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Abstract. Detecting multiple network attacks is essential to intrusion detection, 
network security defense and network traffic management. This paper presents 
a covariance matrix based detection approach to detecting multiple known and 
unknown network anomalies. It utilizes the difference of covariance matrices 
among observed samples in the detection. A threshold matrix is employed in the 
detection where each entry of the matrix evaluates the covariance changes of 
the corresponding features. As case studies, extensive experiments are con-
ducted to detect multiple DoS attacks – the prevalent Internet anomalies. The 
experimental results indicate that the proposed approach achieves high detec-
tion rates in detecting multiple known and unknown anomalies. 

1   Introduction 

Detecting multiple network attacks is essential to intrusion detection, network security 
defense and network traffic management. For example, effective detection of multiple 
attacks can guarantee the good performance of an intrusion detection system (IDS). 
All of the on-line intrusion-prevention systems (IPS), such as Internet Security Sys-
tems (ISS) Proventia G Series, NetScreen Technologies' NetScreen-IDP 100 and 
TippingPoint, have some level of attack detection mechanisms to identify malicious 
traffic [7]. Detecting multiple attacks also helps the Internet Service Providers (ISP) 
to effectively manage the traffic and improve the Quality of Service(QoS) to end-users. 

Generally speaking, two kinds of strategies exist in the field of intrusion detection: 
misuse and anomaly. Misuse detection utilizes signature-matching techniques to indi-
cate the presence of an attack. It is only effective and practical to detect already-
known attacks. Anomaly detection utilizes the significant deviation from the normal 
profile to identify suspicious behaviors. Compared with misuse detection, anomaly 
detection approaches offer an advantage of identifying unknown attacks. 

In the context of Internet anomaly detection, statistical detection approaches are 
widely employed. Normally these statistical methods utilize the first-order statistical 
inferences of network features provided by the monitoring devices [1] [2] [3]. In this 
paper, we present a second-order statistical method to detect the cumulative changes 
exhibited by the network packet sequences of equal and fix length. The detection 
approach utilizes the covariance matrix to model the observed network packets. To-
tally different from traditional anomaly detection techniques, where covariance matrix 
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structure is estimated to analyze the noise [4] [5] [6], the covariance matrix based 
detection approach presented in this paper utilizes the difference among covariance 
matrices directly in the detection. Under the effect of different thresholds for different 
classes obtained by training, the significant changes among covariance matrices are 
revealed in detecting different types of attacks. 

Our design makes use of the following basic facts. First, the covariances among dif-
ferent first-order network features have specific meanings in the network engineering. 
For example, the covariance changes among first-order features (such as SYN and FIN) 
will indicate the ongoing phenomenon, i.e., a SYN flooding attack [10]. Second, as a 
statistical variable, covariance or covariance matrix should be calculated from a collec-
tion of data. Facing the large volume of network traffic, it is more reasonable to con-
sider the traffic within a determined time interval or a fixed sequence length.  

The rest of this paper is organized as follows. Section 2 describes the anomaly de-
tection approach in details. Section 3 validates the performance of our approach by 
experiments. Section 4 gives some discussions and draws a conclusion. 

2   Approach 

2.1   Detection Algorithm 

We regard the problem of detecting multiple attacks as a multi-class classification 
problem. The classifier should be able to not only distinguish multiple known classes, 
but also identify the unknown classes. 

Suppose that we have samples from R already known classes: 1 2, , , Rω ω ωK . For 

each class (1 )r r Rω ≤ ≤ , its training set rω  consists of all the corresponding covari-
ance matrices calculated on the sample sequences of equal, fixed length. For example, 

when selecting the sequence length as n, 1
rM  is obtained by calculating all the sam-
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where  

uf  and vf  is the first-order features of the observed network packet  

l
uf

µ (1 )u p≤ ≤ is the expectation of uf  
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,l k
uf is the value of uf  in the k-th observation during the l-th time interval 

u  is the number of features ( )1 u p≤ ≤  

k  is the number of observations during lT  ( )1 k n≤ ≤  

l  is the number of time intervals, such as 1 2, , , , 1lT T T l≤ ≤ ∞K K  
 
Assume that we can get a total of l  covariance matrices for class 

{ }1 2: , ..., l
r r r rM M Mω  according to the above described procedure. The classifier will 

assign a class label to a presented obsM  in the detection according to the following 
discrimination function:   
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where ( )rE ω   is the mean of class rω  and  rδ  is the settled threshold matrix of class 
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Equations (3) and (4) mean that for an observed covariance matrix obsM , the classi-
fier will classify it to the same label as the average of any one of known classes rω , if 

and only if ( , ( ); ) [0]obs
r r p pDist M E ω δ ×= . For example, obsM  will be considered as 

normal when obsM  is -matrixNδ  nearest to the center of the normal class Nω in all 

( 1) 2p p +  different positions in the difference matrix of obsM and Nω . If we could 

not find any one of known classes to obsM to be -matrixrδ nearest, obsM  will be 

determined as the novelty. 

2.2   Threshold Determination 

The determination of multiple thresholds for multiple known classes is a complex 
optimization problem. Especially, that the threshold is a matrix as proposed in Equa-
tions (3) and (4) makes its determination more difficult. Here we propose a relatively 
simple but practical threshold determination algorithm. The algorithm attempts to set 
every entry of the threshold matrix as a value which covers all the variances of the 
corresponding covariance changes. Especially, the maximum statistic of the covari-
ance changes is utilized as the initial value of each element in the threshold matrix. 
The aim of the threshold matrix determination algorithm is to achieve the minimal 



694 S. Jin et al. 

misclassification rate for each training class. We increase or decrease the threshold 
matrix by multiplying the threshold matrix with different multipliers. Correspond-
ingly, the classification precision rate and misclassification rate will change with 
different product threshold matrices. Generally, we can obtain a set of product thresh-
old matrices which can make the misclassification rate achieve the minimum.  We 
select the minimal multiplier from the product set as the preferred threshold matrix 
multiplier. The preferred threshold matrix is the product of the preferred threshold 
matrix and the initial threshold matrix. In order to illustrate the threshold matrix de-
termination process, a realization of threshold matrix determination for normal class 
is provided in Fig. 1. The threshold matrix determination of other attack classes will 
have the similar process. Because a misclassification of any normal sample will signal 
a false alarm, the false alarm rate is used in Fig. 1 instead of misclassification rate.  

 

 

Fig. 1. A realization of threshold determination algorithm for normal class 

2.3   Detection Rules 

As an on-line detection system, our detection approach employs a rule-like sequential 
detection procedure. Assume there are R classes in the training stage and we have ob-
tained R threshold matrices according to the above threshold determination algorithm. 
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do { 
      *N N multiplierδ δ=   

       for each N M ϖ∈  

             if ( , ( ); ) [0]N N p pDist M E ω δ ×≠  count=count+1; 

        endfor 
        FAR(False Alarm Rate) = count/ Nϖ  

        multiplier=multiplier+0.01; 
 
} until (FAR is converged or minimum)  
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We label the training classes as follows. The normal class is labeled as class 1ω  and the 

attack classes are labeled based on the sample numbers they have. The more samples 
the attack class has, the smaller its label is. Therefore, a labeled training class sequence 
will be obtained as 1 2 3, , ,..., Rω ω ω ω . The detection process is demonstrated in Fig. 2. 

obsM

if 1 1( , ( ); ) [0]obs
p pDist M E , then obs

NM

elseif 2 2( , ( ); ) [0]obs
p pDist M E , then 2

obsM

elseif 3 3( , ( ); ) [0]obs
p pDist M E , then 3

obsM

… … 
else obsM unknown attack 

 

Fig. 2. A rule-like realization of on-line detection 

3   Experiments 

3.1   Data and Feature Used 

The dataset we use is KDD CUP 99 Dataset at http://kdd.ics.uci.edu/databases 
/kddcup99/kddcup99.html. It is constructed based on the raw data of TCP dump data 
from 1998 DARPA evaluations [11] for the purpose of network intrusion detector com-
petition. The datasets contain a total of 24 training attack types, with an additional 14 
types in the test data only. In our experiments, only the DoS attack classes which con-
tain records greater than 200 are considered. The main reason is that it is not always 
possible to formulate a classification model to learn the anomaly detector with “insuffi-
cient” training data [12]. There are totally 6 types of DoS attacks in our experiments 
which include 3 known DoS attack types and 3 unknown DoS attack types. We use 3/5 
samples as training set and 2/5 samples as testing set for each selected class. The de-
tailed dataset description in our experiments is presented in Table 1. 

We employ all the 9 time-based traffic features in our experiments. They are the 
features named count, serror_rate, rerror_rate, same_srv_rate, diff_srv_rate, 
srv_count, srv_serror_rate, srv_rerror_rate and srv_diff_host_rate. A detailed de-
scription of the 9 time-based traffic features is provided in [13]. 

Table 1. Data set description 

Type Training samples Testing Samples
Normal 94722 63148
Smurf 266929 177952
Back 1981 1320
Neptune 99122 66080
apache2 0 794
mailBomb 0 5000
processtable 0 759



696 S. Jin et al. 

3.2   Results 

In our experiment, the sequence length parameter n  is set to 200 with a sliding win-
dow of 50, while the preferred threshold rδ  for each known classes is obtained in the 
training procedure described in Section 2.2.  

As we know, different threshold matrix corresponds to different classification preci-
sion rate in detecting different class. Here we take the detection of the normal class as an 
example. Fig. 3 illustrates the performance of different threshold matrix used in detect-
ing the normal class, in terms of different pairs of detection rate and false alarm rate.  
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Fig. 3. ROC curve of the covariance matrix based detection approach 

Remarks: Fig. 3 shows that the covariance matrix based detection approach achieves 
very high detection rates with very low corresponding false alarm rates. Two reasons 
contribute to this high detection results. One is the dataset itself. As we know that 
many flaws exist in the KDD CUP dataset [14], the normal traffic provided in the 
dataset is somewhat too simple. The other reason is that the threshold utilizes a matrix 
rather than a scalar to evaluate the covariance changes. Each entry in the threshold 
matrix evaluates the changes of the covariance of two corresponding features. There-
fore, if the observed covariance matrix (e.g. the samples of the attack class) should 
not be labeled as the provided class profile (e.g. the profile of normal class), it is very 
easy to happen that the changes of some elements in the observed covariance matrix 
exceed the corresponding element in the threshold matrix, which will result in the 
failure of labeling the observed samples as the label of the provided profile. However, 
we will also notice that each entry of the initial threshold matrix is settled as the 
maximum statistic of the covariance changes, which increase the opportunity of label-
ing the observed sample of covariance matrix as its corrected class label. Therefore, 
the false alarm rate of the normal class or the misclassifications rates of the attack 
classes will be very low while the classification precision rate will be very high in the 
covariance matrix based detection approach.  

Table 2 shows some pairs of false alarm rate and detection rate in details when dif-
ferent multipliers of the initial threshold matrix for normal class are used (refer to  
Fig. 1 for detailed threshold determination algorithm for the normal class). 
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Table 2. Different pairs of false alarm rate and detection rate under different threshold matrices 
of the normal class 

Threshold Multiplier False Alarm Rate Detection Rate 
1.15 0 99.60% 
1.05 0.32% 99.66% 
0.95 2.78% 99.70% 
0.85 7.94% 99.84% 
0.75 10.88% 99.86% 
0.65 16.68% 100.00% 

 

In order to show the performance difference of using different threshold matrices in 
detecting normal class, we list the classification precision rates in detecting testing sam-
ples of the normal class, under different threshold matrix with different multipliers of 
1.15 and 0.65 (refer to Table 2), respectively. The classification precision results are 
shown in Table 4, where New represents the unknown attack class. Each entry in Table 
3 shows the classification rate of detecting the testing samples of normal class as differ-
ent known classes. For example, the entry of (2,2) in Table 3 means that the classifica-
tion rate of detecting the testing samples of the normal class as the normal class is 100% 
under the threshold matrix with multiplier 1.15.    

Table 3. Classification precision rates of detecting the testing samples of the normal class as 
known classes and unknown attack 

Threshold Multiplier normal smurf back neptune New  
1.15 100.00% 0 0 0 0 
0.65 83.32% 0 0 0 16.68% 

In order to show the overall performance of the covariance based detection ap-
proach in detecting multiple known and unknown attacks, we list the classification 
results in Table 4. Because the threshold matrix determination algorithm proposed in 
Section 2.2 is only a practical solution, we only use 1.15 as the threshold multiplier 
for the normal class and simply use the initial threshold matrix as the preferred 
threshold matrix for each known attack class.  

Table 4. Classification results of distinguishing multiple known and unknown classes using the 
preferred threshold in the threshold determination algorithm 

 normal smurf back neptune New  
normal 100.00% 0 0 0 0 
smurf 0 100.00% 0 0 0 
back 86.96% 0 4.35% 0 8.70% 
neptune 0 0 0 98.86% 1.14% 
apache2 0 0 0 0 100.00% 
mailBomb 0 0 0 0 100.00% 
processtable 0 0 0 0 100.00% 
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Table 5 summarizes the total classification precision rates of the results listed in 
Table 4, for the different whole dataset of 4 training classes (refer to column 
Training), 7 testing classes (refer to column Testing), 3 known attacks (refer to 
column Known) and 3 unknown attacks (refer to column Unknown), respectively.  
The row of number of samples presents the sample count of the dataset represented by 
the column in terms of the covariance matrix, where the covariance matrix samples 
are obtained under the fixed and equal sequence length 200 with a sliding window 50. 
The total precision rate is calculated as the number of correctly classified samples 
divided by the total samples. 

Table 5. Total classification results of distinguish multiple known and unknown classes 

 Training Testing Known Unknown 
Number of Samples 9241 6277 4897 121 
Total Precision Rate 99.62% 99.41% 99.24% 100.00% 

4   Discussions 

The experimental results in Section 3 show that the covariance matrix based detection 
approach can achieve a high detection rate, high classification precision rate for the 
normal class, known attack and unknown attack classes. These experimental results in 
this extended paper are much better than that presented in our original paper [15]. In 
the original paper, the threshold is realized based on a scalar value, which evaluates 
the Euclidean distance of the difference matrix between an observed covariance ma-
trix and the profile covariance matrix; while the threshold in this extended paper is 
based on a matrix where each entry is realized based on the maximum statistics of the 
covariance changes of two corresponding features. Therefore, the detection perform-
ance has improved a lot. It is true that the dataset employed in this paper has some 
bias on the detection results, because the flaws exist and the data is somewhat a little 
simple [14]. However, the detection results verify the effectiveness of employing the 
covariance matrix in the DoS attack detection; particularly, employing a matrix rather 
than a scalar to evaluate each entry of the observed matrix sample will greatly in-
crease the effectiveness of the detection. 

As the detection approach proposed in this paper utilizes statistical covariance ma-
trix directly, another more relevant detection approach we want to mention is the 
Mahalanobis-distance based detection approach (M-detector). Both methods take into 
account variance and covariance of the variables measured, but our proposed method 
is very different from Mahalanobis Distance base detector in the following aspects:  

 Similarity measurement: M-detector evaluates the M distance between the ob-
served sample and the different means of different classes, while our method 
evaluates the difference of matrices between the covariance matrix of samples 
and the covariance matrix of different classes. 

 Feature space: the feature space of M-detector consists of the samples of signals, 
while the feature space of our proposed method consists of the covariance matrix 
of a group of sampled data. 
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Compared with other outlier detection methods, our proposed method takes advantage 
of the following desirable characteristics: 

 The employment of the covariance statistics makes the dissimilarity prominent 
among the normal and different types of attacks. 

 The covariance matrix used in our detection approach has specific meaning, 
which characterizes each attack in terms of dispersion of its own corresponding 
first-order feature pairs. 

 The detection approach overcomes the drawback [7] of the dependency of data 
specific distribution in traditional IDES/NIDES based anomaly detection 
techinques.  

More research needs to be done. For example, we need to know how to evaluate the 
effect of physical features on the covariance feature space. We also need to conduct 
more experiments on different datasets. But these future works do not undermine the 
discussion of anomaly detection in this paper. The proposed covariance based second 
order statistical detection approach can be served as a new tool in detecting multiple 
anomalies. 
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