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Abstract. Rough set theory has proven to be a very useful tool in dealing with 
many decision situations where imprecise and inconsistent information are in-
volved. Recently, there are attempts to extent the use of rough set theory to or-
dinal decision making in which decisions are made on ordering of objects 
through assigning them to ordinal categories. Attribute reduction is one of the 
problems that is studied under such ordinal decision situations. In this paper we 
examine some of the proposed approaches to find ordinal reducts and present a 
new perspective and approach to the problem based on ordinal consistency. 

1   Introduction 

We are often called upon to deal with data that are imprecise and inconsistent in deci-
sion situations. Many theories, such as fuzzy set theory and Dempster-Shafer theory 
of evidence, have been developed to handle these types of data in analysis and deci-
sion making. Rough set theory introduced by Pawlak in [7] is one of the more recent 
developments in this area. Since its introduction rough set theory has found to be 
useful in a broad spectrum of applications [3, 6]. Rough set theory acknowledges the 
fact that in real world situations, objects can only be identified by their known attrib-
utes and objects sharing the same attribute values become indiscernible. The indis-
cernible groups of objects resulting from the limited information we have about them 
are the basis upon which analysis and decisions must be made. 

In the original rough set formulation, the attributes considered in an information 
system, including decision attributes, are assumed to take on nominal values. Objects 
sharing the same attribute values form equivalent groups which partition the object 
space. In such environment we may not be able to completely specify an arbitrary set 
of objects using the attributes available. We can approximate the set by a rough set 
consisting of a lower and an upper approximation, definable in the available attrib-
utes. One important area in data analysis is the selection of a suitable set of attributes 
among available attributes which may contain redundancy. Redundant attributes 
cause ineffectiveness in data analysis and induction of decision models. In rough set 
theory selection of attribute is studied under the topic of reducts which are minimal 
attribute sets with same descriptive power of the original attribute set. 
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Subsequent to its introduction, rough set theory has been extended in various ways, 
for example, by combining it with fuzzy set theory, or replacing the equivalence rela-
tion defining the indiscernibility groups with other weaker forms of relations. In this 
paper we consider the formulation in which the decision is based on a set of ordered 
labels. In such decision situation, an ordering is created in a set of objects by assign-
ing them ordinal class labels as in the case of assigning students A, B, C, … grades in 
a test. In the previous studies on application of rough set theory in ordinal decisions, 
the conditional attributes used to determine the decisions are also considered to be 
ordinal in nature [1, 2, 4, 8]. Greco et al studied the ordinal information system in the 
context of multicriteria decision making in [2]. They defined a reduct based on quality 
of approximation, using upper and lower set approximation similar to those in the 
classic rough set model. We will describe this system in greater details in Section 3 to 
contrast it with our approach. Bioch and Popova [1] studied reducts in monotone 
information systems by examining the monotone discernibility matrix, which corre-
sponds to discernibility matrix in classic rough set, in finding monotone reducts. In 
[8], the authors examine the concept of reduct by considering the partitioning of bi-
nary relation space by ordering expressions in the set of attributes concerned. We 
have also studied this problem by focusing on the approximation of the implicit deci-
sion ordering using the available ordinal attributes in [4]. In this paper, we examine 
the situation where the ordinal decision is made based on condition attributes which 
take nominal values. Certainly nominal attributes are common, and in some situations 
like absence of monotonic relation, it may be more effective in decision analysis to 
treat ordinal attributes as nominal. We will examine reducts required for approxima-
tion of the decision ordering in this environment. We formulate a new type of dis-
cernibility matrix which we use to find ordinal reducts and illustrate this with an  
example. 

In the following, we first present an overview of rough set in Section 2. We discuss 
ordinal information systems in Section 3. In Section 4 we examine the approximation 
of decision ordering and the associated concept of ordinal reducts. Section 5 intro-
duces the new definition of ordinal separability and ordinal discernibility matrix and 
how it can be used to find ordinal reducts. The last section concludes with some of 
our ongoing investigation directions. 

2   Rough Sets Overview 

In this section we recap some of the basic formulation of rough set theory and related 
concepts we used in this paper. More details can be found in the tutorial paper [3]. An 
information system is a pair ),( AUS =  where U is the universe of discourse with a 

finite number of objects, and A is a set of attributes defined on U. Each attribute a of 
A is a function aVUa →:  which maps objects of U to the value set Va. A decision 

system is a special information system }){,( dAU ∪=∆  in which there is a distin-

guished attribute d called the decision attribute with corresponding decision value set 
Vd. For any subset of attributes AB ⊆ , an indiscernibility relation 

})()(:),{( BayaxayxIB ∈∀==  is generated which partitions U into equivalence 
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classes BIU /  of objects indistinguishable with respect to attributes in B. The equiva-

lence class containing Ux ∈  can be defined by })()(:{][ Bayaxayx B ∈∀== . 

For any subset UX ⊆  and AB ⊆ , X can be approximated by a rough set consist-
ing of a lower and an upper approximation defined respectively as: 

}][:{: XxxXB B ⊆=  (1) 

}][:{: ∅≠∩= XxxXB B  (2) 

These rough set approximations form a pair of tight bounds over X based on B in 

the inequalities XBXXB ⊆⊆ . The boundary set XBXBXB \
~ = 1 contains objects 

that we cannot say for certain to be inside or outside of X given their B attributes. 
In a decision system, the family of equivalence classes generated by the decision 

attribute d is given by }{/ dIUD = . As for any set UX ⊆ , each equivalence class in 

D can be approximated by using a given attribute set B. The corresponding quality of 
approximation of the decision d by a set of attributes B can be measured by: 

||

||
)(

U

XB
D DX

B
∑ ∈=γ . This measure constitutes the proportion of U which can be 

unambiguously classified using their attribute values in B. A reduct R of A with re-
spect to D is a minimal subset of A that preserves this approximation quality. Thus R 
is a reduct if )()( DD AR γγ =  and )()( DDRB AB γγ <⇒⊂ . The set of reducts with 

respect to d in A is denoted by ( )ARedd . 

3   Ordinal Attributes and Ordinal Decision Systems 

It is quite common for attributes and decisions to assume ordinal labels like alphabetic 
grading systems for student’s performance or Likert scales used in opinion surveys. 
An ordinal decision system is one in which the decision attribute is ordinal. An ordi-
nal attribute a has an attribute value set Va which is a linearly ordered sets of labels. 

We represent the label set in the form of }...{ 21
a

a
aa

a lllV ⊥>>>= . An ordinal attribute 

induces a corresponding weak order a≥  (a complete and transitive relation) in U  thus 

)}()(:),{( yaxayxa ≥=≥ . In [5] we showed that any weak order a≥  corresponds 

uniquely to the nested sets in the family }:]{[ UxxU aa ∈= ↑↑  

where )}:{][ xyyx aa ≥=↑ . These nested sets correspond to the equivalence classes 

defined by nominal attribute values in the classic rough set theory. Thus in the case of 
an ordinal decision system, the induced decision order is d≥  and the corresponding 

nested sets is given by }:]{[ UxxU dd ∈= ↑↑ . We further define the following notations 

used in this paper. 

                                                           
1 We use X\Y to represent difference of set X and Y. 
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)}:{:][ yxyx aa ≥=↓  (3) 

},:{][ Baxyyx aB ∈∀≥=↑  (4) 

},:{][ Bayxyx aB ∈∀≥=↓  (5) 

})(:{: a
i

i lxaxa ≥=↑  (6) 

)}(:{: xalxa a
i

i ≥=↓  (7) 

In [2], the authors consider an ordinal decision system in which all attributes, both 
condition and decision attributes, are ordinal. They proposed to approximate an ordi-
nal decision system in a similarly way to approximating sets. The sets in this context 

are now the nested sets id ↑  and id ↓  induced by the ordinal decision. Thus for any 
subset of attributes AB ⊆ , the lower and upper approximation of these sets are given 
by: 

}][:{ i
B

i dxxdB ↑↑↑ ⊆=  (8) 

U idx B
i

B
i xdxxdB ↑∈

↑↑↑↑ =/≠∩= ][}0][:{  (9) 

}][:{ i
B

i dxxdB ↓↓↓ ⊆=  (10) 

U idx B
i

B
i xdxxdB ↓∈

↓↓↓↓ =/≠∩= ][}0][:{  (11) 

The corresponding boundary sets are similarly defined: 
iii dBdBdB ↑↑↑ = \

~
  (12) 

iii dBdBdB ↓↓↓ = \
~

  (13) 

The quality of approximation of d using the set of attributes B is then defined as: 

( ) ( )( )
||

|
~~

\|
)(

U

dBdBU
d i

i
i

i

B
UU ↓↑ ∪

=γ  (14) 

Reduct is then defined as any minimal subset that preserves this quality of ap-
proximation. Thus a subset AR ⊆  is a reduct if and only if )()( dd AR γγ =  and 

)()( ddRB AB γγ <⇒⊂ . In [4], we showed some problems associated with this defi-

nition of ordinal reduct and provide an alternative model to resolve these problems. 
In this paper we focus on the case where in the decision system }){,( dAU ∪=∆ , 

the decision attribute d is ordinal while   the other attributes in A are nominal. Fur-
thermore, similar to the approach in [4], our goal is the approximation, not of the 
ordinal classes, but of the underlying decision ordering d≥  generated by the ordinal 

decision labels in dV . This is based on the assumption that in making an ordinal deci-

sion, the assignment of ordinal labels to objects is solely for the purpose of creating 
the underlying ordering d≥ . 
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4   Approximating the Decision Ordering 

Thus we regard the decision ordering as the meaning of the label assignment process 
and hence is more important than the actual labels assigned to the objects. To give a 
simple illustrate of this perspective: if we have a universe of two objects x and y, and 
ordinal labels 1>2>3, then the label assignments {x→1, y→2}, {x→1, y→3}, and 
{x→2, y→3}, will be equivalent from this perspective since they represent the same 
decision ordering of x>y. Our goal is therefore to provide a rough set approximation, 
in the sense of a tight upper and lower bound, for the decision ordering d> 2 base on 

information granules generated by the nominal attributes A. First of all, we observe 

that i
i

dd dUxxU }{}:]{[ ↑↑↑ =∈=  is the family of nested sets corresponding to the 

weak order d>  and they are related by: 

( ) ( ) ( ) ( )UUU i

ii

i

ii

UXd dddUdXUX
d

)1(\\ +↓↑↑↑
∈

×=×=×=> ↑  (15) 

This formulation provides us the means to create the upper and lower approxima-

tions for d> . Since for all i and AB ⊆ , we have iii dBddB ↑↑↑ ⊆⊆ , thus 

( ) ( ) ( ))1()1()1( +↓↑+↓↑+↓↑ ×⊆×⊆× iiiiii dBdBdddBdB   (16) 

provides an upper and a lower bound for the ordering generated by each level of the 
ordinal decision label d

il . Aggregating over all i’s,  

( ) ( ) ( ) ( )UUU i

ii

i

ii
di

ii dBdBdddBdB )1()1()1( +↓↑+↓↑+↓↑ ×⊆×=>⊆×  (17) 

So the sets ( ) ( )Ui

iiB
d dBdB )1( +↓↑ ×=>  and ( ) ( )Ui

iiB
d dBdB )1( +↓↑ ×=>  provide 

respectively the lower and upper approximation to the decision ordering d> . (Note: 

We use the same symbols for the upper and lower approximations as in [4], with the 
understanding that the attribute types are different and hence the approximations are 
also different. In the following, we will also continue to use the same symbols as in 
the paper for the corresponding concepts in our current formulation bearing in mind 
the definitions will depend on the attribute type concerned.) These are also tight 

bounds in as far as ( )ii dBdB ↑↑ ,  and ( )11, +↓+↓ ii dBdB  are tight bounds for id ↑  and 
1+↓id  respectively. The upper and lower bounds can also be written in the more famil-

iar forms: 

( ) ( )yxyx d
B
d >⇒>  (18) 

( ) ( )yxyx B
dd >⇒>  (19) 

                                                           
2 We consider approximation of d> , the asymmetric part of d≥ , instead of d≥ . The two order 

relations are related by a simple formula. d>  is chosen because it offers more elegant concep-

tual formulations. 
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When all id ’s are definable in AB ⊆ , i.e. iii dBddB ↑↑↑ == , the upper and 

lower boundaries for the order approximation also merge and we 

have ( ) ( ) ( )B
dd

B
d >=>=> . The quality of ordinal approximation given AB ⊆  can be 

measured in a similar manner as for set approximation as: 

( )
||

||

||

||
)(

1

d

i

ii

d

B
do

B

dBdB
d

>

×
=

>
>

=
+↓↓↑↑Uγ  (20) 

This measure varies between 0 and 1. It is obvious that )(do
Bγ  will become 1 if the 

id ’s (the decision classes when the decision labels are treated as nominal instead of 
ordinal) are definable in terms of B. However it can be shown this is not a necessary 

condition for )(do
Bγ  be equal to 1. As in the classic rough set theory, this approxima-

tion measure helps to define the concept of ordinal d-reduct. Thus an ordinal d-reduct 
is defined as a minimal subset of A which preserves this approximating quality. For-
mally AR ⊆  is an ordinal d-reduct of }){,( dAU ∪=∆  if and only if 

)()( dd o
A

o
R γγ =  and RBdd o

B
o
R ⊂∀> ，)()( γγ . We represent the set of ordinal d-

reducts in the context of A as ( )ARed o
d . 

An alternative formulation of the ordinal d-reduct concept is through the concept of 

dispensability and independence. Under such consideration, the relation ( )B
d>  corre-

sponds to the positive region in classic rough set theory. An attribute Ba ∈  is said to 

be ordinally d-dispensable if ( ) ( )}{\ aB
d

B
d >=> , otherwise it is ordinally d-indispensable. 

A set of attributes AB ⊆  is said to be ordinally d-independent if no attribute in B is 
ordinally d-dispenable. Then B is an ordinal d-reduct if it is ordinally d-independent 

and ( ) ( )A
d

B
d >=> . 

5   Ordinal Separability and Ordinal Discernibility Matrix 

In traditionally rough set theory, a discernibility matrix can be used to compute all the 
reducts within a decision system. In our ordinal decision context, we can develop a 
similar approach to compute ordinal d-reducts. To do so, we need to introduce the 

concept of ordinal separability. Any Uyx ∈,  are ordinally separable in B if yx B
d>  

or xy B
d> . Alternatively, x and y separability can be expressed in terms of their 

equivalence classes as i
B dx ↑⊆][  and )1(][ +↓⊆ i

B dy  for some i, or vice versa. So x, y 

separability in B means B is a set of attributes which is sufficient to discriminate x and 
y in the decision ordering. Furthermore, if x, y are separable in }{\ aB  for 

some Ba ∈ , we will say a is ordinally dispensable for x, y in B. Otherwise a is ordi-
nally indispensable. A subset BR ⊆ is called an ordinal reduct for x, y in B if they are 
separable in R and every a in R is ordinally indispensable. Thus an ordinal reduct for x 
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and y is a minimal set of attributes that can discriminate them in the decision ordering. 

The set of ordinal d-reduct for x and y in B is denoted by ).(, BRed yx
d  

To compute the ordinal d-reduct for an ordinal decision system, we next define an 
ordinal discernibility matrix. For Uyx ∈, , the element cxy in the ordinal discernibility 

matrix is defined by: )(, ARedc yx
dxy =  if x, y are ordinally separable in A, else = ∅. 

Thus each element of the matrix contains the minimal sets of attributes that are re-
quired to ordinally discriminate between the two object elements concerned. 

From this we define an ordinal discernibility (Boolean) function: 

( ) ( )∏ ∑
∈ ∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
2),( Uyx cR

o
d

xy

RAf π where ∏
∈

=
Ra

aR)(π  (21) 

Proposition  

All constituents in the minimal disjunctive normal form of the function )(Af o
d  are 

ordinal d-reducts of A. 

While we will not provide our proof here, it can be observed that an ordinal d-
reduct must be able to ordinally separate any pair of objects, and hence must contain 

at least one of the ordinal d-reduct in )(, ARed yx
d for any separable x, y. Therefore an 

ordinal d-reduct is a minimal set of attributes form from the union of selecting one 

member from each non-empty )(, ARed yx
d . 

We provide an example with the ordinal decision system showed as Table 1 to il-
lustrate ordinal reducts and the use of ordinal discernibility matrix to compute them. 
In this example U consists of seven objects {x1, x2, x3, x4, x5, x6, x7}. There are 4 con-
dition attributes in },,,{ 4321 aaaaA =  which we assumed to be nominal, and an ordi-

nal decision attribute d with ordinal labels { }210 >>=dV . 

Table 1. An ordinal decision system 

Attribute 
Objects 1a  2a  3a  4a  d 

x1 1 0 2 1 1 
x2 1 0 2 0 1 
x3 1 2 0 0 2 
x4 1 2 2 1 0 
x5 2 1 0 0 2 
x6 2 1 1 0 2 
x7 2 1 2 1 1 

To facilitate the computation of ordinal d-reducts for pairs of objects, we first 
compute the decision intervals, d-intervals, for equivalence classes of different attrib-
utes subsets. The d-interval of a set UX ⊆  is the range of d values covered by the 

set, which will be represented by ( ) minmax :int ddXd = , where 
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{ })(max xdMaxd Xx∈=  and { })(min xdMind Xx∈= . It can easily be shown that x, y are 

ordinally separable in B if and only if ( )B
d x][int  and ( )B

d y][int  do not intersect. 

Tables corresponding to each combination of attributes are created. Separability of 
any x, y can then be readily observed from these tables. In Table 2 we showed an 
example of d-interval table for },{ 41 aaB = . It can be seen from this table that objects 

x1 and x4 are in the same equivalence class and the decision interval is 0:1. Objects x1, 
x2 are not separable in B since their corresponding decision intervals 0:1 and 1:2 over-
lap, and x1, x5 are separable as their intervals 0:1 and 2 do not intersect.  

Table 2. d-interval table example 

Attribute 
Equivalence Class 

a
1 a

4 d-interval 

x1, x4 1 1 0:1 

x2, x3 1 0 1:2 

x5, x6 2 0 2 

x7 2 1 1 

Table 3. The ordinal discernibility matrix 

 x1 x2 x3 x4 x5 x6 

x2 ∅       

x3 
}{ 3a

}{ 42 aa，  

}{ 3a

}{ 42 aa，  
    

x4 
}{ 32 aa，

}{ 42 aa，  

}{ 32 aa，

}{ 42 aa，  

}{ 3a

}{ 42 aa，  
   

x5 

}{ 3a

}{ 41 aa，

}{ 42 aa，  

}{ 3a

}{ 41 aa，

}{ 42 aa，  

∅  

}{ 3a

}{ 41 aa，

}{ 42 aa，  

  

x6 

}{ 3a

}{ 41 aa，

}{ 42 aa，  

}{ 3a

}{ 41 aa，

}{ 42 aa，  

∅  

}{ 3a

}{ 41 aa，

}{ 42 aa，  

∅   

x7 ∅  ∅  
}{ 3a

}{ 42 aa，  

}{ 32 aa，

}{ 42 aa，  

}{ 3a

}{ 41 aa，

}{ 42 aa，  

}{ 3a

}{ 41 aa，

}{ 42 aa，  
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Using this method of judging separability, we can obtain the ordinal discernibility 
matrix shown as Table 3. The ordinal discernibility function for Table 3 is as follow: 

4232

42323

4232423

423242413423
o

d

aaaa           

aaaaa           

)aaa)(aaa(a           

)aaa)(aaaaa)(aaa(a(B)f

+=
+=

++=

++++=

 (22) 

where a+b and ab denotes the Boolean sum and product of a and b respectively. It is 
obvious that after simplification we can obtain two ordinal d-reducts }{ 32 aa，  

and }{ 42 aa， . 

As in the classic rough set theory, we also have the concept of core attributes with 
respect to the ordinal decision d. The core attributes of A with respect to ordinal deci-

sion d, ( )ACOREo
d , are attributes which are ordinally d-indispensable in A and it can 

be shown that: 

( ) ( )ARedACORE o
d

o
d I=  (23) 

In the example therefore, ( ) }{ 2aACOREo
d = . 

6   Conclusion and Future Works 

In this paper we have examined the application of rough set approach in ordinal deci-
sion making in a context where the decision attribute consists of ordinal classes while 
the conditional attributes are nominal as in the classic rough set theory. Taking the 
perspective that the ordinal label assignments in the decision is to generate an order-
ing of the objectives concerned, we focus our goal on approximation of this underly-
ing ordering instead of the classes generation by label equalities. Based on this con-
sideration, we defined the quality of approximation to be the ability of the granules of 
information from a set of attributes to approximate this ordering. We defined a new 
concept of ordinal separability and ordinal reduct for a pair of elements in the uni-
verse of discourse. From this we introduced the ordinal discernibility matrix which we 
used to compute ordinal reducts for an ordinal decision system. 

At the moment our computation of the discernibility matrix still requires exhaus-
tive search for all ordinal reducts for pairs of elements which is quite computationally 
intensive. We are working on more efficient algorithm to achieve this process. On the 
other hand we are testing this concept of ordinal reducts in making ordinally classifi-
cations more effective with data sets from machine learning databases. 
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