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Abstract 

The purpose of this paper is to correct and modify some conclusions shown in a paper by Wu Congxin and Ha Minghu 
(Fuzzy Sets and Systems 66 (1994) 373-379) and to give some further results. © 1997 Elsevier Science B.V. 
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In [ 1 ], Wu Congxin and Ha Minghu introduced the 
concept o f  regular fuzzy measure, gave some of  its 
properties and showed Lusin's theorem. In this paper, 
we point out that the proof o f  Theorem 2.1 in [1] is 
incorrect, show a correct proof  for it and give some 
further results generalizing the corresponding classical 
conclusions. 

Le tX  be a metric space, Bx the class o f  all Borel sets 
on X and # a fuzzy measure introduced by Sugeno [2]. 
(X, Bx, #) is said to be a metric fuzzy measure space. 
In this paper, we always suppose that/~(X) < oc. 

In [1], the authors have shown the following result. 

Theorem 1 (Theorem 2.1 in [1]). Let # be any auto- 
continuous fuzzy  measure on X, then # is regular. 

We now point out that the proof of  the theo- 
rem is not rigorous. Indeed, we cannot prove that 

~(k) /~ is not closed under count- U.=l A,, c . . . .  so, 
able unions, where /Y denotes the class o f  all Borel 
sets which are #-regular in X. The proof  o f  Theorem 1 
is easy to modify as follows. 

Definition 1 (Wang and Klir [3]). # is said to be 
null-additive if #(A U B) = #(A) whenever A E Bx, 
B E Bx, and #(B) = 0. 

Definition 2 (Wang and Klir [3]). # is said to be uni- 
formly autocontinuous, if for arbitrary ~ > 0, there ex- 
ists 6 = b(e) such that #(A U B) ~< #(A) + e whenever 
A E Bx,B E Bx, and p(B)<~6. 

It is obvious that the uniform autocontinuity implies 
the null-additivity. 

* Corresponding author. 

Proof of Theorem 1. It is enough to prove that/~ is 
closed under countable unions with the proof  o f  the 
rest in Theorem 2.1 in [1]. Let A, E /Y,n = 1,2 . . . . .  
andA = U,~I A,. For any given e > 0, sinceA1 C/~, 
there exist an open set G1 and a closed set F1 such 
that Fl C A 1 C G1 and/t(G1 - Fx ) < e/2. By using the 
autocontinuity of  #, we know that there exists 61 such 
that 

# ( ( G 1 - F 1 ) © B )  < # ( G 1 - F l ) +  2~, 

whenever B E Bx and p(B) < 6x. From A2 E /~, we 
can choose an open set G2 and a closed set F2 such 
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that F2 c A 2  C G2 and #(G2 - F2) < 61. Thus, 

# ( ( G I - F I ) U ( G 2 - F 2 ) )  < ( ~ + ~ ) &  

Similarly, for set (Gl - F 1  )U(G2 - F 2 )  we can choose 
G3 and F3 such that F3 C A3 C G3 and 

#((G1 - F l )  U (G2 - F2) U (G3 - F3)) 

< + ~ 5 +  e. 

Continuing this procedure to infinite and using the 
continuity o f  #, we obtain set sequences {Gn} and 
{F~} satisfying F~ C An C Gn for any n = 1,2 . . . . .  and 

# ( U n ~ i ( G .  - F n ) )  ~<e. 
oo oo F Taking G~ = Un=l Gn,F~ = nn=l n ,  then F~ C 

A c G ~ ,  G~ is an open set and F~ is closed set, as 
required. [] 

us denote this union by U s, and set C l, = X - Uu. 
By the null-additivity o f  #, we have #(U~) = 
# (U ,~ l  U~) = 0, i.e. #(C~) = 0. Further i f D  is any 
closed set with # (D ' )  = 0, X - D E F and hence 
X - D C U~, namely Cu C D. The uniqueness o f  C~ 
is obvious. It remains to prove the last assertion. No- 
tice that there exists an open set containing x for any 
x E C~ such that #(Uu) = 0, and # ( U )  must be posi- 
tive, i fx  c C~ and U is an open set containing x, we 
end the proof. [] 

Definition 3. The closed set C u in Theorem 3 is called 
the spectrum or support o f  #. 

Corollary 1. Let  X be any metric  space and # a null- 
additive f u z z y  measure on X such that #(X - E )  = 0, 
f o r  some separable Borel  set E C X.  Then # has a 
spectrum Cu which is separable and Cu C E. 

Although the proof o f  Theorem 2.1 in [1] is not 
strict, Corollary 2.1 in [1 ] is still correct. 

Theorem 2 (Corollary 2.1 in [ 1 ]). I f #  is an autocon- 
tinuous f u z z y  measure on X, then f o r  every A C Bx  
and any e > O, there exists  some closed F, such that 
F C A and #(A - F )  < e. 

Proof.  Let/~ = {A E Bx" for each e > 0, there exists 
a closed s e t F C A , F  E Bx  such that #(A - F )  < e}. 
It is similar to Theorem 2.1 in [1]. [] 

By Theorem 2 we obtain Theorem 2.2 in [1]. 
In the following, we shall discuss further the prop- 

erties o f  fuzzy measures on metric spaces. 
First, we shall discuss the notion o f  spectrum or 

support o f  a fuzzy measure. 

Theorem 3. Let  X be a separable metric space and # 
a null-additive f u z z y  measure o f  X .  Then there exists  
a unique closed set Cu such that (1) #(C~) = 0; 
(2) i f  D is any closed set such that Iz(D') = O, then 
C~ c D. Moreover,  Cu is the set o f  all points  x C X 
having the property  that # ( U )  > O f o r  each open set 
U containing x. 

Proof.  Let F = {U: U is open, # ( U )  = 0}. Since X 
is separable there are many countably open sets 
U1, U2 . . . . .  such that Un~__t Un = U { U :  u c r } .  Let 

Second, we shall investigate a smaller class o f  fuzzy 
measures on metric spaces, the so-called tight fuzzy 
measures. Tight fuzzy measures have the property that 
they are determined by their values taken on compact 
sets. 

Definition 4. A fuzzy measure # on X is said to be 
tight if  there exists a compact set Ke C X such that 
#(X - K~) < e for any given e > 0. 

Theorem 4. Let  # be a tight uniformly autocontin- 
uous f u z z y  measure on X.  Then # has separable 
support and f o r  any Borel  set E and any e > O, there 
is a compact set K~ C E such that #(E - KE) < ~. 

Proof.  LetKn be a compact set such that # ( X - K n )  < 
1In. A compact set in a metric space is separable 
and, hence, Un Kn is separable. If  E0 = Un Kn, then 
#(E0) = 0 by the monotonicity o f  #. The rest is 
similar to Theorem 2.3 in [1]. [] 

Theorem 5. Le t  X be a separable metric  space with 
the property  that there exists  a complete separable 
metric  space X such that X is contained in X as a 
topological subset and X is a Borel  subset o f  X .  Then 
every uniformly autocontinuous f u z z y  measure # on 
X is tight. In particular, i f X  i tsel f  is a complete sep- 
arable metric  apace, every uniformly autocontinuous 
f u z z y  measure on X is tight. 
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Proof.  Let X C) ( ,  where )? is a complete separable 
metric space and X is a Borel set in )(. 

Given a fuzzy measure # on Bx, we define /~ on 
the class B~? by setting /~(,4) = #(,4 N X) ,  A E Bg. 
Since X E By /~()? - X )  = 0, we claim that it is 
enough to prove that/~ is a tight measure on )(. In- 
deed, since X is a Borel set in X,  there will exist 
for each ~ > 0, a set K~ C X, compact in )?, such 
that/~(X - Ks) < e (Theorem 4). K~ is also compact 
in X since X is a topological subset o f  )(. Further, 
#(X - K~) ---- /7(X - Ks) < e. This implies that # is 
tight. Thus, we may and do assume that X is itself 
a complete separable metric space. For the rest see 
Theorem 2.3 in [1]. [] 

Lastly, we shall discuss the notion o f  perfectness 
which is o f  some interest. 

By Theorem 2.2, and Theorem 2.4 in [1] we can 
suppose that {Cn},n = 1,2 . . . .  , and {Kn},n = 1,2 . . . .  
be two sequences o f  sets such that (1) K~ C K2 C-  . . ,  
each Kn is compact, flKn (f  restricted to Kn) is con- 
tinuous, and #(X - K , )  ~ 0, (2) Cl C C2 C . . . C E ,  
each C~ is closed and #(E - Cn) ~ O. 

I f  we write/£n = Kn f-) Cn, then/~1 C/~2 C ' ' "  C E, 
each /£, is compact, flI£n is continuous and 
#(E - k~)  ~ 0 as n > co. I f  B, = f (Kn)  then B, is 
a compact subset of  the real line since fl/~n is con- 
tinuous and, hence, A1 = LJ, Bn is a Borel set. Since, 
f ( U , / £ , )  = A1 it follows that f - I ( A 1 ) D U ,  Kn. 
Clearly, A I C A  and f - I ( A 1 ) c f - I ( A )  = E. By 
the continuity o f  # we obtain # ( E -  U n K , )  = 
limn # ( E -  Kn) = 0, so # ( E -  f - l (A1 ) )  = 0. This 
completes the proof. [] 

Definition 5. A fuzzy measure space (X, B, #)  is said 
to be perfect if for any B-measurable real valued 
function f and any set A on the real line such that 
f -  1 (A) E B, there are Borel sets A 1 and A2 on the real 
line such that Al CA CA2 and # ( f - l ( A 2  - A 1 ) )  = 0. 

Theorem 6. Let X be any metric space and # a uni- 
formly autocontinuous tight fuzzy measure on X. 
Then (X, Bx, #) is a perfect fuzzy measure space. 

Proof.  Let f be any real valued measurable function. 
It is sufficient to prove that for any A C R 1 (the real 
line) such that f - l ( A )  E Bx, there exists a Borel 
set A1 CA with # ( f - l ( A  - A1)) = 0; A2 can then 
be defined as a Borel set such that A~ CA t and 
# ( f - l ( A '  - A~)) = 0. Suppose that A C R  1 is a set 
such that E ---- f - l ( A )  E Bx. 
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