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Abstract—When fuzzy production rules are used to approximate
reasoning, interaction exists among rules that have the same con-
sequent. Due to this interaction, the weighted average model fre-
quently used in approximate reasoning does not work well in many
real-world problems. In order to model and handle this interaction,
this paper proposes to use a nonadditive nonnegative set function to
replace the weights assigned to rules having the same consequent,
and to draw the reasoning conclusion based on an integral with re-
spect to the nonadditive nonnegative set function, rather than on
the weighted average model. Handling interaction in fuzzy produc-
tion rule reasoning in this way can lead to a good understanding
of the rules base and an improvement of reasoning accuracy. This
paper also investigates how to determine from data the nonaddi-
tive set function that cannot be specified by a domain expert.

Index Terms—Approximate reasoning, fuzzy integrals and mea-
sures, fuzzy production rules, interaction, rule-based reasoning.

I. INTRODUCTION

FUZZY PRODUCTION rules (FPRs) are widely used in
expert systems to represent fuzzy and uncertain concepts.

FPRs are usually presented in the form of a fuzzy IF-THEN rule
in which both the antecedent and the consequent are fuzzy con-
cepts denoted by fuzzy sets. To effectively represent both the
fuzziness and the uncertainty in FPRs, several knowledge pa-
rameters such as certainty factor, local weight, threshold value,
and global weight have been incorporated into the FPRs ([1],
[2], [27]). For example, one usually sees an FPR such as IF A
AND B THEN C (CF) where A, B, and C are fuzzy sets and CF
denotes the certainty factor.

FPR reasoning in modern expert systems is a very compli-
cated process. Given a set of FPRs (usually called a knowledge
base) and an observed fact, FPR reasoning is used to draw an
approximate conclusion by matching the observed fact against
the set of FPRs. Many researchers have investigated this funda-
mental issue in fuzzy reasoning. For instance, Yuan and Shaw
in [30] proposed the use of operators (min, max) to model FPR
reasoning, while Wang et al. in [26] extended the operators
(min, max) to a generalized case. Yeung et al. [27] presented
a weighted fuzzy production rule (WFPR) and proposed an im-

Manuscript received June 5, 2003; revised January 8, 2004. This work was
supported by a Hong Kong Polytechnic University Research Grant (GT-210),
by the Natural Science Foundation of Hebei Province (603137, F2004000129),
and by a key project of the Chinese Educational Ministry (03017). This paper
was recommended by Associate Editor A. F. G. Skarmeta.

D. S. Yeung and E. C. C. Tsang are with the Department of Computing,
Hong Kong Polytechnic University, Kowloon, Hong Kong, China (e-mail: cs-
daniel@comp.polyu.edu.hk).

X.-Z. Wang is with the Faculty of Mathematics and Computer Science,
Hebei University, Baoding, Hebei, China (e-mail: wangxz@mail.hbu.edu.cn;
csetsang@comp.polyu.edu.hk).

Digital Object Identifier 10.1109/TSMCB.2004.831460

proved method to compute the certainty factor of the consequent
assertion and a better way to interpret the linguistic meaning of
the consequent. Yeung and Tsang [28] compared the reasoning
mechanism of the proposed WFPRs with other similarity-based
fuzzy reasoning methods. Further, weighted fuzzy reasoning
could be discussed by using weighted fuzzy Petri nets [4] or
could be extended to multilevels or multistages [29], i.e., the
consequents of some rules can be the antecedents of other rules.
In this paper, however, we will consider only one-step FPR rea-
soning and will focus on the interaction that exists among the
FPRs in the knowledge base.

One example to indicate the existence of interaction among
rules is given as follows. Suppose we have three rules:

Rule 1: IF and

THEN possibly SARS.
Rule 2: IF and

THEN pos-
sibly SARS.

Rule 3: IF and
THEN

possibly SARS.
A person who satisfies both Rules 1 and 2 antecedents will be

infected with SARS more likely than another person who only
satisfies the antecedent of Rule 1 or Rule 2. This example may
explain that Rules 1 and 2 are enhancing each other for leading
to the SARS. However, a person who satisfies both Rules 2 and
3 antecedents will be infected with SARS less likely than an-
other person who only satisfies the antecedent of Ruled 2 or 3.
It is because (Having a cough) and (Having much phlegm) re-
sult in a nondry cough. This example may explain that Rules 2
and 3 are resisting each other for leading to the SARS. The en-
hancing-effect or resisting-effect is considered in this paper as
the interaction among rules.

Why do we need interaction? The reason is simple.

1) It can help domain experts discover new knowledge ex-
isted among the rules. With respect to a given consequent
(e.g., SARS), knowing and modeling the enhancing/re-
sisting-effect among rules learned from data is helpful
to maintaining the rule base (i.e., the knowledge mainte-
nance).

2) By discovering the interaction among the rules and then
applying it to fuzzy reasoning, the reasoning accuracy
is expected to be improved. There have been many
approaches to improve the reasoning accuracy. The
improvement proposed in this paper has the more inter-
pretability (i.e., the knowledge background of interactive
effect among the rules).
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The interaction among attributes has already been a clear
concept [8], [10], [11], but the interaction among rules is
firstly proposed in this paper. In fact, the interaction among
rules is the interaction among attribute-values. For example,
one can consider the interaction among attributes A, B, C, D,
and E as shown in the above Rules 1–3. It can be elaborated
by considering interaction among attribute-values, e.g., the
interaction between

and
. Since the rules’ antecedents consist

of , the interaction among the
attribute values in this paper is called the interaction among the
rules.

One popular model for representing the interaction is the
fuzzy measure. In [8], the author proposed to represent the
importance and interaction of features by fuzzy measures.
Then, in [5], the authors proposed an interaction transform of
set functions over a finite set, which leads to a new interaction
index. In [11], the authors discussed the extension of pseudo-
Boolean functions for the aggregation of interaction criteria.
Marichal in [15], [16] showed that the discrete Choquet integral
is an adequate aggregation operator that extends the weighted
arithmetic mean by taking into consideration the interaction
among criteria. He also showed that the mutual preferential
independence of criteria reduces the Sugeno integral to a
dictatorial aggregation.

To handle the interaction that exists among a set of rules
having the same consequent, this paper proposes to use a nonad-
ditive nonnegative set function to replace global weights (which
are assigned to rules in a rule-set) to draw the reasoning conclu-
sion of a set of rules based on an integral with respect to the non-
additive nonnegative set function, rather than on the weighted
average model. Such a handling of interaction in FPR reasoning
can lead to a well understanding to the rule base, and lead to
an improvement of reasoning accuracy. Moreover, this paper
also investigates how to determine from data the nonadditive
set function that cannot be specified by experts.

This paper is organized as follows: Section II reviews the
WFPR reasoning and states the globally WFPR reasoning. Sec-
tion III outlines the Choquet integral, a kind of nonlinear inte-
gral with respect to a nonadditive set function, and discusses the
interaction among a set of rules in the reasoning process. Sec-
tion IV investigates how to determine the nonadditive set func-
tion from data and reports our numerical experimental results
for determining the set functions and improving reasoning ac-
curacy. Section V offers a number of remarks and concludes this
paper.

II. GLOBALLY WFPR REASONING

Basically, the reasoning addressed in this paper is similarity-
based reasoning. We first review a definition of a similarity mea-
sure.

Definition 1: Let X be a universe of discourse and be
the set of all fuzzy subsets defined on X. A mapping SM from

to , is called a similarity measure if SM sat-

isfies: 1) for any and 2)
whenever .

The similarity measure between two fuzzy subsets can be de-
fined based on their membership functions. Discussions of simi-
larity metrics can be found in many articles e.g., [20], [19], [12].
This paper does not discuss the details of similarity measures.

According to Zadeh’s initial definition of Generalized Modus
Ponens [6], the reasoning model is described as

' '

'

'

This paper focuses on a type of globally WFPRs [27], which are
specific to classification problems. A WFPR has a conjunctive
form

where and are variables;
and are fuzzy values of these variables; GW is

a nonnegative value denoting the global weight of the rule R;
and denotes the conjunction AND. WFPRs will degenerate to
FPRs in commonsense when the global weight is ignored.

Consider a set of WFPRs: and
a given fact, the reasoning model which slightly modifies the
Generalized Modus Ponens is described as

where represents the global weight assigned to the th
rule and is the certainty factor of the conclusion. It is
worth nothing that the rules have the same consequent C.

How to draw the conclusion: ? The following
is a scheme to draw the conclusion and compute its certainty
factor. We call the scheme globally WFPR reasoning.

Globally WFPR Reasoning Algorithm
Step (A1): For each rule within S, the similarity between

the proposition and the observed attribute-value , de-

noted by , is defined below:

If is a fuzzy set then where SM is
a given similarity measure.

If is a real number then where
denotes its membership function.
The overall similarity is defined as

(1)

where is the number of propositions of antecedent of the th
rule .

Step (A2): Compute and

(2)
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Step (A3): The conclusion’s certainty factor is given
by

(3)

For classification problems, the value given in (3) denotes
the degree of truth of the object belonging to class C. If there
are classes (corresponding to sets of fuzzy rules), then
the computed result in (3) refers to the degree of truth of some
class, denoted by . The normalized form
of the inferred result is defined as , where

.
When a crisp inferred result is needed, one can take the con-

sequent with maximum . One problem is that
the algorithm cannot give a crisp decision if there exists more
than one maximum . In that situation, we need
another defuzzification method to determine the crisp decision.
We now illustrate this reasoning mechanism and its shortcom-
ings.

Example 1: Consider the following two sets of fuzzy rules.

Set1: having the same consequent Class1
and 4 global weights Gw1, Gw2, Gw3, and Gw4.

Set2: with consequent Class 2 and global weight 1.
Suppose that we have two testing cases e1 and e2 with the

crisp consequents Class1 and Class2. The degrees of similarity
between rule antecedents and the two cases are as follows:

It is clear, if an appropriate global weight assignment is given,
that the reasoning conclusion for the two cases will be cor-
rect. For instance, one can select

, then the degrees of truth are

for e1 and

for e2, respectively.
This simple example clearly shows that the global weight can

be used to adjust the degrees of truth of some inferred con-
sequents. If no global weights are used (e.g., the simple av-
erage or maximum operation is used), the inferred conclusions
of Example1 cannot be correct. However, if some additional
weight information including experts’ experiences and previous
learning results are incorporated into the reasoning process, it
will become more complicated. For example, domain experts
specify that if the rule has the same degree of importance as
rule , i.e., , then it will be impossible to achieve
the correct reasoning results for e1 and e2 by using the proposed
globally weighted reasoning algorithm, since for both e1 and e2
the computed degrees of truth are the same value which is equal
to . This is a drawback of the glob-
ally WFPR reasoning model. This paper proposes to overcome

this problem through substituting a nonadditive nonnegative set
function for global weights. It draws the reasoning conclusion
by matching a new given fact against a set of rules based on an
integral with respect to the nonadditive nonnegative set func-
tion, rather than on the weighted average model.

III. INTERACTION REPRESENTED BY

NONADDITIVE SET FUNCTION

Let be a nonempty set and be the power set of . We
use the symbol to denote a nonnegative set function defined
on with the properties and . When

is finite, is usually called a fuzzy measure if it satisfies
monotonicity

For a nonnegative set function , there are some associated con-
cepts. is said to be additive if for

; to be sub-additive if
for and ; and to be

super-additive if for
and . Let be a set of rules
with the same consequent. We now consider A and B as two sub-
sets of rules. If we consider as the importance of subset
A, then the additivity of the set function means that there is no
interaction among the rules such that the joint importance of
some rules is just the sum of their respective importance. How-
ever, this is not true in many real problems. In other words,
most measures of importance are nonadditive [22]. Subaddi-
tivity and super-additivity are two special types of nonadditivity.
Super-additivity means that the joint importance of two sets of
rules is greater than or equal to the sum of their respective im-
portance, which indicates that the two sets of rules enhance each
other. Subadditivity means that the joint importance of two sets
of rules is less than or equal to the sum of their respective im-
portance, which indicates that the two sets of rules resist each
other.

In [22], the concept of weights is extended to a nonnegative
set function called an importance measure, and then the inte-
gral of a nonnegative function with respect to a nonadditive set
function is defined, which generalizes the classical Lebesgue
integral. In recent decades, a number of new kinds of nonlinear
integrals have been introduced. Here we select the Choquet in-
tegral [9], a nonlinear integral with respect to a nonadditive set
function or a fuzzy measure, because the Choquet integrals have
been shown to be an adequate aggregation operator [15].

Definition 2: Let be a fuzzy mea-
sure or a nonadditive set function defined on the power set of

be a function from to . The Choquet integral of
with respect to is defined by

where we assume without loss of generality that
and . If no confusion
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TABLE I
VALUES OF SET FUNCTION � IN EXAMPLE 2

TABLE II
VALUES OF FUNCTION f IN EXAMPLE 2

arises, we can omit the X and in short denote the Choquet inte-
gral by .

Example 2: Let . The values of and
are shown in Tables I and II, respectively. Here, is a fuzzy
measure.

After reordering the values of the function , we can use the
formula given in definition 2 to compute the Choqet integral. It
is .

We now state our FPR reasoning algorithm based on
fuzzy integral. Consider K sets of FPRs

. For each , the
th set of FPRs has the same consequent , and a non-

negative set function defined on
where denotes the power set of , i.e., the set of all subsets
of . The is used to represent the interaction among the
rules within the set . The here is assumed to be given in
advance by domain experts and will be learned from data in
Section IV. The FPR reasoning with interaction among rules is
described as follows.

Algorithm of FPR Reasoning With Interaction
For DO
Step (B1): For each rule within , let have the

following form:
where

is the number
of all attributes. The observed fact is and

TABLE III
A SET FUNCTION

the similarity between and , denoted by , is
determined similarly to Step (A1) of the Globally WFPR
reasoning algorithm given in Section II.

Step (B2): Define an -dimensional real vector, i.e., a dis-
crete function on by

(4)

Step (B3): Evaluate the certainty factor of the conclusion
by

(5)

where the integral is Choquet integral, defined in definition 2.
END DO
The final crisp classification result for the observed facts

will be determined to be where
.

Example 3: Let us continue considering Example 1 where
the importance of rule 2 is assumed to be the same as that of rule
3. The other additional information for these four rules is given
in Table III. It is noted that Table III specifies a nonadditive set
function and the interaction among the four rules is included.

From Table III, one can see that the rule 2 has the resisting
effect on other rules and the rule 3 has the enhanced effect on
the other rules. indicates that the
rules 2 and 3 have the same individual impact on the consequent.

Let , and .
We use the Choquet integral to compute the two values,
which are regarded as the degrees of truth of consequent
C1. The computed result is that and

. From rule 5, we know the degree of
truth of either e1 or e2 belonging to C2 is 0.5. The above
computed result shows that e1 corresponds to the consequent
C1 and e2 to C2. This inferred result is correct.

The handling of interaction in FPR reasoning can lead to a
reduction of the likely occurrence of an undesirable consequent
or an improvement of reasoning accuracy. The set function must
be determined before the Choquet integral is applied. However,
in many real applications, the nonnegative nonadditive set func-
tion representing the interaction among the rules is very difficult
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to acquire. Usually it is given by domain experts. In the next sec-
tion, we will discuss how to learn the set function from data.

IV. LEARNING NONNEGATIVE NONADDITIVE-ADDITIVE

SET FUNCTIONS

We need to compute the integral values while handling the
interaction among the rules. Before the integral values can be
computed, the fuzzy measure or the nonadditive set function
must be determined. This is a very difficult task. Some method-
ologies for determining fuzzy measures have been developed
and generally discussed in [8], [23], [13], [24], [25], and [3]. In
this section, with respect to our particular issues of handling in-
teraction among rules, we make an attempt to determine the non-
negative set function by solving a linear programming problem.

Let us consider a classification problem with two classes and
N training examples. Suppose that, using some learning tech-
niques, we have already extracted M fuzzy rules from the N
examples. The FPR form is IF (attribute-values) THEN (class),
where the attribute-values are the intersection of a number of
fuzzy subsets and the class is either C1 or C2.

Due to fuzziness and interaction among rules, the reasoning
accuracy of the M rules to the N examples fails to attain 100%.
That is, the extracted M rules may not entirely cover the N ex-
amples. The M rules are categorized in two groups, and ,
one leading to the consequent C1 and the other leading to C2.

Let and
.

Moreover, the N examples are also classified into two parts,
as follows:

The actual classification of the examples within is C1, and
within is C2.

By using the matching mechanism given in (1)–(3) where the
global weights are ignored, we match each example against
both and . The matching leads to two values and
(the degrees of truth of belonging to C1 and C2 respectively).
Noting the definitions of , and , we hope that the
following inequalities hold:

(6)

Due to the reasoning mechanism and the existence of inter-
action among rules, the above inequalities generally fails to be
valid for all . There may be several reasons
for this. One of them is the interaction. Since the interaction is
reflected in the fuzzy measures (set functions), which are gen-
erally unknown, we may numerically determine them by using
the optimization criterion of reasoning accuracy.

Let be two set functions defined on
and respec-

tively, subject to . Suppose that matching degree
functions of matching and are

(7)

where is the result of matching the th rule
.

Then

According to (6), we hope the following inequalities hold:

(8)

(9)

subject to .
Noting that and , we can define a

-dimensional vector (representing all coefficients of
the two nonadditive set functions) as follows:

(10)

where .
From Definition 2, we know that Choquet integrals given in

inequalities (8) and (9) can be represented as linear combina-
tions of . That is, we can rewrite the inequali-
ties (8) and (9) as follows:

(11)

(12)

where
are determined in terms of the values

of
and the definition

of the Choquet integral.
Usually the problem of solving the system of inequalities (11)

and (12) is transformed into the following linear programming
problem:

(13)

(14)

(15)

(16)

The transformation is based on such a fact that, if the solution
to linear programming problem (13)–(16) makes

zero, then inequalities (11) and (12) hold well. It is
our desirable result. Generally, the minimum value of

may not be zero. In this case. we consider the solution
of (13)–(16) as an approximate solution of inequalities (11) and
(12).
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In [7], [11], the authors selected the square error criterion to
solve inequalities (8) and (9). By minimizing the quadratic error
between the expected output and the actual output of a classifier,
they transferred the problem of solving inequalities (8) and (9)
into a quadratic program denoted as follows:

(17)

where the -dimensional vector is defined
by (10), and b are two constant vectors, and D and A are two
constant matrices. Our initial experimental results show that the
learning accuracy from solving quadratic program (17) is better
than the learning accuracy of linear programming (13)–(16) but
the computational cost of solving (17) is much higher than that
of (13)–(16).

One may speculate as to whether learning so many
parameters will lead to over-learning (over-fitting);

in other words, the training accuracy is extra-high but the testing
accuracy is lowered. The experiments in this section (Table IV)
do not show an over-learning phenomenon.

If the interaction among rules is not considered, but only the
degree of importance of each rule (i.e., the global weight for
each rule) then the system of inequalities given in (6) can be
further simplified. The task will be reduced from determining
two set functions with parameters to finding
a global weight vector with parameters.

From (2) and (7), we have

subject to .
According to (6), we hope the following inequalities hold:

(18)

where

(19)

Therefore, by the introduction of relaxed variables
, we can obtain from (18) and (19) the fol-

lowing linear programming problem:

(20)

(21)

A. Experiments

The seven databases employed for experiments are obtained
from various sources. Their features are briefly described below.

1) Rice taste data: This database was used by Nozaki [17]
to verify a simple and powerful algorithm for fuzzy rule gen-
eration. It contains 105 cases with five numerical attributes.
The classification attribute is continuous. In our experiments,
cases are categorized into two classes according to positive
and negative values of the classification attribute.
2) Mango leaf data: This set of data was used by Pal [18] to
investigate automatic feature extraction based on fuzzy tech-
niques. It provides information on different kinds of mango-
leaf with 18 numerical attributes for 166 patterns (cases). It
has three classes representing three kinds of mango. We con-
sider the first class as the positive and the other two classes
as the negative in our experiments.
3) Thyroid gland data [21]: This set of data contains 215
cases of three different kinds of thyroid gland. Each case con-
sists of five numerical attributes. We consider the first class
as the positive and the other two classes as the negative.
4) Pima India diabetes data [21]: This database contains
768 cases related to the diagnosis of diabetes (268 positive
and 500 negative). It has eight numerical attributes.
5) Glass Identification Database [21]: This database has
214 instances related to seven classes of glass. Each instance
has nine numerical attributes. In our experiments, we consider
the first class as the positive and the other six classes as the
negative.
6) Auto-Mpg Data [21]: This database has 398 instances
and nine attributes. In our experiments, we only use the five
numerical attributes and one integer-valued attribute. The
mpg attribute is regarded as the class attribute. Moreover,
since the attribute horsepower has six missing values, we
only use 392 of 398 instances.
7) Sonar Database [21]: This database contains 208 pat-
terns, 111 patterns belonging to metal class and 97 patterns
belonging to rock class. Each pattern is a set of 60 numbers
in the range 0.0–1.0.
We conduct our experiments as follows. Each database is ran-

domly split into two parts. One part includes 90% of the cases in
the database. This part is used for training while the remaining
10% is used for testing. The purpose of training is to extract a
number of FPRs from the training set.

A fuzzy decision tree algorithm (Fuzzy ID3) is used to gen-
erate fuzzy rules for each selected training set. Since we need to
extract FUZZY production rules from the training set, the C4.5
programs are not suitable for our task. A fuzzification for numer-
ical attributes should be conducted before generating fuzzy deci-
sion trees. Here we opt for a fuzzy clustering algorithm based on
Kohonen self-organized mapping [14] to generate cluster cen-
ters. By applying this algorithm to each selected database, we
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TABLE IV
REASONING ACCURACY OF THREE METHODS WHERE THE FIRST IS THE FREQUENTLY USED (MAX-MIN) METHOD, THE SECOND IS THE GLOBALLY WEIGHTED

FUZZY PRODUCTION RULE REASONING, AND THE THIRD IS THE PROPOSED FUZZY REASONING WITH HANDLING INTERACTION AMONG RULES

can fuzzify the numerical attributes where the number of lin-
guistic terms for each attribute is assumed to be three. The mem-
bership function is selected to be normal, that is, each member-
ship function has the following form:

(22)

where is the center determined by Kohonen self-organized
clustering algorithm, and are determined by solving

for any two adjacent centers and . It results in
.

Suppose there are cluster centers
. Substituting for and in

(22), we have normal membership functions
expressed as

After fuzzification, we use the Fuzzy ID3 algorithm to gen-
erate a set of FPRs. Matching both the training set and the testing
set against the extracted FPRs, we obtain the initial training ac-
curacy and the initial testing accuracy. Here the reasoning mech-
anism is based on the frequently used operators (min, max).

Subsequently, we consider the degree of importance of in-
dividual rules (i.e., the global weights of individual rules), but
we do not consider the interaction among rules. By solving the
linear programming indicated by (20)–(21) to acquire the values
of global weights, the FPRs extracted from each training set are
revised to be globally WFPRs. Matching both the training set
and the testing set against the globally WFPRs, we obtain the

second training accuracy and the second testing accuracy. Here
the reasoning mechanism is the globally weighted fuzzy rea-
soning algorithm given in Section II.

Finally, we consider the interaction among the extracted
fuzzy rules. By solving the linear programming indicated by
(13)–(16), we can acquire the two nonadditive set functions that
indicate the interaction among the rules. The initial FPRs are
now revised to be the two sets of FPRs with two nonadditive
nonnegative set functions that indicate the interaction among
the rules. By matching both the training set and the testing set
against the set of fuzzy rules with two set functions, we obtain
the third training accuracy and the third testing accuracy. Here,
the reasoning mechanism is given by (c1)–(c3) in Section III.

The experiments are conducted repeatedly five times and their
averaged results are given in Table IV. Analyzing Table IV, we
can summarize the following experimental conclusions.

1) To a certain degree, the learning accuracy, i.e., the
training and testing accuracy, of the seven selected databases
improved both from method 1 to method 2 and from method
2 to method 3. The amount of accuracy-improvement de-
pends on the concrete structure of databases.
2) Of the seven databases, the smallest improvement in
learning-accuracy was in the Auto-mpg data. For this kind
of database, both feature weight assignment and handling
interaction among rules are not necessary. This means that
there are almost no salient features and interactive rules.
3) The Sonar signal data and the Pima diabetes data show a
very small improvement in learning-accuracy from method 1
to method 2 but a very significant improvement from method
2 to method 3. This implies that the rules extracted from the
databases have a very strong interactive effect but that the
effect of feature weight assignment is not important. In this
situation the handling of interaction among rules seems to be
extremely important.
4) Glass identification data shows that learning-accuracy
very significantly improved from method 1 to method 2
but improved very little from method 2 to method 3. This
implies that the rules extracted from the databases have
little interactive effect but that the effect of feature weight
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assignment is very important. In this situation the handling
of interaction among rules can be replaced with the feature
weight assignment.
5) Given that the difference between the training accuracy

and testing accuracy of method 3 is not significant, it would
seem that the proposed method 3 does not generate an over-
learning phenomenon.

We now briefly illustrate how the set function could affect
(positively or negatively) the interpretability of the fuzzy
system. For the Sonar signal data, we find the reasoning ac-
curacy of extracted fuzzy rules not very good. Of course, it
depends on the data structure. By learning global weights which
are assigned to the fuzzy rules, we expect to improve the rea-
soning accuracy. It indeed results in an accuracy improvement.
However, the improvement is not significant (see Table IV).
In this situation, we think that interaction exists among the
rules having the same consequent and then learn the interaction
expressed by a set function. We find that rules 2, 3, and 5 have
the weight values 0.081, 0.219, and 0.116, respectively, but
the set function take values 0.925 and 0.883 on
and respectively. The two inequalities, i.e.,

and , imply
that rules 2, 3, and 5 have the very strong interaction which, for
leading to Class1, is positive.

V. CONCLUSIONS AND REMARKS

When domain experts provide additional information for a set
of fuzzy rules, there exists interaction among the set of fuzzy
rules. This paper models the interaction by using a nonlinear
integral with respect to a nonadditive set function that is a for-
mulation of the additional information of domain experts. The
interaction is handled by extending a vector of global weights to
a nonadditive set function. As a result of the handling of interac-
tion among the rules, the globally WFPR reasoning is extended
to the nonlinear integral model, reasoning accuracy is improved,
and the occurrence of undesirable reasoning consequents is re-
duced. This paper also discussed how to learn the nonadditive
set function from data while the set function indicating inter-
action is hard to be given by domain experts. It demonstrates
that the learning of nonadditive set functions can be achieved by
solving a linear programming problem. We have the following
remarks.

1) In the process of learning nonadditive set functions, the
procedure is given by solving a linear programming problem.
This means that little computational effort is added in the
learning phase.
2) Our algorithms for determining the set function or the

vector of global weights are derived in terms of a two-cluster
classification problem, but they can easily be extended to the
situation of classification problems of more than two clusters.
3) The FPR reasoning with handling interaction proposed in

this paper is suitable for both real and nominal attributes.
4) In this paper, we use Choquet integrals with respect to a

nonadditive set function to evaluate the value of overall sim-
ilarity and, based on the overall similarity, the reasoning is
conducted. The reasoning results together with the learned

values of the nonadditive set function are dependent on the
selection of nonlinear integrals. However, initial experiments
show that the reasoning results are not sensitive to the selec-
tion of nonlinear integrals.
5) The consequent of an IF-THEN rule in this paper is as-
sumed to be a crisp classification. Without much difficulty,
it can be extended to the case that the consequent is a fuzzy
set. For the extension, we briefly give an explanation. For a
two-class problem, the crisp classification means that each
case should be assigned a Boolean vector (0, 1) or (1, 0), but
the fuzzy classification means that each case corresponds to
a fuzzy vector (a, b) where . In fuzzy case,
the fundamental inequalities given in (6) are established ac-
cording to or . Similarly, the linear programming
(13)–(16) can be derived.
6) The frequently used min-max reasoning mechanism is a
special case of a globally weighted fuzzy reasoning scheme,
but the globally weighted fuzzy reasoning is a special case
of our proposed reasoning model with handling interaction
among rules.
7) The nonadditive set function discussed in this paper can
be regarded as a set of knowledge representation parameter.
The refinement of these parameters, which is a process of
solving a linear programming problem, is independent of the
initial training algorithms.
8) The reasoning in this paper essentially belongs to sim-
ilarity-based reasoning. The result of given facts matching
against antecedents of rules is dependent on the selection of
similarity measure.
9) The main problem of the proposed approach to interac-
tion handling is too many parameters when the number of
rules increases. At this stage, the approach is not yet appro-
priate for many rules due to the exponential complexity. As
a further investigated topic, the authors would like to address
how to effectively represent the interaction among the rules
(e.g., fuzzy measures with some restricts or with some par-
ticular structure) such that the representation parameters can
be reduced greatly.
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