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OFFSS: Optimal Fuzzy-Valued Feature Subset
Selection

E. C. C. Tsang, D. S. Yeung, and X. Z. Wang

Abstract—Feature subset selection is a well-known pattern
recognition problem, which aims to reduce the number of features
used in classification or recognition. This reduction is expected
to improve the performance of classification algorithms in terms
of speed, accuracy and simplicity. Most existing feature selection
investigations focus on the case that the feature values are real or
nominal, very little research is found to address the fuzzy-valued
feature subset selection and its computational complexity. This
paper focuses on a problem called optimal fuzzy-valued feature
subset selection (OFFSS), in which the quality-measure of a subset
of features is defined by both the overall overlapping degree
between two classes of examples and the size of feature subset. The
main contributions of this paper are that: 1) the concept of fuzzy
extension matrix is introduced; 2) the computational complexity of
OFFSS is proved to be NP-hard; 3) a simple but powerful heuristic
algorithm for OFFSS is given; and 4) the feasibility and simplicity
of the proposed algorithm are demonstrated by applications of
OFFSS to fuzzy decision tree induction and by comparisons with
three different feature selection techniques developed recently.

Index Terms—Computational complexity, data mining, feature
subset selection, fuzzy-valued feature, learning.

I. INTRODUCTION

FEATURE subset selection is a well-known pattern recogni-
tion problem which is usually viewed as a data mining en-

hancement technique. This technique aims to reduce the number
of features to be used, i.e., to reduce the entire feature space to
a highly predictive subset of the space. This reduction may im-
prove the performance of data mining algorithms to be used, in
terms of speed, accuracy, and simplicity. In addition, because of
this reduction, the identification of features which do not need
to be stored, collected or bought, may bring financial savings
[19].

The previous study on feature subset selection focused mainly
on the statistical approaches such as the typical principle com-
ponent analysis (PCA) method [18] and the linear discriminant
analysis (LDA) method [9]. These methods attempt to reduce
the dimensionality of input data by creating new features that
are linear combinations of the original ones. The main draw-
back of these methods is that the new features (compared with
the original ones) do not have true meaning. Moreover for PCA,
simply scaling of the features can cause serious changes to the
results.
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An extensive amount of research has been conducted over
the last two decades to obtain reliable approaches for feature
selection. Blum [3] had given an excellent survey for selection
of relevant features in machine learning. These approaches are
different in the evaluation of feature subsets. A number of eval-
uation criteria such as gain-entropy [25], relevance [1], contin-
gency table analysis [26] have been developed for feature values
which can be real, symbolic, categorical or nominal.

Neuro-fuzzy approaches, e.g., [20], [21], [38], and [7] are
usually based on an overall feature evaluation index (OFEI).
These approaches view each class as a fuzzy subset, and
according to the classification information entropy, define an
overall feature evaluation index for a subset of features, and
then use some searching technique to approximately find the
solution. Neural network feature selector [29] and fuzzy feature
selection [28] should be special cases of neuro-fuzzy technique.
The main drawback of neural network feature selector is that
the network usually suffers from the local minimum and slow
convergence.

Appropriate features can be selected by genetic algorithms
(GAs) [4], [27] where each feature subset (called a chromo-
some) is evaluated by a fitness function during an optimization
cycle. In contrast to other feature selection techniques, GA can
generate approximately a number of optimal feature subsets.

A different approach in feature selection is based on neural
network output sensitivity, which uses a feature quality index
(FQI) for each feature and sorts the features according to FQI
values. The method to evaluate the value of FQI can be different.
For example, Zurada in [42] and Engelbrecht in [8] used partial
derivatives of the output with respect to the input to define the
sensitivity measure and compute its value by Taylor approxi-
mate expansion. Yeung in [39] used the variance of the output
error with respect to the input perturbation to define the sen-
sitivity measure and Zeng in [41] used the expected value of
output error with respect to the input change.

The mutual information-based feature selector [2] and [22] is
universally accepted as a promising method to feature selection.
This method considers mainly the dependence between features
and selects some features with high independence. It can be
briefly formulated as a FRn-problem: Given an initial set
with features and set of all output classes, find the subset

in with features that minimize the entropy , i.e.,
maximize the mutual information .

All feature subset selection algorithms have two key com-
ponents. One is the measure of the quality of a set of features.
It concerns some measure of the predictive power of the fea-
tures, as well as the size of the feature subset. The other is
the search strategy to find the best feature subset as defined
by the measure. It is worth noting that the enumerative search
for all possible feature subsets is generally infeasible if the
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considered database contains many records. Most researchers
on feature subset selection try to show that their methods are
computationally efficient in these two aspects. The means of
research is usually restricted to experiments and comparisons.
Obviously, they often suffer from the lack of theoretical analysis
due to the fact that the study of an important theoretical issue,
i.e., the computational complexity of optimal feature subset
selection, is neglected. One may want to know, for example,
whether or not there exists an exact feasible algorithm to find
the best subset for fuzzy-valued features.

With the development of knowledge-based systems, the im-
precise data such as “about 28,” “young,” “very big,” “hot,” and
so on is considered in the learning phase of constructing expert
systems. The imprecise feature-values in traditional data mining
are usually regarded as either real numbers (the continuous case)
or nominal symbols (the discrete case). There seems to be a gap
between the two cases since real numbers have linear ordering
and nominal symbols has no ordering at all. This gap may be
filled by viewing the imprecise data (linguistic terms) as fuzzy
sets. So far, very little work is found to address the selection
of optimal fuzzy-valued feature subsets and its computational
complexity. The only found references are [30], [32] where the
focus is the fuzzy target (model) selection by using fuzzy clus-
tering (fuzzy c-means) technique, rather than the fuzzy-valued
feature selection.

This paper focuses on a problem of optimal fuzzy-valued fea-
ture subset selection (OFFSS). The measure of the quality of a
set of features is defined by the overall overlapping degree be-
tween two classes of examples and the size of feature subset.
The computational complexity of OFFSS is investigated by the
introduction of fuzzy extension matrix. A heuristic search algo-
rithm is proposed for the optimal feature subset selection. This
algorithm finds a path in the extension matrix. Applications of
OFFSS are discussed for fuzzy decision tree induction schema.
The present paper has the following organization. Section II
gives a formal definition of OFFSS, Section III investigates the
computational complexity of OFFSS, Section IV proposes our
heuristic algorithm for OFFSS, Section V studies the applica-
tion of OFFSS to fuzzy decision tree induction and the compar-
ison with three different feature selection techniques developed
recently, and the last section offers conclusions of this paper.

II. DEFINITION OF OFFSS

Before giving a rigorous definition of OFFSS problem, we
first review some notations and concepts used in this paper.
Throughout this paper, for a given universe of discourse,

denotes the set of all fuzzy subsets defined on.
Definition 1: A mapping from to [0, 1], , is

called a similarity measure if satisfies that (1)
for any , and (2) when-

ever .
The similarity measure between two fuzzy subsets can be de-

fined by their membership functions. Discussions on similarity
metrics can be found in many articles [43], [33], [24], [13], [35].
The following are two frequently used forms:

in which and denote max and min, respectively, and
denotes the distance measure ofand and is

defined as

It is clear that the aforementioned distance equation is Eu-
clidean metric when . Our study on OFFSS is based on a
similarity measure between two fuzzy sets. It is worth noting
that there exist many forms of similarity measure between
two fuzzy sets. We cannot guarantee that our selected two
equations have the best performance for the investigated feature
selection problem. However, some experiments have shown
that our proposed method is not much sensitive to the choice of
similarity measure.

Now, let us consider a group of examples (objects, instances,
cases) and a feature space . Each
( ), called a fuzzy-valued feature or a fuzzy-valued
attribute, is supposed to take value in ( is a universe of
discourse). Each exampleis characterized by the features,
that is, in which is the value of
example with respect to ( ). For any feature,
the similarity measure between two feature-values is written as

. This group of examples is supposed to be classified into
two classes, and , called positive class and negative class,
respectively.

Definition 2: Let be an example and
a given feature subset ( ,

). The notation is used to denote ( ).
Definition 3: Let be a given feature subset ( ),
a positive example ( ), and a negative example

( ). The similarity degree between and on is
defined as

in which the notation denotes Min. Particularly,
.

Definition 4: For a given feature subset ( ), the
overlapping degree of the positive classand the negative class

is defined as

in which the notation denotes Max.
To make Definition 4 clear, we restrict ourselves to crisp case.

For two given examples and , a given feature subset, and a
given similarity measure , one can consider that the degree of
similarity between and is equal to 1 if and only if

and is equal to 0 if and only if . This consequent
implies that if and only if
and if and only if where
denotes empty set and is the overlapping degree
given in Definition 4. That is, Definition 4 shows whether the
intersection of two sets is empty for crisp case. Therefore, when
fuzzy case is considered, Definition 4 can naturally be regarded
as the maximal degree of overlapping (intersection) of two fuzzy
sets.
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From Definition 3, one can see that the similarity degree
will become small as the cardinality of feature

subset increases. Hence, the overlapping degree
will also decrease as the cardinality of increases. For an
appropriate threshold ( in which is
the entire feature set), there always exists at least one feature
subset with properties: 1) ; 2) ;
and 3) the cardinality of attains minimum. This is the concept
of OFFSS which is formulated in the following Definition 5.

Definition 5 (OFFSS):Let denote a given class of positive
examples, a class of negative examples, the entire set of
fuzzy-valued features, anda given threshold. The problem of
OFFSS is to seek a feature subset( ) such that

where denotes the cardinality of a crisp set.
We use the following simple example to illustrate the above

notations and definitions.
Example 1: Consider a set of examples shown in Table I.

This set of examples is classified into and
and is described by four fuzzy-valued features. The

entire feature set is . Each feature takes
value from three fuzzy linguistic terms (fuzzy sets), Small, Mid,
and Big, of which the membership functions are shown in Fig. 1.
We would like to find the optimal feature subsets for threshold

.
According to Definition 5, we can use the following algo-

rithm to find the optimal feature subsets.

Step 1. Determine the similarity measure.
Step 2. For each pair of different lin-
guistic terms, evaluate the similarity.
Step 3. For each feature subset , use
Definition 3 to evaluate .
Step 4. Determine feature subsets, of
which the value is less than or
equal to .
Step 5. From the feature subsets obtained
in Step 4, select the ones with minimum
cardinality.

Now, we illustrate the algorithm by Example 1.
Step 1: Define a similarity measure as

. Step 2: According to
the defined similarity measure, evaluate similarities

,
, and

. Step 3: Following Step 2, evaluate
the value of overlapping degree for subset . For
instance

The results are listed in Table II. Step 4: Determine feature
subsets with . Table II shows 7 feature

TABLE I
GROUP OFEXAMPLES WITH FOUR FUZZY-VALUED FEATURES

Fig. 1. Three membership functions.

subsets satis-
fying . Step 5: The subsets with minimum
cardinality are { } and { }. Therefore, the output
optimal feature subsets are { } and { }.

It is worth noting that the previous enumeration algorithm for
finding optimal feature subsets is not practical due to its expo-
nential complexity. Developing heuristic algorithms are neces-
sary.

Now, let us give a geometrical explanation of the OFFSS
problem (Definition 5). It can be obtained by considering ex-
amples E1 and E2, shown in the following table:

with two features and .
Intuitively or by the Definition 5, the feature can be re-

garded as the best (optimal feature subset). Fig. 2 gives us a
very clear geometrical explanation for the OFFSS.

III. COMPUTATIONAL COMPLEXITY OF OFFSS

In this section, we investigate the computational complexity
of OFFSS problem using the concept of extension matrix. The
extension matrix, which plays an important role in studying the
theory of learning from crisp examples [11], is initially intro-
duced for crisp case in [10] and is extended to fuzzy case in this
paper by using similarity measure.

A. Extension Matrix of Fuzzy Case

We continue to use the notations introduced in the previous
section. That is, denotes the positive class,denotes the neg-
ative class, and denotes the entire feature space. Each ex-
ample takes value in the form of m-dimensional vector in which
components are fuzzy sets, and denotes a given similarity
measure between fuzzy sets.

Definition 6: Let be a given threshold and be the entire
set of features, , , and
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TABLE II
FEATURE SUBSETS ANDDEGREES OFINTERSECTIONHOODABOUT TABLE I

. and are said to be
consistent with respect to if . and

are said to be consistent with respect to if and are
consistent with respect to for arbitrary . and

are said to be consistent with respect to if and are
consistent with respect to for arbitrary and arbitrary

.
From Definitions 5 and 6, one can easily see thatand are
consistency with respect to the optimal fuzzy-valued feature

subset .
Definition 7: The extension matrix of a positive ex-

ample with respect to a neg-
ative example is defined as

where for
. If ( ), then is called an

element of extension matrix. (In the crisp case [10],
the element is called nondead element).

Definition 8: Let and
. The extension matrix of ( )

with respect to is defined as and the extension
matrix of with respect to is defined as , where

...

...

Example 2: Let us continue to discuss the six examples given
in Example 1 where , , and . The ex-
tension matrix of the first positive example with respect to,

, is shown in Fig. 3; and the extension matrix of
with respect to , , is shown in Fig. 4.

Definition 9: Let be an ex-
ample denoting a row of the extension matrix and

be a given feature subset. The
term “ place of ” is used to denote { }.

Theorem 1: Let be a given threshold and
be a feature subset. and are

consistent with respect to if and only if there exists at least
one element in the place of each row of extension
matrix of with respect to .

Fig. 2. Geometrical explanation of OFFSS (feature subset {x} is the best).

Fig. 3. ExtensionEM(e ;N) about Table I.

Fig. 4. Extension matrixEM(P;N) about Table I.

Proof: Let ,
, ( )

and ( ). If there exists
at least one element in the place of each row of
extension matrix of with respect to , then for each (

) and each ( ) there exists at least one
integer ( ) such that .
From Definition 3, one can obtain that

(1)

which results in the consistency of and with respect to
. Conversely, if and are consistent with respect to,

then (1) is valid for all and all (
). This implies that there exists at least one integer(

) such that for all and
( ). Therefore, according to Definition
7, there exists at least one element in the place of
each row of the extension matrix of with respect to . This
completes the proof.
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B. Path of Extension Matrix and Feature Subset

Definition 10: A path of an extension matrix refers to a con-
nection of its elements which are obtained by selecting
one element from each row of the extension matrix.

Example 3: Consider the extension matrix
shown in Fig. 3. If we take the threshold , then there
exist several paths in this extension matrix. One of them can be

which is indicated by arrows in Fig. 3.
The following theorem gives us the relation between an op-

timal feature subset and a path of extension matrix.
Theorem 2: Let be a given threshold and be

the extension matrix of with respect to . Then, looking for
an optimal feature subset is equivalent to searching for a path in
the extension matrix which involves the minimum
number of columns.

Proof: Let be a feature subset ( ). Then, ac-
cording to Definition 5 and Definition 6, one knows thatis
an optimal feature subset if and only if 1)and are con-
sistent with respect to and 2) the cardinality of reaches a
minimum.

1) By Theorem 1, and are consistent with respect to
if and only if there exists at least one element

in the place of each row of extension matrix ofwith
respect to . Therefore, the given feature subsetcan
correspond to a path of extension matrix . This
path can be obtained by selecting one 1-element from the

place of each row of the extension matrix
2) Each column, which is involved in the process of selecting

elements, corresponds to a feature. Hence, the
number of involved columns is the number of considered
features. Furthermore, the minimum cardinality ofis
equivalent to the minimum number of involved columns.
This completes the proof.

According to Theorem 2, the OFFSS problem can be trans-
formed into a search in for a path which involves
the least columns. The heuristic search algorithm established in
Section IV is based on this transformation. In the following, we
prove that the search for a path is NP-hard.

C. OFFSS Problem is NP-Hard

The following theorem gives the computational complexity
of selecting an optimal fuzzy-valued feature subset.

Theorem 3: The OFFSS problem described in Definition 5
is NP-hard.

Proof: Noting that “If problem (A) is NP-hard and
problem (A) can be reduced into problem (B) within polyno-
mial time, then Problem (B) is also NP-hard,” we complete
the proof by constructing a transformation which can reduce
a known NP-hard problem into the OFFSS problem within
polynomial time. By Theorem 2, the OFFSS problem is
equivalent to the problem of searching for a path with the least
columns, so we only need to reduce a known NP-hard problem
into the problem of searching for a path with the least columns.
The problem of optimal set cover described below is a known
NP-hard problem [17].

Problem of Optimal Set Cover:Let be a finite set,
be a group of subsets of. We say is a cover

of if . We say is an optimal cover of if
is a cover of and for any arbitrary ’s cover
where denotes the cardinality of a set.

Without loss of generality, we explicitly give the process of
constructing the transformation (from the problem of optimal
set cover to the problem of searching for a path with the least
columns in extension matrix) via examples [10] and [6].

Consider a universe of discourse and
a group of ’s subsets , ,

, , , and . It is
clear this group of subsets constitutes a cover of. By arranging
these six subsets, Table III can be formed. From Table III, one
can find that { } constitutes an optimal cover of .
Now we replace the six subsets in Table III with their charac-
teristic sets, e.g., replace with

. The result of replacement is shown in Table IV.
Consequently, searching for an optimal set cover in Table III is
equivalent to searching for a group of characteristic sets with
the minimum cardinality in Table IV such that there is at least
one element in each row of Table IV restricted in these
characteristic sets. For example, { } is such a group of
characteristic sets. Therefore, we have given the validity of the
conclusion that searching for an optimal set cover in Table III is
equivalent to searching for a path involving the least number of
columns in Table IV.

The remaining is to show that Table IV can be regarded as
an extension matrix of with respect to . We regard the six
notations in Table IV as six features and regard
each row in Table IV as a negative example denoted by(

), e.g., . Define the negative example
set , the positive example set in
which , the similarity measure

, , denote the element by 1
and the non element by 0 ( ), one can directly
verify that Table IV is just , the extension matrix of

with respect to . The proof is completed.

IV. HEURISTIC ALGORITHMS FOROFFSS

From Theorem 3, one can find that obtaining a practically
exact algorithm for the OFFSS problem is unrealistic. So, we
have to look for heuristic algorithms. From Theorem 2, we know
that the OFFSS problem is equivalent to a search for a path in-
volving the least columns in which is the extension
matrix of with respect to ( is the positive class and is
the negative class). Definition 10 shows that a path in
means that a connection of elements which are obtained
by selecting one element from each row of .
One can expect that, “the bigger is, the smaller is” where

denotes the number of elements in each column of
a path and is the number of columns involved in this path.
Hence, an intuitive idea of searching a path involving the least
columns is to gradually select the column with the most
elements in the extension matrix. In detail, one can select one
column with the most elements in the current extension
matrix and then remove the rows which include an ele-
ment in the selected column. This process is repeated when the
extension matrix is not empty. The result is expected to have a
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TABLE III
SET COVER PROBLEM

TABLE IV
CHARACTERISTIC SETS OF ACOVER

smaller number of columns (features). The following heuristic
algorithm is formed according to this idea. In fact, this is a kind
of greedy algorithm.

Heuristic algorithm
Step 1. Initialization: is the entire
feature space; is he feature subset
to be searched; is the given positive
class; is the given negative class;

is the current extension matrix
of with respect to ; and is ini-
tially set to an empty set.

Step 2. From the current extension matrix
, find a column with the most

elements. Use to denote this
column, and then replace with .

Step 3. From , remove the rows
which include an element in the
selected -th column, and then form a new

which is regarded as the current
extension matrix.

Step 4. If is empty, then regard
as the final result [stop]; else, go to

Step 2.

Example 4 illustrates clearly the computed process of the
above heuristic search algorithm.

A. Example 4

Consider the OFFSS problem of the group of examples given
in example 1 (Table I). The extension matrix ofwith respect
to has been shown in Fig. 4. From Fig. 4, one can find that
the second column has the most elements (the threshold
value is set to 0.25). So the current feature subsetis set
to be { }. After removing the rows which include an
element in the second column, the current extension matrix only
includes the first row and the last row of the original matrix.
Both the first and third columns are two columns with the most

elements, hence, the first feature A or the third feature
C is aggregated to. Consequently, two optimal feature subsets,

and , are obtained. Intuitively, the
feature subset is better than due to and
in the extension matrix (Fig. 4).

Essentially, the OFFSS problem proposed in this paper is to
search for such significant features that the overlapping degree
of and does not exceed a given threshold. From Defini-
tion 4, one can see that the “maximum” degree of overlapping
is used. The maximum operation may result in inflexibility of
the heuristic algorithm to some extent. Moreover, the Step 4 in
the above algorithm does not allow noisy example appearing in

and where the noisy example refers to such an example
which appears simultaneously in and in . To illustrate the
inflexible case and the noisy case, we consider the following
two examples.

B. Example 5

Consider the examples given in Table V where two qualifiers
“Very” and “More-or-less” are defined as

Very and More-or-less

for any term with membership function . The similarity
measure between two termsand is defined as the equation
shown at the bottom of the page. One can directly compute the
extension matrix of with respect to , which is shown in
Fig. 5.

By setting , it is easy to see from Fig. 5 that, except
for the last column, each column of the extension matrix has six

elements. The maximal number of elements is
reached at three columns simultaneously. The aforementioned
heuristic algorithm does not know which column should be
selected.

C. Example 6

Consider the examples given in Table VI where only one pos-
itive example exists. The last negative example which is iden-
tical to the positive example is possibly noisy. The extension
matrix is shown in Fig. 6. According to the above heuristic al-
gorithm, the selection process of feature subset is described as
Empty . The remaining extension matrix

if Very or More-or-less
otherwise
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TABLE V
GROUP OFEXAMPLES WITH QUALIFIERS

Fig. 5. Extension matrixEM(P;N) corresponding to Table V.

includes only the last row in which there exists no
elements (the threshold valuedoes not exceed 1), so

cannot become empty.
To overcome the shortcomings as shown in Examples 5 and

6, we revise the previous heuristic algorithm as shown here.

Revised heuristic algorithm
Step 1. Initialization is same as the
original heuristic algorithm.
Step 2. From the current extension ma-
trix , find a column with the most

elements. Use to denote this
column, and then replace with .
If there is more than one column with the
most elements, select one column
such that the sum of its elements
is minimum.
Step 3. Same as the original heuristic
algorithm.
Step 4. If the number of ele-
ments of the remaining extension matrix

is less than a given small number
(threshold value), then regard as the
final result and regard the remaining ex-
amples as noise [stop]; else go to Step 2.

By using the revised heuristic algorithm to handle the above
Examples 4, 5, and 6, one can obtain the results 1) in Example
4, is the first optimal feature subset and

is the second one; 2) in Example 5, is the
first optimal feature subset and is the second one;
and 3) in Example 6, is the only optimal feature
subset and the last negative example is regarded as noise.

TABLE VI
GROUP OFEXAMPLES WITH NOISE

Fig. 6. Extension matrixEM(P;N) corresponding to Table VI.

It is worth noting that, in the process of implementation of
the revised heuristic algorithm, the extension matrix
does not need to be really generated in memory and only the
number of elements needs to be aggregated. It shows
that the algorithm has no much computational effort and space
consumption that implies the implementation is easy and cheap.
Another benefit may be that the proposed heuristic algorithm
does not like GA and is not time consuming. In addition, one
point needed to be shown is that the OFFSS problem described
in this paper will degenerate to the crisp case proposed in [6] if
all features are restricted to nominal values.

V. EXPERIMENTS AND COMPARISONS

In this section, we investigate applications of OFFSS to fuzzy
decision tree induction, and compare the performance of OFFSS
with three selected feature selection methods by experiments.

A. Selected Three Feature Selection Methods

We select three types of feature selection methods in compar-
ison with our OFFSS. The three are neuro-fuzzy method, neural
network output sensitivity-based method, and mutual informa-
tion-based method, respectively.

Neuro-fuzzy approaches [e.g., [20], [21], [38], and [7]] are
usually based on an overall feature evaluation index (OFEI).
Each class is considered as a fuzzy subset. In this paper we select
the [7] definition on OFEI which is given for theth feature by

where is the number of classes, is the value of classifica-
tion entropy of the th feature with respect to theth class, and

is the value with respect to the-th and the th classes.
It is easy to see that the lower the value of OFEI, the better the
feature is.

Neural network output sensitivity-based approaches use a
feature quality index (FQI) for each featureand then the



TSANG et al.: OFFSS: OPTIMAL FUZZY-VALUED FEATURE SUBSET SELECTION 209

features can be sorted according to . After training a
feed-forward neural network, the FQI for theth feature refers
usually to the value of output’ sensitivity to the-th feature
perturbation. The method to evaluate the value of FQI can be
different. For example, Zurada in [42] and Engelbrecht in [8]
used partial derivatives of the output with respect to the input to
define the sensitivity measure and compute its value by Taylor
approximate expansion. Yeung in [39] used the variance of the
output error with respect to the input perturbation to define the
sensitivity measure and Zeng in [41] used the expected value of
output error with respect to the input change. De in [7] defined
the FQI as follows. For each training data point, the -th
component is set to zero. If denotes the modified point,
then except for theth component the other components of
and are the same. Let and denote the output vectors
obtained from the neural network with respect toand ,
respectively. If the th feature is not salient, the difference
between and should be small. Therefore, the FQI is
defined as

The important feature should correspond to big FQI. This paper
selects the aforementioned De [7] method to compute the FQI
for comparison.

Mutual information-based feature selector [2] and [22] is uni-
versally accepted as a promising method to feature selection.
This method considers mainly the dependence between features
and selects some features with high independence. It can be
briefly formulated as follows.

1) Let denote the initial set of fea-
tures and be empty.
2) Compute the mutual information ,
for each feature .
3) Find the feature that maximizes

, set , .
4) Repeat until : a) For all pairs
( ), , , compute . b)
Choose feature as the one that maxi-
mizes , set ,

.
5) Output the set containing the se-
lected features.

In our experiments, the parameterin step 4) is assumed 0.5.

B. Databases Used

We select five databases for comparing our OFFSS with the
approaches mentioned in Section V.A. The five databases, i.e.,
Iris [34], MPG [34], Pima [34], Breast cancer [34], and Sleep
state [23], are briefly summarized here.

1) Iris dataset: This is a well-known benchmark dataset
which is widely used to test a learning algorithm in the
field of machine learning. This dataset has 150 examples
which are classified into three classes, i.e., Setosa,
Versicolor and Virginical. Each example is characterized

by four numerical features which are sepal length (SL),
sepal width (SW), petal length (PL), and petal width
(PW). Five linguistic terms, i.e., very small (VSM),
small (SM), medium (MED), large (LRG) and very large
(VLRG), are used to fuzzify every feature.

2) Mile per gallon (MPG) dataset: This is another
bench-mark dataset which comes from a nonlinear
regression model where several features (input variables)
are used to predict another feature (output variable).
The MPG problem has six input variables which are
no. of cylinders (discrete), Displacement (continuous),
Horsepower (continuous), Weight (continuous), Ac-
celeration (continuous) and Year-model (discrete). The
output variable is the fuel consumption in MPG. After
removing examples with missing values, the data set is
reduced to 392 entries. One purpose of the research on
this problem is to select several important input variables
(to find the degree of importance of inputs with respect
to the output).

3) Pima diabetes dataset: The Pima Indian Diabetes dataset
contains 768 examples. Each example representing a pa-
tient who may show signs of diabetes is described by
eight features which are: a) number of times pregnant, b)
plasma glucose concentration, c) diastolic blood pressure,
d) triceps skin fold thickness, e) two-hour serum insulin,
f) body mass index, g) diabetes pedigree function, and h)
age. There are 500 examples from patients who do not
have diabetes and 268 examples from patients who are
known to have diabetes.

4) Breast cancer diagnosis problem: The University of Wis-
consin Breast Cancer data set consists of 699 patterns
which are classified two classes, 458 benign examples
and 241 malignant examples. Each example is described
by nine features: a) clump thickness, b) uniformity of cell
size, c) uniformity of cell shape, d) marginal adhesion, e)
single epithelial cell size, f) bare nuclei, g) bland chro-
matin, h) normal nucleoli, and i) mitoses. In the dataset,
the values of the sixth feature of 16 examples are missing.
We neglect the 16 examples when conducting experi-
ments.

5) Sleep state dataset: This dataset describes different states
about human’s sleep contains 1236 examples with eleven
attributes and is initially classified to six classes.

C. Feature Subset Selection

We first use both our proposed OFFSS and the three methods
mentioned in Section V-A to select feature subsets based on
the each dataset. Since our OFFSS is with respect to two-class
problem, we need to transfer more than two class problems to
two-class problems. We illustrate this transformation via the Iris
dataset. The similarity measure between two linguistic terms is
defined as

for , . The computed
process and the result for given threshold are listed as
follows.
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Step 1. , .
The process of feature selection is
Empty set
Step 2. Setosa , Versicolor .
The process of feature selection is
Empty set .
Step 3. The optimal feature subset for the
classification task is determined to be

.

For MPG dataset, since the output of this problem is contin-
uous, a discretization should be done. Output values are roughly
categorized into three classes in this paper, that is, Class 1:
{ }, Class 2: { }, and Class 3:
{ }. The definition of similarity measure between
two fuzzy numbers are the same as that in the above Iris classi-
fication problem. For given threshold , the computed
process and the result are listed here.

Step 1. Class 1 [ Class 2 ) P , Class 3 ) N . The

process of feature selection is shown as:

Empty set

!fYear model g

!fYear model ;Displacement g

!fYear model ;Displacement ;Acceleration g

!fYear model ;Displacement ;Acceleration ;Weight g

Step 2. Class 1 ) P , Class 2 ) N . The process

of feature selection is shown as:

Empty set

!fDisplacement g

!fDiplacement ;Year model ; g

!fDiplacement ;Year mode;Acceleration g

!fDisplacement ;Year model ;Acceleration ;Weight g

Step 3. The optimal feature subset for the

classification task is determined to be S =

fYear model ;Displacement ;Acceleration ;Weight g.

Moreover, for the Sleep state dataset, the third class (688 ex-
amples) is considered as the negative class and the other five
classes are regarded as the positive class. The feature subset
selection results given by difference approaches are listed in
Table VIII where the number of features is given in advance.

D. Application to Fuzzy Decision Tree Induction

Each selected dataset is first split into two parts, the training
and testing sets by randomly choosing examples. For all datasets
80% of the examples are randomly selected as the training set
and the remainder as the testing set. We would like to use fuzzy
decision tree induction to check the performance difference be-
tween before and after feature selection, and to compare the
performance of our proposed OFFSS with the other three ap-
proaches mentioned in Section V.A.

TABLE VII
GROUP OFEXAMPLES WITH FIVE FUZZY-VALUED FEATURES

TABLE VIII
FEATURE SUBSET SELECTION BY DIFFERENTAPPROACHES

Fuzzy decision tree induction is an important way of learning
from fuzzy examples. Since the generation of optimal (fuzzy)
decision tree has been proved to be NP-hard problem(s) [12],
[36], it is unrealistic to find an exact algorithm for the optimal
tree. It forces people to generate relatively better decision trees
via using heuristic information. One popular and powerful
heuristic for generating crisp decision trees is called ID3. The
earlier version of ID3, which is based on minimum information
entropy to select expanded attributes, was proposed by Quinlan
[25] in 1986. Fuzzy ID3 is a fuzzy version of crisp ID3, which
has been suggested by some authors [37], [31], [14]. The fuzzy
decision tree induction based on ID3 can be summarized as
follows.

1) Fuzzifying the training data: For each feature of each
dataset, we use five linguistic terms which are VSM, SM,
MED, LRG, and VLRG (Fig. 7). It is worth noting that,
for any (a real value of any feature), one linguistic term

( ) can be se-
lected such that . One may argue the number
of used linguistic terms. In fact one can conduct the ex-
periments using different number of linguistic terms (say,
SM, MED, and LRG) and obtain a similar result. This
paper aims to investigate the feature selection and does
not investigate in detail the used linguistic terms.

2) Training: Based on the training dataset, we can generate
a fuzzy decision tree. (Of course, one can use Quinlan’s
SEE5 software to generate a crisp decision tree directly
from the continuous training data, but in this paper we
generate a fuzzy decision tree in terms of our imple-
mented fuzzy ID3 algorithm). By changing each path
from root to leaf to a fuzzy production rule, we can get
a set of fuzzy rules. The training will be conducted on
the training dataset both before and after the feature
selection.

3) Testing: Based on a specified fuzzy reasoning mecha-
nism, we can test the generated fuzzy rules. Here, the rea-
soning mechanism is specified to be max–min operations.
For details, one can refer to [40]. The testing will be con-
ducted on training/testing datasets both before and after
the feature selection.
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Fig. 7. Five membership functions.

We repeat steps 1)–3) ten times and record the average for
training and testing with respect to the selected five datasets. The
result (before and after feature selection) is listed in Table IX.

E. Comparison and Analysis

For Iris dataset, all methods obtain the same result. That is,
for the classification task, the two important attributes (features)
are PL and PW. Only these two features are used, several fuzzy
rules with satisfactory accuracy can be extracted.

For the MPG problem, some researchers had investigated
the input selection. For example, in [15], the author pre-
sented a quick and straightforward way of input selection for
neuro-fuzzy modeling and tested his algorithm using MPG
problem. After the complicated computation and analysis,
the author gave a result that, for the continuous output, the
attributes Weight and Year-model are the two most important
input variables.

One problem appearing in the above selection process is
whether the feature entering the feature subset earlier is more
important than the feature entering later. We do not think so.
The heuristic does not provide such information. Our obtained
result has a few differences in comparison with the results in
[15]. It is due to the fact that the MPG problem was discussed in
[15] as continuous output but our discussion about this problem
is based on a roughly discrete classification of outputs. It is
easy to see that our selected optimal feature subset includes the
two features Weight and Year-model which are considered as
the two most important input variables by many investigators.
However, the information offered only by these two features for
our roughly discrete classification are not enough to separate
the three classes, although they are the two most important
input variables of this problem.

From Table VIII, one can see that the feature subsets se-
lected by using the four methods are different (except for the
Iris dataset).

From Table IX, we can obtain the following comparative re-
sults. After feature selection, our proposed OFFSS is slightly
superior to the other three methods in terms of testing accuracy.
It may be due to the fact that the OFFSS can select the approx-
imately optimal feature subset. Although the four methods has
no obvious difference in training accuracy and for each method
the selected features have the almost same performance as all
features, the computational complexity of selection of OFFSS
is much less than the other three.

F. Some Notes

Usually, fuzzy ID3 algorithm uses partial features of feature
space which is enough to complete the generation of decision
trees. Generally speaking, the fewer features to be used in the

TABLE IX
PERFORMANCECOMPARISONAMONG DIFFERENTAPPROACHES

algorithm are, the better the generated decision trees. Therefore,
we expect that the decision tree generated by using optimal fea-
ture subset selected by the heuristic algorithm proposed in this
paper is superior to the decision tree without optimal feature
subset. Example 7 shows that it is possible to generate a rela-
tively better decision tree after carrying out the feature subset
selection.

Example 7: Consider Table VII (adopted from [6] with
fuzzification) where the membership functions of the five
terms {VSM, SM, MED, LGR, and VLGR} are shown in
Fig. 7. The similarity measure between two terms is defined in
Section II. Using our revised heuristic algorithm proposed in
Section IV for the given threshold , one can obtain
the optimal feature subset { }. It is easy to verify that there
are three optimal feature subsets, they are { }, { } and
{ }. Using fuzzy ID3 algorithm on the entire feature space
{ } and the selected feature subset { }, one
can obtain two decision trees as shown in Figs. 8 and 9. From
the view point of minimum number of leaves, one can see that
the decision tree with OFFSS (Fig. 9) is superior the decision
tree without OFFSS (Fig. 8).

From Example 7, we know that our heuristic algorithm for
OFFSS does not find all optimal feature subsets. The group
of examples shown in Table VII has three total optimal fea-
ture subsets for the given threshold ({ }, { }
and { }). Our heuristic only finds the second one but fuzzy
ID3 algorithm on the entire feature space uses the third one. A
problem is whether or not the expanded features in fuzzy ID3
always constitute an optimal feature subset. Example 8 gives us
a negative answer.

Example 8: Consider Table V where the membership func-
tions of the three terms {Small, Mid, and Big} are shown in
Fig. 1. The similarity measure between two terms is defined
in Example 5. It is easy to check that, for the given threshold

, { } and { } are the only two optimal feature
subset. However, the expanded attribute at the root is selected
as the attribute which has not been included in any optimal
feature subset. The attribute selection of fuzzy ID3 at the root is
based on the following computation of fuzzy entropy:

Entropy

Entropy Entropy

Entropy
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Fig. 8. Fuzzy decision tree on feature space {A;B;C;D;E}.

Fig. 9. Fuzzy decision tree on feature subset {D;E}.

Many researchers had pointed out that the overloaded number of
features would seriously affect the quality of inductive learning
and the accuracy on extracted rules and irrelevant features would
enlarge the noise of the training set [5], [16]. Therefore, we
expect that the number of features used in the learning phase
can be reduced via optimal feature subset selection such that
the performance of learning can be improved. The testing on
hand-written number recognition reported in [6] verified this ex-
pectation under the crisp environment.

VI. CONCLUSION

This paper investigates a problem of OFFSS. The computa-
tional complexity of OFFSS is proved to be NP-hard; OFFSS is
shown to be equivalent to a search for a path in fuzzy extension
matrix; a heuristic algorithm for OFFSS is given; and the feasi-
bility and simplicity of the proposed algorithm are demonstrated
by applications of OFFSS to fuzzy decision tree induction and
by comparison with three different feature selection techniques
developed recently.
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