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Abstract

In this paper we focus our topic on linear separability of two data sets in feature space, including finite and infinite data sets. We first

develop a method to construct a mapping that maps original data set into a high dimensional feature space, on which inner product is

defined by a dot product kernel. Our method can also be applied to the Gaussian kernels. Via this mapping, structure of features in the

feature space is easily observed, and the linear separability of data sets in feature space could be studied. We obtain that any two finite

sets of data with empty overlap in original input space will become linearly separable in an infinite dimensional feature space. For two

infinite data sets, we present several sufficient and necessary conditions for their linear separability in feature space. We also obtain a

meaningful formula to judge linear separability of two infinite data sets in feature space by information in original input space.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Support vector machine (SVM) is a new learning theory
presented by Vapnik [11,12]. From pattern recognition
viewpoint, it can briefly be stated as follows. When a given
sample set K is linearly separable, the separating hyper-
plane with maximal margin, the optimal separating hyper-
plane, is constructed in original input space. When sample
set is linearly non-separating, the input vectors are mapped
into a high dimensional feature space through some kernel
functions. Then in this high dimensional feature space an
optimal separating hyper-plane is constructed. The inner
product in high dimensional feature space is just the
employed kernel, so complex computing of inner product
in high dimensional feature space is avoided. This is one of
the advantages of SVM. SVM has been shown to provide
higher performance than traditional learning machines [1]
and has been introduced as powerful tools for solving
classification problems; in the meantime the research on its
e front matter r 2007 Elsevier B.V. All rights reserved.
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theory and applications has drawn more and more
attention in recent years.
However, if we only consider the computing of inner

product in feature space, kernel is enough, it is unnecessary
to consider the mapping from original data set to feature
space. But if we want to know more about SVM such as
analysis of the shape of mapped data in feature space and
structure of features in feature space, the mapping from
original data set to feature space cannot be ignored. In
existing statistical learning theory [7], there are mainly two
approaches to obtain the mapping from original data set to
feature space. One is to employ the well known Mercer
Theorem. By this way the mapping is constructed as a
vector whose entries are NH eigenfunctions of an integral
operator, and the kernel corresponds a dot product in lNH

2 .
Another approach is to consider the Reproducing Kernel
Hilbert Space. By this way each pattern is turned to a
function on the domain. In this sense, a pattern is now
represented by its similarity to all other points in input
domain.
However, for the first approach, sometimes it is very

difficult to compute the eigenvalues and eigenfunctions of
an integral operator defined by a kernel even when they
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really exist. For the second approach, structures of features
are difficult to observe since the image of every input
pattern is a function and not a vector. All of these two
approaches are mainly designed from the mathematical
viewpoint to ensure the existence of such mapping. They
are too abstract to be applied to analysis practical
problems. Thus an intuitive and general method to
construct the mapping from original data set to feature
space with legible feature structure is clearly necessary from
both theoretical and practical viewpoints.

As is well known, dot product kernels are an important
class of kernels in common use. The well known dot
product kernels in theory of SVM are homogeneous
polynomial kernels, inhomogeneous polynomial kernels.
Both homogeneous polynomial kernels and inhomoge-
neous polynomial kernels map original data set into a finite
dimensional polynomial space (feature space) and struc-
tures of features are clear (there is a whole field of pattern
recognition research studying polynomial classifiers [8]). By
using the power series expansion of a dot product kernel,
we can develop a mapping from the original data set into a
polynomial space (may not be finite dimensional) for every
dot product kernel. Via this mapping, structures of features
are clear. This method can also be applied to the Gaussian
kernels and obtain the corresponding mapping to the
feature space.

Furthermore, linear separability of data sets in feature
space can also be investigated with this mapping. It can be
proven the images of any finite data set are linear
independent in the feature space relative to certain dot
product kernels, this implies any two finite subclasses of the
original data set are linear separable in the feature space.
Thus separating hyper-plane with maximal margin, i.e., the
optimal separating hyper-plane, is always available. On the
other hand, in machine learning society, less effort has been
put on linear separability of two infinite data sets. At first
glance, it is unnecessary to consider infinite data sets since
data sets we deal with in practical problems are all finite.
This opinion is from the viewpoint of designing algorithm
for practical applications. If we consider the classification
problem from theoretical viewpoint, the following three
arguments indicate it is meaningful to investigate linear
separability of infinite data sets.

First, separating two finite sets linearly is equivalent to
separating their convex hulls linearly, and their convex
hulls are infinite sets, so we have implicitly considered
the linear separability of special infinite data set when
separating finite sets linearly. Second, most feature values
are real valued, this implies the possible candidate samples
may be infinite. So after we construct a learning machine
based on finite independent and identically distributed
samples, the possible candidate sample we deal with by this
machine is always drowned from an infinite set; this also
needs to take account of all possible cases drowned
according to a probability distribution. As mentioned by
Vapnik V. N. [13], the most difficult task is the classifica-
tion of ‘‘candidate boundary points’’ when all candidate
samples are considered, and the SVM technique ignores
this difficulty since it just considers finite sample sets.
Clearly it does not mean this difficulty does not exist or is
solved totally; thus consideration of linear separability of
infinite data sets is necessary to develop a method to deal
with the candidate boundary points. At last, for a practical
binary classification problem, certainly we desire to know
the existence and uniqueness of optimal hyper-plane that
can separate all candidate samples without misclassifica-
tion, this also inspires us to consider all candidate samples
as an infinite set.
Thus it is necessary to investigate linear separability of

infinite data sets at least from the theoretical viewpoint,
and such investigation can offer guidance to improve
algorithm for practical problems. In this paper we develop
several sufficient and necessary conditions for two infinite
data sets being linear separable in the feature space, we also
obtain a meaningful formula as a sufficient condition to
judge linear separability of two infinite data sets in feature
space by information of original input space.
This paper is organized as follows. In Section 2 we

mainly review some basic content of kernels in SVM. In
Section 3 the method of constructing mapping for dot
product kernels is developed, and linear separability of two
finite data sets is also discussed. In Section 4 we mainly
discuss linear separability of two infinite sets in feature
space via our proposed mapping.

2. Kernels for SVM

In this paper we only consider binary classification
problem. Let fðx1; y1Þ; . . . ; ðxl ; ylÞg � Rn � fþ1;�1g be a
training set, A is the sample set with label þ1 and B is the
sample set with label �1. A and B are called linear
separable in Rn if there is a hyper-plane hw;xi þ b ¼ 0 (here
hw;xi denotes the inner product) and d40 such that
hw;xi þ b4d for x 2 A and hw;xi þ bo� d for x 2 B (this
definition is also suitable when A and B are infinite set in a
general Hilbert space), clearly dðA;BÞ40 holds when
A and B are linear separable, and separating hyper-plane
with the maximal margin, the optimal separating hyper-
plane, could be constructed in Rn. If A and B are not linear
separable in Rn, the SVM learning approach projects input
patterns xi with a nonlinear function F : x! FðxÞ into a
higher dimension space Z and, then, it separates the data in
Z with a maximal margin hyper-plane. Therefore, the
classifier is given by f ðxÞ ¼ signðwTFðxÞ þ bÞ and para-
meters w and b are obtained through the minimization of
functional tðwÞ ¼ 1

2
kwk2 subject to yiðhw; xii þ bÞX1 for all

i ¼ 1; . . . ; l. Since the solution of the linear classifier in Z
only involves inner products of vectors FðxiÞ, we can
always use the kernel trick [7], which consists of expressing
the inner product in Z as an evaluation of a kernel function
in the input space hFðxÞ;FðyÞi ¼ kðx; yÞ. By this way, we do
not need to explicitly know Fð�Þ but just its associated
kernel kðx; yÞ. When expressed in terms of kernels, the
classifier results in f ðxÞ ¼ signð

Pl
i¼1yiaikðxi;xÞ þ bÞ, where
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coefficients faig are obtained after a QP optimization of
functional Lðw; b; aÞ ¼ 1

2
kwk2 �

Pl
i¼1aif½hxi;wi � b�yi � 1g

which can be solved by the KKT complementarity
conditions of optimization theory [1].

However, if we not only consider the computing of inner
product in feature space, but also aim at presenting deep
insight to SVM such as analysis of the shape of mapped
data and structure of features in the feature space, we must
deal with the mapping from original data set into the
feature space. As pointed in [7], there are mainly two
approaches to develop the mapping. One is utilization of
the well known Mercer Theorem. Suppose X is a nonempty
compact set and k 2 L1ðX

2Þ is a kernel, then the integral
operator Tk : L2ðX Þ ! L2ðX Þ defined as ðTkf ÞðxÞ ¼R
w kðx;x0Þf ðx0Þdmðx0Þ is positive definite. Let cj 2 L2ðX Þ

be NH normalized orthogonal eigenfunctions of Tk

associated with the eigenvalues lj40, then kðx;x0Þ corre-
sponds to a dot product in lNH

2 with F : X ! lNH

2 defined as
FðxÞ ¼ ð

ffiffiffiffi
lj

p
cjðxÞÞj¼1;...;NH

. For this method, sometimes it is
very difficult to compute the eigenvalues and eigenfunc-
tions of Tk even when they really exist.

Another approach is utilizing the Reproducing Kernel
Hilbert Space. We can define a map from X into the space
of functions mapping X into R, denoted as RX ¼

ff : X ! Rg, via FðxÞ ¼ kðx0;xÞ, x0 2 X , the feature space
is spanned by k and is a Reproducing Kernel Hilbert
Space. Clearly FðxÞ ¼ kðx0;xÞ is a function and not a
vector, and structures of features are hardly to be observed.

Two kinds of kernels are always applied in SVM [7,10].
They are translation invariant kernels and dot product
kernels. The translation invariant kernels are independent
of the absolute position of input x and only depend on the
difference between two inputs x and x0, so it can be denoted
as kðx; x0Þ ¼ kðx� x0Þ. The well known translation invar-
iant kernel is the Gaussian radial basis function kernel
kðx;x0Þ ¼ expð�kx� x0k2=2s2Þ, other translation invariant
kernels include Bn—splines kernels [9], Dirichlet kernels [7]
and Periodic kernels [7]. A second important family of
kernels can be efficiently described in terms of dot product,
i.e., kðx;x0Þ ¼ kðhx;x0iÞ. The well known dot product
kernels are Homogeneous Polynomial Kernels
kðx;x0Þ ¼ hx;x0ip, inhomogeneous Polynomial Kernels
kðx;x0Þ ¼ ðhx;x0i þ cÞp with cX0. Both Homogeneous
Polynomial Kernels and inhomogeneous Polynomial Ker-
nels map input set into a finite dimensional Polynomial
space. In [2] we have also considered a class of infinite
Polynomial kernels on a compact subset Un of the
open unit ball fx 2 Rn : kxko1g, defined as kcðx;x
eÞ ¼ ð1� hx;x0iÞp=ð1� hx; x0iÞp, for every x;x0 2 Un,
p 2 N � f1g, via an infinite Polynomial kernel, the input
data set is projected into an infinite dimensional Poly-
nomial space.

3. The mapping for dot product kernels

In this section we will focus on developing a general
method to construct the mapping from the original data set
into the feature space for the dot product kernels. This
method is also suitable to deal with the Gaussian kernels.
We can prove if the feature space is an infinite dimensional
Polynomial space, then any two finite sets of data in
original space will become linearly separable in feature
space.
For dot product kernels, the following theorem pro-

posed in [6] is always useful.

Theorem 1 (Schoenberg [6]). A function kðx; x0Þ ¼
kðhx;x0iÞ defined on an infinite dimensional Hilbert space,
with a power series expansion kðtÞ ¼

P1
n¼0antn is a positive

definite kernel if and only if for all n, we have anX0.

This theorem implies many kinds of dot product kernels
that can be considered in SVM.
Suppose kðx;x0Þ ¼ kðhx;x0iÞ is a dot product kernel on

X � Rn with power series expansion:

kðhx;x0iÞ ¼
X1
n¼0

anhx;x
0in. (1)

For every x 2 X , define Cn to map x 2 X to vector CnðxÞ

whose entries are all possible nth degree ordered products
of the entries of x, and define Fk by compensating for the
multiple occurrence of certain monomials in Cn by scaling
the respective entries of Fn with the square roots of their
numbers of occurrence. Then, by the construction of Cn

and Fn, we have

hCnðxÞ;Cnðx
0Þi ¼ hFnðxÞ;Fnðx

0Þi ¼ hx;x0in. (2)

This fact can be found in [7] and is well known for the
Homogeneous Polynomial Kernels kðx;x0Þ ¼ hx;x0ip.
Define FðxÞ ¼ ða0;

ffiffiffiffiffi
a1
p

F1ðxÞ; . . . ;
ffiffiffiffiffi
an
p

FnðxÞ; . . . ; Þ, then
we have

hFðxÞ;Fðx0Þi ¼ kðx;x0Þ. (3)

Clearly F1ðxÞ ¼ x holds, this implies if a1a0, then FðxÞ
is the extension of x by adding features and keeps all the
original entries of x, thus FðxÞ keeps the original
information of x. This statement is a goodness of F.
Entries of FðxÞ are constructed by entries of x, thus
structure of appending features are clear and easy to be
analyzed since these appending features are constructed by
the original features. The feature space with respect to
kðx;x0Þ can be selected as the Hilbert space spanned by
FðX Þ and is denoted by HkðX Þ.
First we consider the properties of the above proposed F

when the feature space is finite dimensional. If there is
n0 2 N such that an ¼ 0 when n4n0, then we have

kðx;x0Þ ¼
Xn0
n¼0

anhx;x
0in, (4)

thus kðx; x0Þ is just the weighted sum of some Homo-
geneous Polynomial Kernels, and the feature space is a
finite dimensional Homogeneous Polynomial space. How-
ever, for kðx; x0Þ ¼ hx; x0in, it is possible that F is not a one
to one mapping, i.e., different inputs may have the same
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image, which is clearly unreasonable. This statement can be
illustrated by the following example.

Example 1. If n ¼ 2, and x ¼ ðx1; x2Þ, then FðxÞ ¼
F2ðxÞ ¼ ðx

2
1;x

2
2;

ffiffiffi
2
p

x1x2Þ. For two different inputs
x ¼ ð1; �1Þ, y ¼ ð�1; 1Þ, clearly xay, but FðxÞ ¼ FðyÞ. If
x and y belong to different classes, then every separating
hyper-plane in feature space relative to the kernel kðx;x0Þ ¼
hx; x0i2 cannot distinguish x and y. Similar cases will appear
frequently when n is even. If we select a weighted sum form
kernel predigest satisfying a1a0, then entries of x are a
part of FðxÞ, thus we can avoid this case.

By using our proposed F, we have the following useful
theorem.

Theorem 2. Suppose fx1; . . . ;xmg � X satisfying xia0,
xiaxj if iaj, then there is a dot product kernel:

kðx;x0Þ ¼
Xn0
n¼0

anhx;x
0in, (5)

such that Fðx1Þ; . . . ;FðxnÞ are linear independent.

Proof. Suppose xi ¼ ðai1; ai2; . . . ; ainÞ,
kðx;x0Þ ¼

Pm�1
n¼0 hx; x

0in, then kðx;x0Þ is a dot product with
expression:

kðx;x0Þ ¼
1� hx; x0im

1� hx; x0i
. (6)

Let f iðxÞ ¼ ai1 þ ai2xþ � � � þ ainxn�1, i ¼ 1; . . . ;m. If iaj,
then xiaxj; we have that f iðxÞ and f jðxÞ are two different
equations. By the algebraic basic theorem we know every
f iðxÞ � f jðxÞ ¼ 0 has finite number of roots. Thus there
exists n0 2 Nsuch that any two of ff iðn0Þ : i ¼ 1; . . . ;mg are
different. Let

bi ¼ f1; f iðn0Þ; . . . ; f
m�1
i ðn0Þg; i ¼ 1; . . . ;m, (7)

then we have that b1; b2; . . . ;bm are linear independent.
Suppose

a1Fðx1Þ þ a2Fðx2Þ þ � � � þ amFðxmÞ ¼ 0, (8)

then for l1 þ l2 þ � � � þ lnpm� 1, l1; l2; . . . ; ln 2 N [ f0g,
we have

Xm

i¼1

aia
l1
i1al2

i2 . . . a
ln

in ¼ 0, (9)

we have
Pm

i¼1aif
n
i ðn0Þ ¼ 0, this implies a1b1 þ � � �þ

ambm ¼ 0, thus every ai ¼ 0 and Fðx1Þ; . . . ;FðxnÞ are linear
independent. &

In proof of Theorem 2 we choose the kernel as kðx;x0Þ ¼
ð1� hx;x0iÞm=ð1� hx;x0iÞ in order to predigest the proof.
However, every kernel kðx;x0Þ ¼

Pn0
n¼0anhx;x0i

n satisfying
n0Xm� 1 and an40 for npm� 1 satisfies the condition in
Theorem 2.

Suppose F is a mapping relative to a kernel kðx;x0Þ
such that Fðx1Þ; . . . ;FðxnÞ are linear independent, A and B

are two nonempty subsets of X and A \ B ¼ ;, then we
have FðX Þ ¼ FðAÞ [ FðBÞ and FðAÞ \ FðBÞ ¼ ;. That
Fðx1Þ; . . . ;FðxnÞ are linear independent implies any element
in the convex hull of one class cannot be the convex
combination of the elements of another class; this implies
convex hulls of A and B have empty overlap; notice these
two convex hulls are compact, so fFðx1Þ; . . . ;FðxlÞg and
fFðxlþ1Þ; . . . ;FðxmÞg are linear separable in feature space.
Thus we can derive the following theorem.

Theorem 3. Suppose fðx1; y1Þ; . . . ; ðxl ; ylÞg � X � fþ1g,
fðxlþ1; ylþ1Þ; . . . ; ðxm; ymÞg � X � f�1g, then there is a map-

ping relative to a dot product kernel which map X into a finite

dimensional Polynomial space such that these two classes are

linear separable in feature space.

Proof. It is straightforward according to Theorem 2 and
the discussion in the previous paragraph. &

Suppose kðhx;x0iÞ ¼
P1

n¼0anhx; x0i
n satisfies for every

n0 2 N there exists n4n0 such that an40, without losing
universality, we assume every an40, i.e., every coefficient
in its power series is positive, for example, Vovk’s infinite
polynomial kernel kðx; x0Þ ¼ ð1� ðhx; x0iÞÞ�1 [5,7] and our
proposed infinite polynomial kernel kcðx;x0Þ ¼ ð1�
hx;x0iÞp=ð1� hx;x0iÞp [2]. The following theorem implies
the feature space relative to such kernels is infinite
dimensional.

Theorem 4. Suppose fx1; . . . ; xmg � X satisfies xia0 for

i ¼ 1; 2; . . . ;m, xiaxj if iaj, F is the mapping relative to

kðhx;x0iÞ ¼
P1

n¼0anhx; x0i
n such that every an40, then

Fðx1Þ; . . . ;FðxnÞ are linear independent.

Proof. Suppose xi ¼ ðai1; ai2; . . . ; ainÞ and Fðx1Þ; . . . ;FðxmÞ

are linear dependent, then there exists a1; a2; . . . ; am

satisfying that at least one of them is not equal to zero
and a1Fðx1Þ þ a2Fðx2Þ þ � � � þ amFðxmÞ ¼ 0 holds. Thus
we have

Pm
i¼1aia

l1
i1a

l2
i2 . . . a

ln

in ¼ 0 where l1; l2; . . . ;
ln 2 N [ f0g.
Let

f iðxÞ ¼ ai1 þ ai2xþ � � � þ ainxn�1; i ¼ 1; . . . ;m. (10)

Then there exists n0 2 N such that any two of ff iðn0Þ :
i ¼ 1; . . . ;mg are different. Let

bi ¼ f1; f iðn0Þ; . . . ; f
m�1
i ðn0Þg; i ¼ 1; . . . ;m, (11)

then we have b1;b2; ::; bm are linear independent. But byPm
i¼1aia

l1
i1a

l2
i2 . . . a

ln

in ¼ 0 we have

a1b1 þ � � � þ ambm ¼ 0, (12)

this is a contradiction. Thus we have Fðx1Þ; . . . ;FðxnÞ are
linear independent. &

For fx1; . . . ; xmg � X , Theorem 2 implies there exists a
finite dimensional feature space such that images of
fx1; . . . ; xmg are linear independent in this feature space,
while Theorem 4 implies images of fx1; . . . ;xmg are linear
independent in the feature space relative to a kernel
satisfying that every coefficient in its power series is
positive, so these two theorems are different. For the
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kernel satisfying that every coefficient in its power series is
positive, similar to Theorem 3 we have the following result.

Theorem 5. Suppose fðx1; y1Þ; . . . ; ðxl ; ylÞg � X � fþ1g,
fðxlþ1; ylþ1Þ; . . . ; ðxm; ymÞg � X � f�1g, then they are linear

separable in every feature space relative to a kernel satisfying

that every coefficient in its power series is positive.

However, as pointed in Section 2, for a fixed kernel
kðx;x0Þ, the feature space is not uniqueness. The following
theorem implies selection of feature space does not
influence the linear independence of a finite class of data
in feature space.

Theorem 6. Suppose fx1; . . . ;xmg � X satisfies xia0 for

i ¼ 1; 2; . . . ;m, xiaxj if iaj, then the Gram matrix M ¼

ðkðxi; xjÞÞ has full rank for a dot product kernel kðx;x0Þ
satisfying that every coefficient in its power series is positive.

Proof. If M ¼ ðkðxi;xjÞÞ ¼ ðhFðxiÞ;FðxjÞiÞ has no full rank,
then there exists a1; a2; . . . ; am satisfying that at least one of
them is not equal to zero such that

Xm

l¼1

alhFðxlÞ;FðxiÞi ¼ 0; i ¼ 1; . . . ;m. (13)

So we have

aiFðxiÞ;
Xm

l¼1

alFðxlÞ

* +
¼ 0; i ¼ 1; . . . ;m (14)

which implies

Xm

i¼1

aiFðxiÞ;
Xm

l¼1

alFðxlÞ

* +
¼ 0, (15)

thus
Pm

i¼1aiFðxiÞ ¼ 0 and Fðx1Þ; . . . ;FðxnÞ are linear
dependent. Hence M ¼ ðkhxi; xjiÞ ¼ hFðxiÞ;FðxjÞi has full
rank.

If F0 is another mapping that projects X into a differ-
ent feature space, then it is easy to prove F0ðx1Þ;
F0ðx2Þ; . . . ;F0ðxmÞ are linear independent by M ¼ ðkðxi; xjÞÞ

has full rank. &

For two dot product kernels k1 and k2, suppose F1 and
F2 are mappings relative to k1 and k2, respectively, we have
the following straightforward but useful theorem.

Theorem 7. If F2 is the extension of F1, then

F1ðx1Þ; . . . ;F1ðxnÞ that are linear independent implies

F2ðx1Þ; . . . ;F2ðxnÞ are linear independent.

Our proposed method to construct mapping for dot
product kernels can be applied to the Gaussian kernels
on the surface of the unit ball. Suppose every x 2 X is a
unit vector, i.e., kxk ¼ 1, then kx� x0k2 ¼ hx� x0;
x� x0i ¼ 2� 2hx;x0i, thus the Gaussian kernels kðx;x0Þ ¼
expð�kx� x0k2=2s2Þ have an equivalence expression as dot
product kernels as kðx; x0Þ ¼ expððhx;x0i � 1Þ=s2Þ, and we
can construct the mapping for the Gaussian kernels by its
power series by our proposed method. In [7] it has been
pointed the Gaussian Gram Matrices are full rank, i.e., if
FG is the mapping relative to a Gaussian kernel,
then FGðx1Þ; . . . ;FGðxmÞ are linear dependent for
fx1; . . . ;xmg � X , this statement is very important for
analysis of the properties of Gaussian kernels. By Theorem
4 we can also get this conclusion and we propose a new
straight proof for this result, our proof is different from the
original one in [4].
For a finite data set fx1; . . . ;xmg � X , Fðx1Þ; . . . ;FðxnÞ

are linear independent that implies any binary partition of
fx1; . . . ;xmg are linear separable in the feature space. So
Fðx1Þ; . . . ;FðxnÞ being linear independent is a sufficient
condition of fx1; . . . ;xmg being linear separable in feature
space and clearly not a necessary condition. This sufficient
condition illustrates the rationale of the kernel trick in
SVM. However, it seems this sufficient condition is too
strong since we always just need to separate two subsets of
fx1; . . . ;xmg instead of separating all its possible binary
partitions.

4. On linear separability of infinite data sets in feature space

In this section we mainly discuss linear separability of
infinite data sets in feature space, while we have
emphasized the importance of such a discussion in the
introduction. At first glance, it seems that we can employ
the well known separation theorems for convex sets in
classical functional analysis to solve this problem, but it is
really possible that these famous theorems would not work
in an infinite dimensional feature space. This can be due to
the following reason. As is well known, to separate two
convex sets by a hyper-plane with the separation theorems,
one necessary condition is that at least one of these two
convex sets has nonempty interior, and this condition does
not always hold in infinite dimensional feature space since
it is spanned by the linear combinations of elements in the
given input data sets. Here we do not want to explain this
statement in detail since it is just a mathematical problem
and is well known in functional analysis. In this section we
develop several sufficient and necessary conditions to
characterize the linear separability of two infinite sets in
an infinite dimensional feature space. We also obtain a
formula to judge the linear separability of two infinite sets
in the infinite dimensional feature space related to the
Gaussian kernels by information of the original input
data set.
In this section we consider linear separability of two

infinite subsets of surface of the unit ball, i.e., every sample
is a unit vector. Suppose X � Rn is a compact subset of
surface of the unit ball, and we select the infinite
dimensional feature space related to the Gaussian kernel
kðx;x0Þ ¼ expððhx;x0i � 1Þ=s2Þ ¼

P1
t¼0athx;x0i

t, denoted as
HGðX Þ. Let knðx;x0Þ ¼

Pn
t¼1athx; x0i

t, clearly knðx;x0Þ !
kðx;x0Þ uniformly on a compact set, and we denote Fn :
X ! Hkn ðX Þ which maps X into the finite dimensional
feature space HknðX Þ relative to kernel knðx;x0Þ.
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Φ (A)

Φ (B)

Fig. 1. If X is compact and X ¼ A [ B;A \ B ¼ ;, all the possible data

are in X. If the crowed point sets of A and B have empty overlap, then

FðAÞ and FðBÞ are linear separable in the feature space as shown in the

above figure. Since every separating hyper-plane can classify all the

possible input data without misclassification as the three lines in the figure,

each of them can be selected as an optimal separating hyper-plane.
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Theorem 8. Suppose X � Rn is a compact subset of the

surface of the unit ball and X ¼ A [ B, A \ B ¼ ;. Then

FðAÞ and FðBÞ are linear separable in HGðX Þ if and only if

the crowed point sets of A and B have empty overlap, i.e., the

boundary point set of A and B is empty.

Proof. ) Since X is compact, we know crowed points of X

are still in X, thus crowed points of FðX Þ are still in FðX Þ
by FðX Þ is compact. If crowed point sets of A and B have
nonempty overlap, then the crowed point sets of FðAÞ and
FðBÞ also have nonempty overlap by F is continuous, this
implies dðFðAÞ;FðBÞÞ ¼ 0, so FðAÞ and FðBÞ cannot be
linear separable in feature space.
( Suppose the crowed point sets of A and B have empty

overlap. Clearly A and B are compact, this implies FðAÞ
and FðBÞ are compact in the feature space in case of F
being continuous. By Theorem 5 the overlap of convex
hulls of FðAÞ and FðBÞ that are empty, by the definition of
F we have convex hulls of FðAÞ and FðBÞ that are compact,
thus they are linear separable in the feature space and FðAÞ
and FðBÞ are linear separable in the feature space. &

For a binary pattern recognition problem, if there is a
hyper-plane which cannot only separate the training
sample but can also classify every possible candidate data
properly, i.e., it can separate all the possible data of two
classes without misclassification; we call this binary pattern
recognition problem can be totally solved. Theorem 8
develops a sufficient and necessary condition under which
it is possible to solve totally a binary pattern recognition
problem, i.e., for every sample of one class, there exists a
sufficient small neighborhood of this sample satisfying that
no sample of another class is in this neighborhood. This
statement implies the candidate boundary points do not
exist for a binary pattern recognition problem which can be
totally solved. Thus the problem mentioned by Vapnik V.
N. [13] that the most difficult task is the classification of
‘‘candidate boundary points’’ when all candidate samples
are considered does not hold for a binary pattern
recognition problem which can be totally solved. Also by
Theorem 8, if a binary pattern recognition problem can be
totally solved, then the distance between the two convex
hulls of two different sample classes is strictly bigger than
zero. If a binary pattern recognition problem cannot be
totally solved, then the distance between the two convex
hulls of two different sample classes is equal to zero, i.e.,
there are candidate boundary points. Thus we can conclude
that for a binary pattern recognition problem, if it can be
solved totally, then generally the selection of optimal
separating hyper-plane is not unique, if it cannot be solved
totally, then the optimal separating hyper-plane does not
exist. The Fig. 1 illustrates our idea of Theorem 8.

As pointed out in [3], since one has to make assumptions
about the structure of data set (otherwise no generalization
is possible), it is natural to assume that two points that are
close are likely to belong to the same class; informally, we
want similar inputs to lead to similar outputs [7]. Most
classical classification algorithms rely, implicitly or expli-
citly, on such an assumption (e.g. nearest-neighbor
classifiers, and the simplest possible justification for large
margins in SVM in [7]). Applying this assumption to the
binary pattern recognition problems, it just implies the
crowed points of the two classes have an empty overlap
which is the condition in Theorem 8, thus optimal
separating hyper-plane in feature space always exists and
is not unique.
If the binary pattern recognition problems do not satisfy

this assumption, i.e., the two classes have conjunct crowed
points, then the optimal separating hyper-plane that can
separate all the data without misclassification is not
available. In this way, in an infinite dimensional feature
space relative to a dot product kernel, two classes of data
distribute along the different sides of the crowed points,
and the best separating hyper-plane should pass through
the crowed points. As mentioned by Vapnik V. N. [13], the
most difficult task is the classification of ‘‘candidate
boundary points’’ when all candidate samples are con-
sidered, and we propose a reasonable idea to deal with the
candidate boundary points. We employ the following
simple example to illustrate our idea.
Example 2. Suppose we have two tangent ellipses as two
classes, thus the tangent point is the conjunct crowed point.
If we want to separate them by a line, then clearly the
tangent is the best selection. The following figure (Fig. 2
can explain this example straightforwardly.
Theorem 9. Suppose X � Rn is a compact subset of surface

of the unit ball and X ¼ A [ B, A \ B ¼ ;. Then FðAÞ and

FðBÞ are linear separable in HGðX Þ if and only if there exists

n0 such that Fn0ðAÞ and Fn0ðBÞ are linear separable in

Hkn0 ðX Þ, i.e., in the feature space relative to kn0 ðx;x
0Þ.
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A

B

Fig. 2. To separate two tangent ellipses by a line, clearly the tangent is the

best selection.
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Proof. Here we denote the convex hull of FðAÞ as
coðFðAÞÞ. Clearly FðAÞ and FðBÞ are linear separable
in HGðX Þ if and only if dðcoðFðAÞÞ; coðFðBÞÞÞ40 �
dðcoðFnðAÞÞ; coðFnðBÞÞÞ ! dðcoðFðAÞÞ; coðFðBÞÞÞ increas-
ingly since knðx; x0Þ ! kðx;x0Þ uniformly; thus we can get
the proof. &

According to Theorem 8, if we assume that two close
points are likely to belong to the same class, then two
disjoint data sets are linear separable in an infinite
dimensional feature space, then by Theorem 9, they must
be linear separable in a finite dimensional feature space,
and in a finite dimensional feature space the VC dimension
of the set of linear classifier is finite which implies better
generalized ability [12].

However, Theorems 8 and 9 characterize the linear
separability of two data sets from the theoretical view-
points, It is difficult to apply them to practical problems.
We develop a sufficient condition to judge linear separ-
ability of two data sets as follows.

Theorem 10. Suppose X � Rn is a compact subset of the

surface of the unit ball and X ¼ A [ B, A \ B ¼ ;. Let

dA ¼ sup
x;y2A

kx� yk, (16)

dB ¼ sup
x;y2B

kx� yk, (17)

dAB ¼ inf
x2A;y2B

kx� yk. (18)

If e�ðdAÞ
2=2s2 þ e�ðdBÞ

2=2s242e�ðdABÞ
2=2s2 holds, then FðAÞ and

FðBÞ are linear separable in HGðX Þ. Here sup means the

supremum and inf means the infimum.

Proof. ForPm
i¼1aiFðxiÞ 2 coðFðAÞÞ;

Pn
j¼1biFðyiÞ 2 coðFðBÞÞ, here

xi 2 A, yj 2 B,
Pm

i¼1ai ¼ 1,
Pn

j¼1bj ¼ 1, aiX0, bjX0,
i ¼ 1; . . . ;m; i ¼ 1; . . . ; n, We have

Xm

i¼1

aiFðxiÞ �
Xn

j¼1

bjFðyjÞ

�����
�����

�����
�����
2

¼
Xm

i¼1

aiFðxiÞ �
Xn

j¼1

bjFðyjÞ;
Xm

i¼1

ajFðxjÞ �
Xn

j¼1

bjFðyjÞ

* +

¼
Xm

i¼1

aiFðxiÞ;
Xm

i¼1

aiFðxiÞ

* +

þ
Xn

j¼1

bjFðyjÞ;
Xm

i¼1

bjFðyjÞ

* +

� 2
Xm

i¼1

aiFðxiÞ;
Xn

j¼1

bjFðyjÞ

* +
. ð19Þ

And we have

Xm

i¼1

aiFðxiÞ;
Xm

i¼1

aiFðxiÞ

* +

¼
Xm

i¼1

Xm

k¼1

aiakhFðxiÞ;FðxkÞi

¼ 1�
X
iak

aiak þ
X
iak

aiake
�kxi�xkk

2=2s2

X1�
mðm� 1Þ

m2
ð1� e�ðdAÞ

2=2s2ÞXe�ðdAÞ
2=2s2 . ð20Þ

Similarly we have

Xn

j¼1

bjFðyjÞ;
Xm

i¼1

bjFðyjÞ

* +
Xe�ðdBÞ

2=2s2 ,

Xm

i¼1

aiFðxiÞ;
Xn

j¼1

bjFðyjÞ

* +
pe�ðdABÞ

2=2s2 . ð21Þ

Thus we have

Xm

i¼1

aiFðxiÞ �
Xn

j¼1

bjFðyjÞ

�����
�����

�����
�����
2

Xe�ðdAÞ
2=2s2 þ e�ðdBÞ

2=2s2 � 2e�ðdABÞ
2=2s2 . ð22Þ

If e�ðdAÞ
2=2s2 þ e�ðdBÞ

2=2s242e�ðdABÞ
2=2s2 , then

e�ðdAÞ
2=2s2 þ e�ðdBÞ

2=2s2 � 2e�ðdABÞ
2=2s2 ¼ d40, hence we have

Xm

i¼1

aiFðxiÞ �
Xn

j¼1

bjFðyjÞ

�����
�����

�����
�����
2

Xd40, (23)

this implies dðcoðFðAÞÞ; coðFðBÞÞÞ40 and FðAÞ and FðBÞ
are linear separable in HGðX Þ. &

The formula e�ðdAÞ
2=2s2 þ e�ðdBÞ

2=2s242e�ðdABÞ
2=2s2 is

meaningful. Since dA is the diameter of A, dB is the
diameter of B, and dAB is the distance between A and B, all
of dA, dB and dAB are basic information of the input data
set; thus Theorem 10 develops a sufficient condition to
characterize the linear separability of two data sets by the
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information of original input data set. We can easily have
the following result.

Proposition 1. Suppose X � Rn is a compact subset of

the surface of the unit ball and X ¼ A [ B, A \ B ¼ ;.
Let dA ¼ supx;y2Akx� yk, dB ¼ supx;y2Bkx� yk, dAB¼

infx2A;y2Bkx� yk. If maxfdA; dBgodAB holds, then FðAÞ
and FðBÞ are linear separable in HGðX Þ.

Notice the distance between two samples in the input
space characterizes their similarity; we can conclude with
Proposition 1 that if the distance between any two samples
in the same class is strictly smaller than the distance
between any two samples belonging to different classes
(samples belonging to the same class are more similar than
samples belonging to different classes), then these two
classes must be linear separable in the feature space HGðX Þ.

5. Conclusion

In this paper we mainly discuss linear separability of two
data sets in feature space relative to a dot product kernel.
For two finite data sets, we prove that they must be linear
separable in an infinite dimensional feature space. For two
infinite data sets, we develop two sufficient and necessary
conditions to characterize their linear separability in
feature space relative to the Gaussian kernel. For a binary
classification problem, if we assume that two points that
are close are likely to belong to the same class, then these
two classes are linear separable in the feature space. We
also develop a meaningful sufficient condition to judge the
linear separability of two infinite data sets in the feature
space by the information of the original input data space.
We hope results in this paper could be applied to develop
algorithms for pattern recognition with better perfor-
mance, and this will be our future work.
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