of BABC is more efficient than one of GA, ABCbin and binDE. We
draw the conclusion and discuss the future direction of research in
Section 6.

2. Definition and mathematical models

Definition 1 (Set-union Knapsack Problem, SUKP) [1,2]: Given
a set of elements U = {1, 2, . . . , n} and a set of items S =
{1, 2, . . . ,m}, such that each item i ∈ S (i = 1, 2, . . . ,m) corre-
sponds to a subset Ui ⊆ U and associates with a value pi > 0.
Each element j ∈ U (j = 1, 2, . . . , n) has a weight wj > 0. For an
arbitrary non-empty set A ⊆ S, the profit and the weight of A are
defined as P(A) =

∑
i∈Api and W (A) =

∑
j∈

⋃
i∈AUi

wj respectively.
The objective of SUKP is to find the subset S∗ ⊆ S, such that P(S∗)
is maximized, subject to W (S∗) ≤ C where C is the capacity of
knapsack.

Formally, SUKP can be notated as follows:

Maximize P(A) =
∑
i∈A

pi (1)

subject to W (A) =
∑

j∈
⋃

i∈A Ui

wj ≤ C, A ⊆ S. (2)

We name the above mathematical model as SUKP-M1. Without
loss of generality, let pi (i = 1, 2, . . . ,m), wj (j = 1, 2, . . . , n) and
C be positive integers. Let V = {U1,U2, . . . ,Um} be the cover of
U , such that Ui ⊂ U(i = 1, 2, . . . ,m) and Ui ̸= Φ . In addition,
W (S) > C and

∑
j∈Ui

wj ≤ C for all i ∈ S. EAs are not suitable to
use SUKP-M1. Therefore, we developed an integer programming
model named as SUKP-M2, which can facilitate for solving SUKP
by using EAs.

Let Y = [y1, y2, . . . , ym] ∈ {0, 1}m be an m-dimension 0–
1 vector. AY = {i|yi ∈ Y , yi = 1, 1 ≤ i ≤ m} ⊆ S, then
for an arbitrary i = 1, 2, . . . ,m, yi = 1 if and only if i ∈ AY .
Apparently, the 0–1 vector Y and the subset AY ⊂ S are one-to-one
mappings. By using the one-to-onemapping of Y and AY , SUKP can
be modeled as a new integer programming model (SUKP-M2) as
follows.

Maximize f (Y) =
∑m

i=1
yipi (3)

subject to W (AY) =
∑

j∈
⋃

i∈AY
Ui

wj ≤ C . (4)

According to SUKP-M2, all 0–1 vectors Y = [y0, y1, . . . , ym] ∈
{0, 1}m are the only possible solutions of SUKP. Solutions which
satisfy constraint (4) are feasible solutions of SUKP, while the so-
lutions which cannot satisfy constraint (4) are infeasible solutions.
As an instance of SUKP is consisted of the parameters n andm, the
profit set P = {pi|1 ≤ i ≤ m}, the weight set W = {wj|1 ≤ j ≤ n},
the subset family V = {U1,U2, . . . ,Um} and the capacity C , an
instance of SUKP will be denoted as INS(n,m, P,W , C,V) in the
remaining sections.

3. Binary ABC (BABC) algorithm

3.1. Artificial bee colony algorithm

The Artificial Bee Colony (ABC) [11,12] is a population-based
meta-heuristic algorithm for optimizing numerical problems. It
was inspired by the intelligent foraging behavior of honey bees
when they are seeking a quality food source. In the ABC, each
candidate solution to the optimization problem is associated with
a food source. It is represented by an D-dimensional real-coded
vector, where D is the dimension of the optimization problem. The
quality (i.e., fitness) of a solution corresponds to the amount of
nectar in that food source.

The population of ABC includes three categories of bees: em-
ployed bees, onlooker bees and scout bees. Each of them carry-
ing on various activities to find a better food source. Employed
bees take charge of exploring the solution space to search for
food sources and then sharing various pieces of information with
other bees. Onlooker bee exerts a probabilistically modification
on the solution (food source) for finding a new solution and tests
the fitness amount of the new solution. Scout bees work to help
ABC escape from local optimums. To sum up, the employed and
onlooker bees are responsible for exploitation, whereas the scout
bees handle exploration.

Let X = [x1, x2, . . . , xD] ∈ [lj, uj]
D represents a food source, fit

(X) is the fitness value of a food source as shown in the following
Eq. (5).

fit(X) =
{
1/(1+ f (X)), if f (X) ≥ 0
1+ |f (X)|, otherwise (5)

where f (X) is the objective function of X , lj and uj represent min-
imum and maximum of the jth variable respectively. In the ABC,

Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86 79

each iteration of the search is consisted of three phases including
an employed bee phase, an onlooker bee phase and a scout bee
phase. These three phases of ABC are detailed as follows.

Employed bee phase: Each employed bee attempts to find a new
food source in order to improve the self-solution by using Eq. (6).

vij = xij + ϕij ∗ (xij − xkj), (6)

where i, k ∈ {1, 2, . . . ,N} and i ̸= k, j = 1, 2, . . . ,D,N is the size
of the population, Vi = [vi1, vi2, . . . , viD] ∈ [lj, uj]

D is ith candidate
food source, Xi = [xi1, xi2, . . . , xiD] ∈ [lj, uj]

D is ith employed
bee, Xk = [xk1, xk2, . . . , xkD] ∈ [lj, uj]

D is kth employed bee, ϕij
is a uniformly distributed random real number in range of [−1,1].
A greedy selection is applied between Vi and Xi by retaining the
better one. In other words, Vi will be assigned to Xi (Xi = Vi) if fit
(Vi) is less than fit (Xi), otherwise Xi remains the same.

Onlooker bee phase: The onlooker bee chooses a food source
by issuing a precise search, which depends on their fitness. The
probability of selection is calculated as follows:

pi = fit(Xi)/
∑N

j=1
fit(Xj) (7)

where pi is the probability of being selected ith employed bee. The
onlooker bees then try to improve the solutions of employed bee
by using Eq. (6). Similar to the employed bee phase, the greedy
selection is also applied to the new food source and old one.

Scout bee phase: If a food source has not been updated after
several consecutive iterations (i.e., a threshold is set), the employed
bee associated with that food source will become a scout bee. The
scout bee then executes a random initialization in the solution
space by using Eq. (8) to find a new food source. If the scout bee
finds a new source, she will become an employed bee again.

xij = lj + rand(0, 1) ∗ (uj − lj), (8)

where i = 1, 2, . . . ,N , j = 1, 2, . . . ,D. limit is a pre-set threshold
and rand (0,1) is a random real number within [0,1].

3.2. Binary artificial bee colony (BABC) algorithm

In ABC, each food source is denoted by a real vector, which
cannot be directly used for solving binary optimization problems.
To exploit the artificial bee colony for solving binary optimization
problems, the food source needs to be denoted as the candidate
solution of binary optimization problems. Therefore, a surjection
mapping, which can map a real vector to a 0–1 vector, is adopted
to propose a novel binary artificial bee colony (BABC) algorithm for
solving binary optimization problems.

If a real vector X = [x1, x2, . . . , xD] for representing a food
source is constrained in [−a, a]D (where a is a positive real num-
ber), there are two cases xj ⩾ 0 and xj < 0(j = 1, 2, . . . ,D) for
each component vector xj in X . Let yj = 1 when xj ⩾ 0 and yj = 0
when xj < 0. According to the sign (negative or positive) of the
component vector in each dimension in the real vector X , a 0–1
vector Y = [y1, y2, . . . , yD] ∈ {0, 1}D can be obtained. Accordingly,
we can define a surjectionmappingΨ : [−a, a]D → {0, 1}D, where
Y = Ψ (X) and

yj =
{
1, if xj ≥ 0
0, if xj < 0 (9)

where j = 1, 2, . . . ,D. By employing the mapping Ψ , each real
vector can be mapped into a 0–1 vector in {0, 1}D.

In BABC, we re-define the fitness of food sources by introducing
the mapping Ψ . For each real vector of food sources X ∈ [−a, a]D,
we generate a 0–1 vector Y ∈ {0, 1}D by using mapping Ψ .
Considering Y as potential solutions of the corresponding binary
optimization problem, we use f (Y) as the fitness fit (X) of food

sources. For example, f (X) is replaced by f (Y) in Eq. (5) to calculate
fit (X) (or let fit (X) = f (Y)). Therefore, we propose a novel
binary artificial bee colony (BABC) algorithm for solving binary
optimization problems by using above mechanism.

Let YB = [yB1, yB2, . . . , yBD] ∈ {0, 1}D be a feasible solution
of the optimal food source in BABC, and MIT be the number of
iterations of BABC. The detail steps of the BABC algorithm are
shown in Algorithm 1.

In Algorithm 1, the time complexity of Step 1 to Step 4 is O(D ∗
N). Therefore, the overall time complexity of BABC isO(MIT ∗D∗N).

4. Apply BABC to solve SUKP

4.1. Greedy repairing and optimization

As SUKP is a constrained optimization problem, it is inevitable
to generate infeasible solutions when BABC is used to solve SUKP.
The existence of infeasible solutions not only reduces the effective
of the algorithm but also results in difficulty of employing the ob-
jective function of solutions to calculate the fitness of food sources.
Therefore, the key problem is how to handle infeasible solutions
generated by the algorithm.

It is well known that the common approaches to handling
infeasible solutions are the penalty function methods and repair
algorithms [29,30]. The penalty function method adopts an ap-
propriate penalty term to appropriately ‘‘penalty’’ the objective
function value of infeasible solution, which gives a reasonable
measurement for a infeasible solution. However, the infeasible
solutions can neither be eliminated nor improve the quality, so
that EAs do not have good performance for solving combinatorial
optimization problems. Michalewicz [31] compared the penalty
function methods and repair algorithms by using GA to solve 0–
1 knapsack problems, and then found that repair algorithms are
more suitable for handling the infeasible solutions of 0–1 KP. He
et al. [32–34] added the optimization techniques to improve the
original repair algorithm to an repairing and optimization algo-
rithmwhen they use the GA to solve 0–1 KP, the randomized time-
varying knapsack problems and the discounted {0–1} knapsack
problems. The repairing and optimization algorithm can not only
repair infeasible solutions to feasible ones but also improve the
quality of solutions. Based on the above idea and a greedy strat-
egy [2], a greedy repairing and optimization algorithm (named S-
GROA) is proposed to handle infeasible solutions.

According to the greedy strategy [2], let dj (j = 1, 2, . . . , n) be
frequency of the element j(j ∈ U) in the subsets U1,U2, . . . ,Um,

80 Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86

Ri =
∑

j∈Ui
(wj/dj) (i = 1, 2, . . . ,m). The algorithm QuickSort [35]

is employed to sort all items in S in descending order according
to the metric pi/Ri (i = 1, 2, . . . ,m), and the index of each
item are then stored in a one-dimensional array H[1 . . .m] ac-
cording to sorted order. For any m-dimensional 0–1 vector Y =
[y1, y2, . . . , ym] ∈ {0, 1}m, we simplify the notation as AY = {i|yi ∈
Y and yi = 1, 1 ≤ i ≤ m}. The detail steps of S-GROA are shown in
Algorithm 2.

In S-GROA, step 1 determines whether the potential solution Y
is a feasible solution or not. If it is a feasible solution, the algorithm
will move to the optimizing stage (step 7 to 9). Otherwise, a
repairing stage (step 3 to 6) will be firstly executed to obtain a
feasible solution, and then do the optimization stage. In step 10,
f (Y) =

∑m
i=1yipi is the output of objective function of feasible

solution Y . The time complexity of S-GROA is O(nm), which is an
efficient method for handling the infeasible solutions of SUKP.

4.2. Application of BABC to SUKP

To exploit S-GROA for addressing infeasible solutions and im-
proving their quality when the BABC is employed to address SUKP,
Algorithm 1 needs to be further modified in following three as-
pects:

(1) Before the generation of the initial populations, all items in
Sare sorted in descending order according to the metric pi/Ri (i =
1, 2, . . . ,m), and the index of each item are then stored in a one-
dimensional array H[1 . . .m] according to sorted order.

(2) For all feasible solutions and potential solutions respect to
food sources in the initial population, S-GROA is employed for re-
pairing and optimizing. The output of objective function of feasible
solution is considered as the fitness.

(3) For the feasible and potential solutions of food sources
generated in a iteration, S-GROA is firstly employed for repairing
and optimizing them. The output of objective function of feasible
solutions are then considered as the fitness of generated food
sources.

To simplify the notations in the algorithm for BABC to solve
SUKP, the following notation is given as

H[1 . . .m] ← QuickSort(pi/Ri, INS(n,m, P,W , C,V)) (10)

where QuickSort [35] is used for sorting all items in instance
INS(n, m, P,W , C,V) to descending order according to the metric
pi/Ri (i = 1, 2, . . . ,m), and all item’s index are then stored in an
array H[1 . . .m]. The detail steps of BABC for SUKP are shown in
Algorithm 3.

(a) The first kind of SUKP instances.

(b) The second kind of SUKP instances.

(c) The third kind of SUKP instances.

Fig. 1. The time cost of GA, BABC, ABCbin , binDE and A-SUKP for solving three kinds
of SUKP instances.

Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86 81

Table 1
The numbering of all SUKP instances.

ID The first class (m > n) ID The second class (m = n) ID The third class (m < n)

Fi1 sukp 100_85_0.1_0.75 Si1 sukp 100_100_0.1_0.75 Ti1 sukp 85_100_0.1_0.75
Fi2 sukp 100_85_0.15_0.85 Si2 sukp 100_100_0.15_0.85 Ti2 sukp 85_100_0.15_0.85
Fi3 sukp 200_185_0.1_0.75 Si3 sukp 200_200_0.1_0.75 Ti3 sukp 185_200_0.1_0.75
Fi4 sukp 200_185_0.15_0.85 Si4 sukp 200_200_0.15_0.85 Ti4 sukp 185_200_0.15_0.85
Fi5 sukp 300_285_0.1_0.75 Si5 sukp 300_300_0.1_0.75 Ti5 sukp 285_300_0.1_0.75
Fi6 sukp 300_285_0.15_0.85 Si6 sukp 300_300_0.15_0.85 Ti6 sukp 285_300_0.15_0.85
Fi7 sukp 400_385_0.1_0.75 Si7 sukp 400_400_0.1_0.75 Ti7 sukp 385_400_0.1_0.75
Fi8 sukp 400_385_0.15_0.85 Si8 sukp 400_400_0.15_0.85 Ti8 sukp 385_400_0.15_0.85
Fi9 sukp 500_485_0.1_0.75 Si9 sukp 500_500_0.1_0.75 Ti9 sukp 485_500_0.1_0.75
Fi10 sukp 500_485_0.15_0.85 Si10 sukp 500_500_0.15_0.85 Ti10 sukp 485_500_0.15_0.85

Table 2
The computing results of the first kind of SUKP instances.

Instance Results A-SUKP GA BABC ABCbin binDE

sukp 100_85_0.10_0.75 Best 12459 13044 13251 13044 13044
Mean 12459 12956.4 13028.5 12818.5 12991
StD 0.00 130.66 92.63 153.06 75.95
Time 0.218 0.112 0.210 0.202 0.196

sukp 100_85_0.15_0.85 Best 11119 12066 12238 12238 12274
Mean 11119 11546 12155 12049.3 12123.9
StD 0.00 214.94 53.29 96.11 67.61
Time 0.235 0.119 0.223 0.223 0.217

sukp 200_185_0.10_0.75 Best 11292 13064 13241 12946 13241
Mean 11292 12492.5 13064.4 11861.5 12940.7
StD 0.00 320.03 99.57 324.65 205.70
Time 3.156 1.013 1.562 1.534 1.479

sukp 200_185_0.15_0.85 Best 12262 13671 13829 13671 13671
Mean 12262 12802.9 13359.2 12537 13110
StD 0.00 291.66 234.99 289.53 269.69
Time 3.766 1.133 1.729 1.699 1.651

sukp 300_285_0.10_0.75 Best 8941 10553 10428 9751 10420
Mean 8941 9980.87 9994.76 9339.3 9899.24
StD 0.00 142.97 154.03 158.15 153.18
Time 16.079 3.608 5.281 5.144 5.109

sukp 300_285_0.15_0.85 Best 9432 11016 12012 10913 11661
Mean 9432 10349.8 10902.9 9957.85 10499.4
StD 0.00 215.13 449.45 276.90 403.95
Time 18.204 3.899 5.673 5.567 5.355

sukp 400_385_0.10_0.75 Best 9076 10083 10766 9674 10576
Mean 9076 9641.85 10065.2 9187.76 9681.46
StD 0.00 168.94 241.45 167.08 275.05
Time 52.522 9.779 12.976 12.161 11.485

sukp 400_385_0.15_0.85 Best 8514 9831 9649 8978 9649
Mean 8514 9326.77 9135.98 8539.95 9020.87
StD 0.00 192.20 151.90 161.83 150.99
Time 61.035 9.978 13.359 13.077 12.548

sukp 500_485_0.10_0.75 Best 9864 11031 10784 10340 10586
Mean 9864 10567.9 10452.2 9910.32 10363.8
StD 0.00 123.15 114.35 120.82 93.39
Time 126.569 18.198 25.372 24.251 23.021

sukp 500_485_0.15_0.85 Best 8299 9472 9090 8759 9191
Mean 8299 8692.67 8857.89 8365.04 8783.99
StD 0.00 180.12 94.55 114.10 131.05
Time 146.93 19.720 26.874 27.969 25.893

The time complexity of (i) computing pi/Ti is O(n); (ii)QuickSort
is O(m logm); and (iii) S-GROA is O(mn). Both MIT and N are the
constant times ofMax {m, n} , so the time complexity of Algorithm
3 is O(M4), where M =Max {m, n} . In other words, it is a random
approximation algorithmwith the polynomial time complexity for
solving SUKP.

5. Experimental results and discussions

To examine the performance of BABC for solving SUKP, A-SUKP,
BABC, GA [14], ABCbin [25] and binDE [28] are adopted to solve
three kinds of SUKP instances, and their computing results are
compared. The experimental platform is an Acer Aspire E1-570G
laptop with Intel(R) Core(TM)i5-3337u CPU-1.8 GHz, 4 GB DDR3

(3.82 GB usable). The operation system isMicrosoftWindows 8. All
algorithms are implemented in C++ under the IDE of Visual C++ 6.0.
The line charts are implemented by MATLAB7.10.0.499 (R2010a).

5.1. SUKP instance and parameter settings of the algorithm

As there is no benchmark for the SUKP, we propose amethod to
generate three kinds of instances of SUKP, and give a naming rule
of SUKP instance and give a dataset of three kinds of SUKP instance.

To simplify calculations, an m × n 0–1 matrix M = (rij)
denotes subset family V = {U1,U2, . . . ,Um}. For each element
rij in M (i = 1, 2, . . . ,m; j = 1, 2, . . . , n), rij = 1 only if
j ∈ Ui. To illustrate the value settings of parameters of SUKP in-
stances, we name the SUKP instances as sukpm_n_α_β uniformly,

82 Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86

Table 3
The computing results of the second kind of SUKP instances.

Instance Results A-SUKP GA BABC ABCbin binDE

sukp 100_100_0.10_0.75 Best 13634 14044 13860 13860 13814
Mean 13634 13806 13734.9 13547.2 13675.9
StD 0.00 144.91 70.76 119.11 119.53
Time 0.264 0.129 0.213 0.225 0.225

sukp 100_100_0.15_0.85 Best 11325 13145 13508 13498 13407
Mean 11325 12234.8 13352.4 13103.1 13212.8
StD 0.00 388.66 155.14 343.46 287.45
Time 0.281 0.143 0.244 0.249 0.248

sukp 200_200_0.10_0.75 Best 10328 11656 11846 11191 11535
Mean 10328 10888.7 11194.3 10424.1 10969.4
StD 0.00 237.85 249.58 197.88 302.52
Time 3.578 1.106 1.633 1.839 1.634

sukp 200_200_0.15_0.85 Best 9784 11792 11521 11287 11469
Mean 9784 10827.5 10945 10345.9 10717.1
StD 0.00 334.43 255.14 273.47 341.08
Time 3.953 1.183 1.819 1.932 1.797

sukp 300_300_0.10_0.75 Best 10208 12055 12186 11494 12304
Mean 10208 11755.1 11945.8 10922.3 11864.4
StD 0.00 144.45 127.80 182.63 160.42
Time 16.751 3.789 5.315 5.855 5.118

sukp 300_300_0.15_0.85 Best 9183 10666 10382 9633 10382
Mean 9183 10099.2 9859.69 9186.87 9710.37
StD 0.00 337.42 177.02 147.78 208.48
Time 19.391 4.106 6.019 6.225 5.801

sukp 400_400_0.10_0.75 Best 9751 10570 10626 10160 10462
Mean 9751 10112.4 10101.1 9549.04 9975.8
StD 0.00 157.89 196.99 141.27 185.57
Time 56.065 9.187 12.805 13.189 12.358

sukp 400_400_0.15_0.85 Best 8497 9235 9541 9033 9388
Mean 8497 8793.76 9032.95 8365.62 8768.42
StD 0.00 169.52 194.18 153.40 212.24
Time 60.816 9.830 12.953 14.989 13.334

sukp 500_500_0.10_0.75 Best 9615 10460 10755 10071 10546
Mean 9615 10185.4 10328.5 9738.17 10227.7
StD 0.00 114.19 91.615 111.63 103.32
Time 124.678 20.717 27.735 24.450 23.468

sukp 500_500_0.15_0.85 Best 7883 9496 9318 9262 9312
Mean 7883 8882.88 9180.74 8617.91 9096.13
StD 0.00 158.21 84.91 141.32 145.45
Time 145.789 20.379 27.813 28.632 25.417

where m is the number of items in instances, n is the number of
elements, α denotes the density of element 1 in the matrix M,
i.e., α =

(∑m
i=1

∑n
j=1rij

)
/(nm), and β is the ratio of C to the sum

of all elements, i.e., β = C/
∑n

j=1wj. According to the relationship
between m and n, there are three kinds of SUKP instances: (1)
10 SUKP instance with m > n, (2) 10 SUKP instance with m =
n, and (3) 10 SUKP instance with m < n. The datasets can be
found in http://sncet.com/ThreekindsofSUKPinstances(EAs).rar. As
shown in Table 1, the instances are indexed according to above
naming rules and three relationships.

To compare the performance fairly, similar to Algorithm 3, the
S-GROA is also used in GA, binDE and ABCbin for handling infeasible
solutions of SUKP. Furthermore, for all algorithms, the population
size is set to be N = 20, and the number of iterations is MIT =
Max{m, n} for all SUKP instances, where m is the number of items
and n is the number of elements in instance.

The other parameters of GA, BABC, ABCbin, and binDE are set as
follows.

(1) In GA, the single point cross-over, uniform mutation and
roulette wheel selection are employed. The crossover probability
is pc = 0.8, and the mutation probability is pm = 0.01.

(2) InBABC andABCbin, we set a = 5.0 and limit = Max{m, n}/5,
where m is the number of items and n is the number of elements
in SUKP.

(3) In binDE, we set the scaling factor F = 0.5 and the crossover
constant CR = 0.3.

5.2. Result analysis and comparison

From Tables 2–4, Best denotes the best values of the perfor-
mance among independent computation by using all algorithms
among 100 times. Mean and StD denote the mean values and
the standard deviations among 100 times for all algorithms. Time
denotes the average time cost of each computation (unit: second).
For the approximation algorithm A-SUKP, Best, Mean are the same
values (the approximate results), and Time denotes the time cost
of each execution (unit: second).

According to the results in Table 2, the BABC obtains the largest
values of Best for 6 instances and the largest values of Mean for
8 instances in the first category of SUKP instances. GA achieves
4 largest values of Best and 2 largest values of Mean. ABCbin and
binDE have only one largest value of Best respectively. As shown in
Table 3, the BABC obtains the largest values of Best for 5 instances
and the largest values of Mean for 1 instances in the second cat-
egory of SUKP instances. GA achieves 4 largest values of Best and
3 largest values of Mean. binDE only has only one largest value of
Best, while ABCbin does not obtain any largest values. Similarly, as
shown in Table 4, the BABC obtains the largest values of Best for 8
instances and Mean for 8 instances in the third category of SUKP
instances. GA achieves 2 largest values of Best and of Mean. binDE
only has one largest value of Best, while ABCbin does not obtain any
largest values.

According to the performance of different methods on three
categories of SUKP instances, the BACA has the best performance,

http://sncet.com/ThreekindsofSUKPinstances%28EAs%29.rar

Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86 83

Table 4
The computing results of the third kind of SUKP instances.

Instance Results A-SUKP GA BABC ABCbin binDE

sukp 85_100_0.10_0.75 Best 10231 11454 11664 11206 11352
Mean 10231 11092.7 11182.7 10879.5 11075
StD 0.00 171.22 183.57 163.62 119.42
Time 0.156 0.113 0.188 0.196 0.193

sukp 85_100_0.15_0.85 Best 10483 12124 12369 12006 12369
Mean 10483 11326.3 12081.6 11485.3 11875.9
StD 0.00 417.00 193.79 248.33 336.94
Time 0.172 0.131 0.217 0.216 0.217

sukp 185_200_0.10_0.75 Best 11508 12841 13047 12308 13024
Mean 11508 12236.6 12522.8 11667.9 12277.5
StD 0.00 198.18 201.35 177.14 234.24
Time 2.766 1.231 1.502 1.588 1.515

sukp 185_200_0.15_0.85 Best 8621 10920 10602 10376 10547
Mean 8621 10351.5 10150.6 9684.33 10085.4
StD 0.00 208.08 152.91 184.84 160.60
Time 3.141 1.204 1.948 1.710 1.648

sukp 285_300_0.10_0.75 Best 9961 10994 11158 10269 11152
Mean 9961 10640.1 10775.9 9957.09 10661.3
StD 0.00 126.84 116.80 141.48 149.84
Time 14.329 3.827 5.450 5.500 5.054

sukp 285_300_0.15_0.85 Best 9618 11093 10528 10051 10528
Mean 9618 10190.3 9897.92 9424.15 9832.32
StD 0.00 249.76 186.53 197.14 232.72
Time 16.470 3.990 5.571 5.800 5.720

sukp 385_400_0.10_0.75 Best 8672 9799 10085 9235 9883
Mean 8672 9432.82 9537.5 8904.94 9314.57
StD 0.00 163.84 184.62 111.85 191.59
Time 45.815 9.325 13.012 12.314 13.149

sukp 385_400_0.15_0.85 Best 8064 9173 9456 8932 9352
Mean 8064 8703.66 9090.03 8407.06 8846.99
StD 0.00 154.15 156.69 148.52 210.91
Time 53.972 9.911 13.724 13.648 14.245

sukp 485_500_0.10_0.75_ Best 9559 10311 10823 10357 10728
Mean 9559 9993.16 10483.4 9615.37 10159.4
StD 0.00 117.73 228.34 151.41 198.49
Time 114.412 18.708 27.227 24.540 23.153

sukp 485_500_0.15_0.85_ Best 8157 9329 9333 8799 9218
Mean 8157 8849.46 9085.57 8347.82 8919.64
StD 0.00 141.84 115.62 122.65 168.90
Time 133.226 20.129 28.493 27.570 26.010

while GA, binDE, and ABCbin has the second, third and worst per-
formance respectively.

In the following, we employ the histogram and line charts to
compare the average solving speeds and the average solving results
of BABC,GA, ABCbin, binDE, and A-SUKP; and then use the histogram
to compare the robustness of BABC, GA, ABCbin, and binDE.

From Fig. 1(a),(b) and (c), by comparing the average time cost of
GA, BABC, ABCbin , binDE and A-SUKP, we observe that the solving
speed of GA, BABC, ABCbin and binDE will become faster than A-
SUKP with the growth of SUKP instance size Max {m, n} ; the
solving speed of GA, BABC, ABCbin and binDE is faster four times
or above than A-SUKP whenMax{m, n} ≥ 500. Therefore, from the
perspective of solving speed, it is clear that GA, BABC, ABCbin and
binDE are faster than A-SUKP. They are more suitable for solving
SUKP within the limited time. Additionally, the GA has a slightly
faster average solving speed than the other three methods.

From the Fig. 2(a), (b) and (c), by comparing the fitting curve
of mean values of GA, BABC, ABCbin and binDE, we observe that
the computational results of GA, BABC, ABCbin and binDE are better
than A-SUKP and BACA achieves the best performance. Although
the mean results of ABCbin in solving SUKP instance Si1, Si7, Si8,
Ti5 and Ti6 are slightly worse than A-SUKP, it has a better overall
performance. Therefore, from the perspective of computational
results, we find that GA, BABC, ABCbin and binDE achieves better
results than A-SUKP. They are more suitable for solving SUKP.

The proposed S-GROA is a generic framework which can be
employed in different EA algorithms such as GA, BABC, ABCbin and
binDE. The performance of adopting S-GROA in these three EAs are
shown in Fig. 3(a) to (c) in terms of solving three kinds of SUKP
instances. To illustrate the applicability of the framework, the clas-
sical EAs such asGA and binDE are firstly employed. ABCbin, a quite
classical in terms of solving binary optimization problems, is also
adopted. From Fig. 3(a), we observe that the standard deviation
StD is less than 150 in most cases for BABC and binDE. We thus
conclude that BABC and binDE are the most robust for the first
category of SUKP instances. From Fig. 3(b) and (c), we find that the
standard deviation StD is less than 200 in most cases for BABC and
ABCbin. They are themost robust for the second and third categories
of SUKP instances. According to above comparison, we draw the
following conclusions:

(1) Employing EAs such as GA, BABC, ABCbin and binDE to solve
SUKP not only achieves better computational results but also has
much faster speed than A-SUKP. The results indicates that EAs are
more suitable approximate algorithms than A-SUKP to solve SUKP.

(2) Among all EAs, BABC achieves the best computational re-
sults and the most robustness with the similar computation speed
with other algorithms. The results indicate that BABC is not feasible
but also more effective.

84 Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86

(a) The first kind of SUKP instances.

(b) The second kind of SUKP instances.

(c) The third kind of SUKP instances.

Fig. 2. The Mean of GA, BABC, ABCbin , binDE and A-SUKP for solving three kinds of
SUKP instances.

6. Conclusion

This paper exploits a full mapping function, which maps one
real vector to a 0–1 vector, to propose a novel binary artificial
bee colony algorithm BABC. To apply BABC for solving SUKP, we
propose a new approach to solving this problem based on an effec-
tive algorithm S-GROA which uses the greedy strategy for solving
unfeasible solutions. Comparing to approximation algorithms GA,
ABCbin and binDE, BABC not only is far more suitable than A-SUKP
to solve SUKP but also achieves better results than GA, ABCbin and
binDE. In fact, the proposed S-GROA is a generic algorithm, which
can be adopted in other EAs (e.g., Particle swarm optimization
(PSO) [16], Harmony search algorithm (HSA) [36], Artificial algae
algorithm (AAA) [37], Fruit fly optimization (FFO) [38], Brain storm
optimization (BSO) [39] and Fireworks algorithm (FWA) [40]) for
solving SUKP problem to addressing the generated unfeasible so-
lutions.

As SUKP is a strong NPC problem and there is no pseudo-
polynomial time-complexity algorithm for solving it, it is worth-
while to find an effective and fast approximate algorithm for this

(a) The first kind of SUKP instances.

(b) The second kind of SUKP instances.

(c) The third kind of SUKP instances.

Fig. 3. The standard deviation of GA, BABC, ABCbin and binDE for solving three kinds
of SUKP instances.

problem. The findings in this article indicate that it is a feasible
research direction to design approximation algorithms by using
EAs. In our future research, we will continue this direction by
exploiting EAs such as PSO, HSA, AAA, FFO, BSO and FWA to solve
SUKP, and find the EAs with the best performance. Another two
research directions are (i) to consolidate recent machine learning
methods [41–43] have a more accurate discriminator; (ii) to apply
the proposed method to the multimedia data compression [44–
46]; and (iii) to adopt the self-adaptive framework to boost the
robustness and accuracy [47].

Acknowledgments

We thank Editor-in-Chief and anonymous reviewers whose
valuable comments and suggestions help us significantly improve
this article. The first author and corresponding authors contributed
equally the same to this article which was supported by Ba-
sic Research Project of Knowledge Innovation Program in Shen-
zhen (JCYJ20150324140036825), China Postdoctoral Science Foun-
dations (2015M572361 and 2016T90799), National Natural Sci-
ence Foundations of China (61503252 and 71371063), Scientific
Research Project Program of Colleges and Universities in Hebei
Province (ZD2016005), and Natural Science Foundation of Hebei
Province (F2016403055). Haoran Xie’s work was supported by
the Start-Up Research Grant (RG 37/2016-2017R) and the Internal
Research Grant (RG 66/2016–2017) of The Education University of
Hong Kong.

Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86 85

References

[1] O. Goldschmidt, D. Nehme, G. Yu, Note: On the set-union knapsack problem,
Naval Res. Logist. 41 (6) (1994) 833–842.

[2] Ashwin Arulselvan, A note on the set union knapsack problem, Discrete Appl.
Math. 169 (2014) 214–218.

[3] Hans Kellerer, Ulrich Pferschy, David Pisinger, Knapsack Problems, Springer,
Berlin, 2004.

[4] S. Khuller, A. Moss, J. Naor, The budgetedmaximum coverage problem, Inform.
Process. Lett. 70 (1999) 39–45.

[5] C.S. Tang, E.V. Denardo,Models arising from a flexiblemanufacturingmachine,
part 11: Minimizing the number of switching instants, Oper. Res. 36 (1988)
778–784.

[6] O. Goldschmidt, D. Nehme, G. Yu, On a Generalization of the Knapsack Problem
with Applications to Flexible Manufacturing Systems and Database Partition-
ing. Working Paper No. 92193-3-7, Graduate School of Business, University of
Texas at Austin, 1992.

[7] S. Navathe, S. Ceri, G. Wiederhold, J. Dou, Vertical partitioning algorithms for
database design, ACM Trans. Database Syst. 9 (1984) 680–710.

[8] Manghui Tu, Liangliang Xiao, System resilience enhancement through modu-
larization for large scale cyber systems, in: 2016 IEEE/CIC International Con-
ference on Communications in China, IEEE, 2016.

[9] Xinan Yang, Alexei Vernitski, Laura Carrea, An approximate dynamic program-
ming approach for improving accuracy of lossy data compression by Bloom
filters, European J. Oper. Res. 252 (3) (2016) 985–994.

[10] Bruce Schneier, Appiled Cryptography: Protocols, Algorithms, and Source Code
in C, second ed., John Wiley & Sons, Inc., New Jersey, 1996.

[11] Dervis Karaboga, An idea based on honey bee swarm for numerical opti-
mization. Technical report. Computer Engineering Department, Engineering
Faculty, Erciyes University, 2005.

[12] Yaosheng Liang, Zhongping Wan, Debin Fang, An improved artificial bee
colony algorithm for solving constrained optimization problems, Int. J. Mach.
Learn. Cyb. 8 (3) (2017) 739–754.

[13] D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence,
Artif. Intell. Rev. 31 (2009) 61–85.

[14] Lothar M. Schmitt, Theory of genetic algorithms, Theoret. Comput. Sci. 259 (1–
2) (2001) 1–61.

[15] R. Storn, K. Price, Differential evolution—A simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (1997) 341–
359.

[16] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the
IEEE International Conference on Neural Networks (Perth, Australia), Vol. IV,
IEEE Service Center, Piscataway, NJ, 1995, pp. 1942–1948.

[17] N. Karaboga, A new designmethod based on artificial bee colony algorithm for
digital iir filters, J. Frankl. Inst.-Eng. Appl. Math. 346 (4) (2009) 328–348.

[18] D. Karaboga, C. Ozturk, Neural networks training by artificial bee colony
algorithm on pattern classification, Neural Netw. World 19 (3) (2009) 279–
292.

[19] Fei Kang, Junjie Li, Zhenyue Ma, Rosenbrock artificial bee colony algorithm for
accurate global optimization of numerical functions, Inform. Sci. 181 (2011)
3508–3531.

[20] D. Karaboga, C. Ozturk, A novel clustering approach: Artificial bee colony (abc)
algorithm, Appl. Soft Comput. 11 (1) (2011) 652–657.

[21] Quan-Ke Pan,M. Fatih Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial
bee colony algorithm for the lot-streaming flow shop scheduling problem,
Inform. Sci. 181 (2011) 2455–2468.

[22] Hsing-Chih Tsai, Integrating the artificial bee colony and bees algorithm to face
constrained optimization problems, Inform. Sci. 258 (2014) 80–93 81.

[23] Mustafa Servet Kiran, Huseyin Hakli, Mesut Gunduz, HarunUguz, Artificial bee
colony algorithm with variable search strategy for continuous optimization,
Inform. Sci. 300 (2015) 140–157.

[24] Akbar Banitalebi, Mohd Ismail Abd Aziz, Arifah Bahar, Zainal Abdul Aziz,
Enhanced compact artificial bee colony, Inform. Sci. 298 (2015) 491–511.

[25] Mustafa Servet Kiran, The continuous artificial bee colony algorithm for binary
optimization, Appl. Soft Comput. 33 (2015) 15–23.

[26] Celal Ozturk, Emrah Hancer, Dervis Karaboga, A novel binary artificial bee
colony algorithm based on genetic operators, Inform. Sci. 297 (2015) 154–170.

[27] Dinu Calin Secui, A new modified artificial bee colony algorithm for the
economic dispatch problem, Energy Convers. Manage. 89 (2015) 43–62.

[28] A.P. Engelbrecht, G. Pampara, Binary differential evolution strategies, in: IEEE
Congress on Evolutionary Computation, 2007, pp. 1942–1947.

[29] T.P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary opti-
mization, IEEE Trans. Evol. Comput. 4 (3) (2000) 284–294.

[30] C.A.C. Coello, Theoretial and numerical constraint-handling techniques used
with evolutionary algorithm-A survey of the state of art, Comput. Methods
Appl. Mech. Engrg. 191 (2002) 1245–1287.

[31] Z. Michalewicz, Genetic Algorithm+Data Structure=Evolution Programs,
Springer-Verlag, Berlin, 1996.

[32] He Yi-chao, Liu Kun-qi, Zhang Cui-jun, Zhang Wei, Greedy genetic algorithm
for solving knapsack problem, Comput. Eng. Des. 28 (11) (2007) 2655–2657
2681.

[33] Yichao He, Xinlu Zhang, Wenbin Li, et al., Algorithms for randomized time-
varying knapsack problems, J. Comb. Optim. 31 (1) (2016) 95–117.

[34] Yi-Chao He, Xi-Zhao Wang, Yu-Lin He, Shu-Liang Zhao, Wen-Bin Li, Exact and
approximate algorithms for discounted {0-1} knapsack problem, Inform. Sci.
369 (2016) 634–647.

[35] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
second ed., The MIT Press, Cambridge, 2001.

[36] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algo-
rithms for solving optimization problems, Appl. Math. Comput. 188 (2) (2007)
1567–1579.

[37] Sait Ali Uymaz, Gulay Tezel, Esra Yel, Artificial algae algorithm (AAA) for
nonlinear global optimization, Appl. Soft Comput. 31 (2015) 153–171.

[38] Wen-Tsao Pan, A new fruit fly optimization algorithm: Taking the financial
distress model as an example, Knowl.-Based Syst. 26 (2012) 69–74.

[39] Shi Cheng, Quande Qin, Junfeng Chen, Yuhui Shi, Brain storm optimization al-
gorithm: a review, Artif. Intell. Rev. (2016), http://dx.doi.org/10.1007/s10462-
016-9471-0.

[40] Ying Tan, Yuanchun Zhu, Fireworks algorithm for optimization, in: Y. Tan, Y.
Shi, K.C. Tan (Eds.), ICSI 2010, Part I, in: LNCS, vol. 6145, Springer-Verlag, Berlin
Heidelberg, 2010, pp. 355–364.

[41] B. Gu, V.S. Sheng, Z. Wang, D. Ho, S. Osman, S. Li, Incremental learning for ν-
support vector regression, Neural Netw. 67 (2015) 140–150.

[42] Sungwan Bang, Jongkyeong Kang, Hierarchically penalized support vector
machine with grouped variables, Int. J. Mach. Learn. Cyb. 8 (4) (2017) 1211–
1221.

[43] Magdalene Marinaki, Yannis Marinakis, A bumble bees mating optimization
algorithm for the feature selection problem, Int. J. Mach. Learn. Cyb. 7 (4)
(2016) 519–538.

[44] Z. Pan, J. Lei, Y. Zhang, X. Sun, S. Kwong, Fast motion estimation based on con-
tent property for low-complexity H. 265/HEVC encoder, IEEE Trans. Broadcast.
62 (3) (2016) 675–684.

[45] Z. Pan, Y. Zhang, S. Kwong, Efficientmotion and disparity estimation optimiza-
tion for low complexity multiview video coding, IEEE Trans. Broadcast. 61 (2)
(2015) 166–176.

[46] Z. Xia, X. Wang, X. Sun, Q. Liu, N. Xiong, Steganalysis of LSB matching using
differences between nonadjacent pixels, Multimedia Tools Appl. 75 (4) (2016)
1947–1962.

[47] Y. Xue, J. Jiang, B. Zhao, T. Ma, A self-adaptive articial bee colony algorithm
based on global best for global optimization, Soft Comput. (2017). http://dx.
doi.org/10.1007/s00500-017-2547-1.

Yichao He is a Professor at Hebei GEO University, China.
His research interest includes combinatorial optimization,
algorithm theory and intelligent computing. He has pub-
lished over 50 publications including Journal of Combina-
torial Optimization, Journal of Computational Biology and
so on.

Haoran Xie is an Assistant Professor at The Education
University of Hong Kong. He received his Ph.D. in Com-
puter Science from the City University of Hong Kong. His
research interests include deep learning, big data, finan-
cial and educational data mining. He has published over
90 publications including AAAI, WWW, DASFAA, INTSYS,
NEUNET and so on. He is served as guest editors in JMLC,
NEUCOM, IJDET and WIJ. He has also served as a co-
chair/committeemember ofWI, TALE, CPSCom, GCCCE, U-
Media, WISE and ICWL.

http://refhub.elsevier.com/S0167-739X(17)31041-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb4
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb4
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb4
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb7
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb7
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb7
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb17
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb17
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb17
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb21
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb21
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb21
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb21
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb21
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb23
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb23
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb23
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb23
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb23
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb27
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb27
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb27
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb29
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb29
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb29
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb30
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb30
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb30
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb30
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb30
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb31
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb31
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb31
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb32
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb32
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb32
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb32
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb32
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb33
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb33
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb33
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb34
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb34
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb34
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb34
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb34
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb35
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb35
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb35
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb36
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb36
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb36
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb36
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb36
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb37
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb37
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb37
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb38
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb38
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb38
http://dx.doi.org/10.1007/s10462-016-9471-0
http://dx.doi.org/10.1007/s10462-016-9471-0
http://dx.doi.org/10.1007/s10462-016-9471-0
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb40
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb40
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb40
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb40
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb40
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb41
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb41
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb41
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb42
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb42
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb42
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb42
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb42
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb43
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb43
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb43
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb43
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb43
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb44
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb44
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb44
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb44
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb44
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb45
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb45
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb45
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb45
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb45
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb46
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb46
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb46
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb46
http://refhub.elsevier.com/S0167-739X(17)31041-5/sb46
http://dx.doi.org/10.1007/s00500-017-2547-1
http://dx.doi.org/10.1007/s00500-017-2547-1
http://dx.doi.org/10.1007/s00500-017-2547-1

86 Y. He et al. / Future Generation Computer Systems 78 (2018) 77–86

Tak-LamWong is an Assistant Professor at The Education
University of Hong Kong. He received his Ph.D. in Sys-
tems Engineering and Engineering Management from The
Chinese University of Hong Kong. His research interests
includeWeb mining, data mining, information extraction,
machine learning, and knowledge management. He has
published over 100 publications including PAMI, TKDE,
TOIS, and TOIT. He also has served as a committeemember
in more than 20 international conferences.

XizhaoWang is a Professor at ShenzhenUniversity, China.
He received his Ph.D. in computer science from Harbin
Institute of Technology on September 1998. From 2000 to
2012 Dr. Wang served in Hebei University as a professor
and the dean of school of Mathematics and Computer Sci-
ences. From 2013 to now Dr. Wang worked as a professor
in Big Data Institute of ShenZhen University since 2013.
Prof. Wang’s major research interests include uncertainty
modeling and machine learning for big data. Prof. Wang
has edited 6+ special issues and published 3 monographs,
2 textbooks, and 150+ peer-reviewed research papers. By

the Google scholar, the total number of citations is over 3000 and the maximum
number of citation for a single paper is over 200. The H-index is 25 up to March
2015. Prof. Wang is on the list of Elsevier 2015 most cited Chinese authors. As
a Principle Investigator (PI) or co-PI, Prof. Wang’s has completed 30+ research
projects. Prof. Wang is an IEEE Fellow, the previous BoG member of IEEE SMC
society, the chair of IEEE SMC Technical Committee on Computational Intelligence,
and the Chief Editor of Machine Learning and Cybernetics Journal.

	A novel binary artificial bee colony algorithm for the set-union knapsack problem
	Introduction and background
	Definition and mathematical models
	Binary ABC (BABC) algorithm
	Artificial bee colony algorithm
	Binary artificial bee colony (BABC) algorithm

	Apply BABC to solve SUKP
	Greedy repairing and optimization
	Application of BABC to SUKP

	Experimental results and discussions
	SUKP instance and parameter settings of the algorithm
	Result analysis and comparison

	Conclusion
	Acknowledgments
	References

