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Abstract

Although the traditional rough set theory has been a powerful mathematical tool for modeling incompleteness and
vagueness, its performance in dealing with initial fuzzy data is usually poor. This paper makes an attempt to improve
its performance by extending the traditional rough set approach to the fuzzy environment. The extension is twofold.
One is knowledge representation and the other is knowledge reduction. First, we provide new definitions of fuzzy lower
and upper approximations by considering the similarity between the two objects. Second, we extend a number of under-
lying concepts of knowledge reduction (such as the reduct and core) to the fuzzy environment and use these extensions to
propose a heuristic algorithm to learn fuzzy rules from initial fuzzy data. Finally, we provide some numerical experiments
to demonstrate the feasibility of the proposed algorithm. One of the main contributions of this paper is that the fundamen-
tal relationship between the reducts and core of rough sets is still pertinent after the proposed extension.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Rough set theory proposed by Pawlak [16], as the traditional rough set approach, is a useful mathematical
tool for describing and modeling incomplete and insufficient information. It has been widely applied in many
fields such as Machine Learning, Data Mining, Pattern Recognition, Fault Diagnostics, etc. During the
last decade, a number of generalizations of the traditional rough set approach, such as generalizations of
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approximation spaces, concept approximations, combination of rough sets and fuzzy sets, etc., have been pro-
posed. Interested readers may consult Ref. [18] for a summary of these generalizations. The focus of this paper
is the generalization of combining rough sets and fuzzy sets [2–6,8,9,11,12,14,15,19,21,23–26,29–33,35–38].

In the traditional rough set approach, the values of attributes are assumed to be nominal data, i.e. symbols.
In many applications, however, the attribute-values can be linguistic terms (i.e. fuzzy sets). For example, the
attribute ‘‘height’’ may be given the values of ‘‘high’’, ‘‘mid’’, and ‘‘low’’. The traditional rough set approach
would treat these values as symbols, thereby some important information included in these values such as the
partial ordering and membership degrees is ignored, which means that the traditional rough sets approach
cannot effectively deal with fuzzy initial data (e.g. linguistic terms) [27]. In recent years, many models have
been proposed for generalizing rough sets to the fuzzy environment. Roughly speaking, these generalization
models can be classified into two types. One type of model involves the generalization of set approximation,
which proposes generalizations of lower and upper approximations to approximate the fuzzy subset of a uni-
verse [3–5,14,15,23–25,29–33,35–38]. The other type of model involves fuzzy generalization of knowledge
reduction, which use fuzzy rough technique to reduce fuzzy attributes and learn fuzzy rules from fuzzy samples
[1,8,9,12,21,27].

Set approximation generalization models have been the focus of recent work in generalizing rough sets into
the fuzzy environment. Again, two main approaches, the constructive and axiomatic, exist. The constructive
approach replaces the equivalence relation (i.e. indiscernibility relation) with fuzzy similarity relation
[1,6,12,15,21,22,35], fuzzy partition [4,5,35] and covers [36–38], and uses these replacements to construct
the generalized set approximation. The replacement of the equivalence relation is the primary notion in the
constructive approach. Unlike the constructive approach, the axiomatic approach takes the set approximation
operator as the primary notion. It focuses on studying the mathematical structure of fuzzy rough sets. Moris
and Yakout first generalized the axiomatic approach to fuzzy rough sets, but their work was restricted to the
fuzzy T-rough set defined by fuzzy T similarity relation and the lower and upper approximation operators pro-
posed by them are not dual. Therefore, Mi and Wu et al. [14,29,30,35] improved their generalization and pro-
posed fuzzy rough sets defined by fuzzy binary relation. They also presented two pairs of dual generalized
lower and upper approximation operators. Yeung et al. [33] further developed a unified framework of fuzzy
rough sets by combining constructive and axiomatic approaches.

Comparatively, knowledge reduction is a less-studied model relative to the set approximation model in fuzzy
rough sets [1,8,9,12,21,22,27]. Again, there are two main approaches to reduce knowledge. One approach is
attribute reduction while the other is rule induction. Attribute reduction with the fuzzy rough set technique
has been mentioned by some researchers. Pioneering work on attribute reduction with the fuzzy rough sets
technique has been proposed [12,21]. The attribute reduction algorithm performed well on practical datasets
(e.g. web categorization) [12,21], yet due to its poorly designed termination criteria, it did not converge on
many real datasets [1]. A further drawback is that it is inefficient on large dimensional problems because the
time complexity of the algorithm increases exponentially with the number of attributes. It has been suggested
that the computational efficiency could be improved if the fuzzy rough sets were placed on a compact compu-
tational domain [1]. Despite this, it should be noted that none of these works offers a clear definition of attri-
bute reduction or structure for attribute reduction based on fuzzy rough sets. Recently, the formal concept of
attribute reduction with fuzzy rough sets has been proposed and an algorithm using a discernibility matrix for
computing all attribute reductions has been designed [26]. This work was restricted to the fuzzy T similarity
relationship defined by ‘min’ norm because the reasoning process relies on the ‘min’ norm.

Only a limited number of rule induction methods using fuzzy rough set technique to learn rules from fuzzy
samples, have been proposed [8,9,22]. They are summarized as follows. Slowinski and Vanderpooten [22]
induced decision rules by using a similarity-based approximation, but they did not mention the underlying
concept of knowledge reduction and only proposed an induction algorithm. Hong et al. [8,9] also proposed
algorithms to produce a set of maximally general fuzzy rules from noisy quantitative training data by applying
the variable precision rough set model. They proposed the approximation of fuzzy lower and upper but
neglected to mention the concepts of either the core or the reduct, which are the most fundamental concepts
of knowledge reduction. Wang and Hong [27] proposed first transforming the fuzzy values to crisp values and
then computing the corresponding reducts and core of rules. Some information hidden in fuzzy values, such as
partial ordering relation and membership degree, is lost.
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In this paper, we attempt to improve the performance of a fuzzy rough set approach by generalizing the
underlying concepts of knowledge reduction, such as the reduct and core, to the fuzzy environment. We pro-
pose an approach, not only to reducing fuzzy attributes, but also to inducing fuzzy rules. First, we give some
new definitions of fuzzy lower and upper approximations by considering the similarity between two objects.
Second, we extend a number of underlying concepts of knowledge reduction (such as the reduct and core) to
the fuzzy environment and use these extensions to propose a heuristic algorithm to learn fuzzy rules from ini-
tial fuzzy data. Finally, we provide some numerical experiments to demonstrate the feasibility of the proposed
algorithm.

The rest of this paper is organized as follows: Section 2 outlines the fuzzy information system and proposes
the fuzzy indiscernibility relation. Section 3 describes our proposed set approximation model. Section 4
extends a number of basic concepts of knowledge reduction, such as the reduct and core, to the fuzzy envi-
ronment. In Section 5, we provide the algorithms for reducing attribute and learning a set of fuzzy decision
rules, we also analyze the time complexity of the algorithms. In Section 6 some numerical experiments are
reported to show the feasibility of the proposed approach. The last section concludes this paper.

2. Fuzzy information system

In this section, we describe the fuzzy information system or fuzzy decision table, which describes the data
format in this paper and define some notations. We also describe and exemplify the notion of the fuzzy indis-
cernibility relation, which is the primary notion in our work.

2.1. Fuzzy information system and notations

The fuzzy information system [28] represents the formulation of a problem with fuzzy samples (samples
containing fuzzy representation). Consider a set of samples fx1; x2; . . . ; xng which is regarded as a universe

of discourse U. Let eAð1Þ; eAð2Þ; . . . ; eAðmÞ and eAðmþ1Þ be a set of fuzzy attributes where eAðmþ1Þ denotes a fuzzy deci-
sion attribute. Each fuzzy attribute eAðjÞ consists of a set of linguistic terms F ðeAðjÞÞ ¼ feF ðjÞ1 ;

eF ðjÞ2 ; . . . ; eF ðjÞpj
g

ðj ¼ 1; 2; . . . ;mþ 1Þ. All linguistic terms are defined in the same universe of discourse U. The value of the
ith sample xi with respect to the jth attribute eAðjÞ, denoted by uij, is a fuzzy set defined in F ðeAðjÞÞ. In other

words, the fuzzy set uij has a form of uij ¼ uð1Þij =eF ðjÞ1 þ uð2Þij =eF ðjÞ2 þ � � � þ u
ðpjÞ
ij =eF ðjÞpj where uðkÞij ðk ¼ 1; 2; . . . ; pjÞ

denotes the corresponding membership degree. To demonstrate the fuzzy information system, we consider
data in Table 1, which describes a small training set with fuzzy samples [27]. The universe of discourse is
U = {x1,x2, . . . ,x14}. There are five fuzzy attributes: eAð1Þ ¼ outlook, eAð2Þ ¼ temperature, eAð3Þ ¼ humidity,
Table 1
A fuzzy information table

ej Class

Outlook Temperature Humidity Windy Class

Sunny Overcast Rain Hot Mild Cool High Normal False True Positive Negative

J = 1 0.9 0.1 0.0 0.9 0.1 0.0 0.8 0.2 0.7 0.4 0.4 0.7
J = 2 0.9 0.1 0.1 0.8 0.2 0.1 0.9 0.2 0.1 0.8 0.3 0.7
J = 3 0.1 0.9 0.2 0.9 0.1 0.1 0.9 0.1 0.9 0.1 0.8 0.3
J = 4 0.0 0.1 0.9 0.1 0.9 0.0 0.6 0.5 0.8 0.3 0.6 0.5
J = 5 0.1 0.0 0.9 0.0 0.1 0.9 0.0 1 0.8 0.2 0.9 0.2
J = 6 0.1 0.1 0.9 0.0 0.2 0.9 0.1 0.9 0.1 0.9 0.3 0.8
J = 7 0.0 1.0 0.0 0.0 0.1 0.9 0.1 0.9 0.2 0.9 0.9 0.3
J = 8 0.9 0.1 0.0 0.3 0.9 0.1 0.9 0.1 1.0 0.0 0.2 0.9
J = 9 0.8 0.2 0.0 0.0 0.4 0.6 0.0 1.0 1.0 0.0 0.9 0.2
J = 10 0.0 0.1 0.9 0.0 1.0 0.0 0.0 1.0 0.9 0.1 0.6 0.5
J = 11 0.9 0.1 0.0 0.0 0.9 0.1 0.1 0.9 0.0 1.0 0.8 0.3
J = 12 0.0 1.0 0.0 0.1 0.9 0.0 1.0 0.0 0.0 1.0 0.7 0.4
J = 13 0.0 0.9 0.1 1.0 0.0 0.0 0.0 1.0 0.9 0.1 0.7 0.2
J = 14 0.0 0.1 0.9 0.0 0.9 0.1 0.9 0.1 0.0 1.0 0.1 0.9



4496 X. Wang et al. / Information Sciences 177 (2007) 4493–4514
eAð4Þ ¼ windy and eAð5Þ ¼ class. Fuzzy Information System with decision attributes is also called Fuzzy Decision
Table.

In the following sections, we will use the following notations. Let S ¼ ðU ; eAÞ be a fuzzy information system
where U = {x1,x2, . . . ,xn} denotes the universe of discourse and eA denotes the set of fuzzy attributes. eAðjÞ
(1 6 j 6 m + 1) denotes the jth fuzzy attribute and eF ðjÞk denotes the kth linguistic term (fuzzy set) of fuzzy attri-
bute eAðjÞ. Moreover, for a matrix A, we will use max(A) to denote the maximum element of A and min(A) to
denote the minimum element of A.

2.2. Fuzzy indiscernibility relation

The indiscernibility relation (i.e. the equivalence relation) is a key and primitive concept of rough set theory.
In this section, we define and exemplify the extension of indiscernibility relation. This extension is called fuzzy
indiscernibility relation (fuzzy similarity relation).

Definition 1. 8eB � eA, eRðeBÞ is the fuzzy indiscernibility relation on eB if and only if eRðeBÞ ¼
a

ðxi;xjÞ jðxi; xjÞ 2 U � U ; a ¼ mineAðkÞ2eB eAðkÞðxi; xjÞ
n o

; where eAðkÞðxi; yjÞ is the similarity degree of two samples

xi, xj on eAðkÞ.
Then a is called indiscernibility degree on eB of xi,xj, denoted by rij ¼ a ¼ eRðeBÞðxi; xjÞ; rij 2 ½0; 1�.

According to Definition 1, the fuzzy indiscernibility relation eRðeBÞ is a fuzzy similarity relation. eRðeBÞ can
also be represented by a fuzzy similarity matrix as follows:
Table
Subset

ej

J = 1
J = 2
J = 3
J = 4
J = 5
J = 6
J = 7
J = 8
eRðeBÞ ¼
r11 r12 � � � r1n

r21 r22 � � � r2n

� � � � � � � � � � � �
rn1 rn2 � � � rnn

2
6664

3
7775
We set that eRðUÞ ¼ 1 � � � 1
..
. . .

. ..
.

1 � � � 1

2
4

3
5 if eB ¼ U. This is because we cannot distinguish any samples of the universe

of discourse (and therefore we have to regard them as indistinguishable) when the set of fuzzy attributes is
empty.

From the definition of fuzzy indiscernibility relation, it is easy to see that if 8eB � eA, then the element of
fuzzy matrix eRðeBÞ is greater than or equal to the corresponding element of fuzzy matrix eRðeAÞ,
i.e.minðeRðeBÞ � eRðeAÞÞP 0 or eRðeBÞP eRðeAÞ.

The following provides an example of the fuzzy indiscernibility relation:

Example 1. Let us consider Table 2, which is a part of Table 1 (with minor modification). Suppose
S0 ¼ ðU 0; eAÞ, where U

0
= {x1, . . . ,x8} is the set of eight samples, every sample is described by a set of fuzzy
2
of training set of learning from fuzzy samples

Class

Outlook Temperature Humidity Windy

Sunny Overcast Rain Hot Mild Cool High Normal False True

0.9 0.1 0.0 0.9 0.1 0.0 0.8 0.2 0.7 0.4
0.9 0.1 0.1 0.8 0.2 0.1 0.9 0.2 0.8 0.3

0.1 0.9 0.2 0.9 0.1 0.1 0.9 0.1 0.9 0.1
0.0 0.1 0.9 0.1 0.9 0.0 0.6 0.5 0.8 0.3
0.1 0.0 0.9 0.0 0.1 0.9 0.0 1 0.8 0.2
0.1 0.1 0.9 0.0 0.2 0.9 0.1 0.9 0.1 0.9
0.0 1.0 0.0 0.0 0.1 0.9 0.1 0.9 0.2 0.9
0.9 0.1 0.0 0.3 0.9 0.1 0.9 0.1 1.0 0.0
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attributes eA ¼ feAð1Þ; eAð2Þ; . . . ; eAð4Þg: eAð1Þ ¼ outlook, eAð2Þ ¼ temperature, eAð3Þ ¼ humidity, eAð4Þ ¼ windy, the
membership degrees of every sample are given in Table 2.

Fuzzy indiscernibility relation is calculated as follows: Assume that the function si;j ¼
1 i ¼ j
minm

k¼1ð1� jtik � tjkjÞ i 6¼ j

�
is given as the similarity measure. Here {t1, . . . , tn} is the set of the samples,

and every sample ti is described by {ti1, . . . , tim} 2 R+, (i = 1, . . . ,n).

Then the similarity degree of the samples x1 and x2 on the attribute eAð1Þ can be calculated as follows:
eAð1Þðx1; x2Þ ¼ ð1� j0:9� 0:9jÞ ^ ð1� j0:1� 0:1jÞ ^ ð1� j0� 0:1jÞ ¼ 0:9
Considering the samples x1 and x2, the indiscernibility degree can be calculated as follows:
r12 ¼ mineAðkÞ2eAðeAðkÞðx1; x2ÞÞ ¼ minf0:9; 0:9; 0:9; 0:9g ¼ 0:9
Similarly,
r13 ¼ mineAðkÞ2eAðeAðkÞðx1; x3ÞÞ ¼ minf0:2; 0:9; 0:9; 0:7g ¼ 0:2

r23 ¼ mineAðkÞ2eAðeAðkÞðx2; x3ÞÞ ¼ minf0:2; 0:9; 0:9; 0:2g ¼ 0:2

..

. ..
.

r78 ¼ mineAðkÞ2eAðeAðkÞðx8; x9ÞÞ ¼ minf0:1; 0:2; 0:2; 0:1g ¼ 0:1
Thus, the fuzzy similarity matrix (i.e. the fuzzy indiscernibility relation) can be obtained as follows:
eRðeAÞ ¼

1 0:9 0:2 0:1 0:1 0:1 0:1 0:2

0:9 1 0:2 0:1 0:1 0:2 0:1 0:3

0:2 0:2 1 0:2 0:1 0:1 0:1 0:2

0:1 0:1 0:2 1 0:1 0:1 0:1 0:1

0:1 0:1 0:1 0:1 1 0:2 0 0:1

0:1 0:2 0:1 0:1 0:2 1 0:1 0:1

0:1 0:1 0:1 0:1 0 0:1 1 0:1

0:2 0:3 0:2 0:1 0:1 0:1 0:1 1

2
6666666666666664

3
7777777777777775
3. Approximation of set

In this section, we describe and exemplify the basic concepts of knowledge representation in our proposed
fuzzy rough approach, specifically the lower and upper approximations, fuzzy rough set, positive region, neg-
ative region and boundary region.

After considering the similarity between two fuzzy samples, we redefine the lower and upper approxima-
tions as follows:

Definition 2. "M � U, the b-upper approximation of M is defined as
fM b ¼ fx 2 U j9y 2 M ; such that eRðeAÞðx; yÞP bg

If b = 1, the 1-upper approximation of M is fM 1 ¼ fx 2 U j9y 2 M ; such that eRðeAÞðx; yÞ ¼ 1g. This is

equivalent to the formula fM 1 ¼ fx 2 U j½x�eRðeAÞ \M 6¼ Ug (where eRðeAÞ is an equivalence relation and ½x�eRðeAÞ
is one equivalence class of eRðeAÞÞ. This shows that the 1-upper approximation of M is identical to the tradi-
tional upper approximation.



4498 X. Wang et al. / Information Sciences 177 (2007) 4493–4514
Definition 3. "M � U, the b-lower approximation of M is defined as
Table
The cr

ej

J = 1
J = 2
J = 3
J = 4
J = 5
J = 6
J = 7
J = 8
eM b ¼ fx 2 M jeRðeAÞðx; yÞ 6 1� b; 8y 2 U �Mg

Likewise, if b = 1 the 1-lower approximation of M is eM 1 ¼ fx 2 M jeRðeAÞðx; yÞ ¼ 0; 8y 2 U �Mg. This is
equivalent to the formula eM 1 ¼ fx 2 M j½x�eRðeAÞ � Mg. This shows that the 1-lower approximation of M is iden-
tical to the traditional lower approximation.

Using this pair of fuzzy lower and upper approximations hfM b; eM bi, we can represent any subset M of the
universe of discourse U.

Definition 4. "M1,M2 � U, if the following two formulae hold:
8x 2 M1; 9y 2 M2; such that eRðeAÞðx; yÞP a ð1Þ
8x 2 M2; 9y 2 M1; such that eRðeAÞðx; yÞP a ð2Þ
then we say that M1 is a-approximately equal to M2, denoted by M1ffi
a

M2.

Definition 5. IffM bffi
a eM b, then we say that M is b-definable in a-approximation. Otherwise, we say that M is b-

undefinable in a-approximation, and M is a fuzzy-rough set.
It is easy to see that if b = a = 1 fuzzy-rough set proposed in this paper degenerates into the traditional

rough set.

Definition 6. eM b is called the b-positive region of M in S ¼ ðU ; eAÞ, U �fM b is called the b-negative region of M

in S ¼ ðU ; eAÞ and fM b � eM b is called the b-boundary region of M in S ¼ ðU ; eAÞ.The following provide an
example of the definitions of the set approximation.

Example 2. Let us consider Tables 2 and 3. Here Table 3 is the discrete case of Table 2. Suppose that
M = {x1,x3,x4} is the subset of U 0.
(1) In Table 2, find the 0.9-lower and 0.9-upper approximations of M, the 0.9-positive region of M, the 0.9-
negative region of M and 0.9-boundary region of M.According to Definition 2, the 0.9-upper approxi-
mation of M can be obtained as follows:
fM 0:9 ¼ fx 2 U j9y 2 M ; such that eRðeAÞðx; yÞP 0:9g ¼ fx1; x2; x3; x4g

According to Definition 3, the 0.9-lower approximation of M can be obtained as follows:
eM 0:9 ¼ fx 2 M jeRðeAÞðx; yÞ 6 0:1; 8y 2 U �Mg ¼ fx4g

Furthermore, eM 0:9 ¼ fx4g is the 0.9-positive region of M, U �fM 0:9 ¼ fx5; . . . ; x8g is the 0.9-negative region of

M and fM 0:9 � eM 0:9 ¼ fx1; x2; x3g is the 0.9-boundary region of M in S0 ¼ ðU 0; eAÞ.

3
isp data transformed from the data in Table 2

Class

Outlook Temperature Humidity Windy

Sunny Overcast Rain Hot Mild Cool High Normal False True

1 0 0 1 0 0 1 0 1 0
1 0 0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 1
1 0 0 0 1 0 1 0 1 0
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(2) In Table 3, find the 1-lower and 1-upper approximations of M, the traditional lower and upper approx-
imations.In Table 3, the fuzzy similarity matrix (i.e. fuzzy indiscernibility relation) degenerates into a
Boolean matrix as follows:
RðeAÞ ¼

1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775
According to Definitions 2 and 3, the 1-upper and 1-lower approximations of M can be obtained from Table 3.

They are respectively fM 1 ¼ fx1; x2; x3; x4g and eM 1 ¼ fx3; x4g.The traditional upper and lower approximations
of M are respectively fx1; x2; x3; x4g and fx3; x4g.This example shows that the 1-lower and 1-upper approxima-
tions of M are identical to the traditional lower and upper approximations, respectively.

4. Fuzzy reduct and fuzzy core

On the basis of the fuzzy indiscernibility relation, we extend the basic concepts of knowledge reduction,
such as the reduct and core, to the fuzzy environment.

4.1. Fuzzy reduct and fuzzy core

First, we extend the concept of indispensability, based on which the concepts of the fuzzy reduct and core
can be proposed.

Definition 7. 8eAðjÞ 2 eB, let b ¼ maxðeRðeB � eAðjÞÞ � eRðeBÞÞ, then we say that eAðjÞ is b-indispensable in eB, or we
say that the indispensability degree of eAðjÞ in eB is b.

Definition 8. For eB0 � eB and the given threshold b;b 2 ½0; 1�, if the following two formulae hold:
maxðeRðeB0Þ � eRðeBÞÞ 6 1� b ð3Þ
8eAðjÞ 2 eB0;maxðeRðeB0 � eAðjÞÞ � eRðeB0ÞÞ > 1� b ð4Þ
Then eB0 is called the b-reduct of eB, denoted by ReductbðeBÞ.
Note that b-reduct of eB is not unique.

Definition 9. Given the threshold b, b 2 [0,1], the set eP consists of the fuzzy attributes whose indispensability
degrees in eB are greater than 1 � b. Then eP is called the b-core of eB, denoted by CorebðeBÞ.

In the following, we discuss the threshold b in definitions 8 and 9. If b = 1, definitions 8 and 9 degenerate
into the following:

Definition 8A. For eB0 � eB, if the following two formulae hold:
maxðeRðeB0Þ � eRðeBÞÞ 6 0 ð5Þ
8eAðjÞ 2 eB0;maxðeRðeB0 � eAðjÞÞ � eRðeBÞÞ > 0 ð6Þ
Then eB0 is called the 1-reduct of eB, denoted by Reduct1ðeBÞ.
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Definition 9A. The set eP is composed of fuzzy attributes whose indispensability degrees in eB are greater than
0. Then eP is called the 1-core of eB, denoted by Core1ðeBÞ.

In Definition 8A, the formula (5) is equivalent to the formula indðeB0Þ ¼ indðeBÞ, and the formula (6)
corresponds to the fact that the set eB0 is independent. All these show that if b = 1 Definition 8 degenerates into
the traditional definition of the reduct.

Likewise, if b = 1, Definition 9 degenerates into the traditional definition of the core.
Furthermore, we set that b > minðeRðeBÞÞ,
If b 6 minðeRðeBÞÞ, then we have
maxðeRðeB0Þ � eRðeBÞÞ 6 1�minðeRðeBÞÞ ð7Þ

8eAðjÞ 2 eB; maxðeRðeB0 � eAðjÞÞ � eRðeBÞÞ 6 1�minðeRðeBÞÞ ð8Þ

1�minðeRðeBÞÞ 6 1� b ð9Þ
From the formulae (7)–(9), it is easy to see that formula (3) always holds, whereas formula (4) is always wrong.
In this case, no subset of the fuzzy attributes set eB satisfying Definition 8 exists. In other words, for the set of
fuzzy attributes eB, no two samples can be distinguished if the threshold b 6 minðeRðeBÞÞ.

The fuzzy reduct and fuzzy core satisfy the following theorem:

Theorem 1. For an arbitrary threshold b > minðeRðBÞÞ; b 2 ½0; 1�, the formula CorebðeBÞ ¼ \ReductbðeBÞ always

holds.

Proof. First we prove CorebðeBÞ 	 ð\ReductbðeBÞÞ. We will complete the proof by contradiction.
Suppose that 9eAðkÞ 2 \ReductbðeBÞ, and eAðkÞ 62 CorebðeBÞ. According to Definition 9, we obtain

maxðeRðeB � eAðkÞÞ � eRðeBÞÞ 6 1� b. Then the subset of the fuzzy attributes set eB0 � eB � eAðkÞ must exist,
where eB0 satisfies maxðeRðeB0Þ � eRðeBÞÞ 6 1� b, and 8eBðjÞ 2 eB0, the formula maxðeRðeB0 � eBðjÞÞ� eRðeB0ÞÞ> 1�b
always holds. This shows that eB0 is the b-reduct of eB and eAðkÞ 62 eB0. This result contradicts our supposition. We
thus find that if eAðkÞ 2 \ReductbðeBÞ, then eAðkÞ 2CorebðeBÞ, i.e. CorebðeBÞ	 ð\ReductbðeBÞÞ.

Next, we prove CorebðeBÞ � ð\ReductbðeBÞÞ. That is to say we need to prove that if eAðkÞ 62 \ReductbðeBÞ, theneAðkÞ 62 CorebðeBÞ.
Suppose that eB0 is b-reduct of eB. If eB0 ¼ eB, then eB has only one b-reduct. According to the definitions of

fuzzy reduct and fuzzy core, we know that eB is also the b-core of eB, i.e. CorebðeBÞ ¼ \ReductbðeBÞ. If eB0 � eB
and eAðaÞ 2 eB � eB0, then we have eAðaÞ 62 \ReductbðeBÞ. According to the definition of fuzzy indiscernibility
relation, we know that if eB0 � eB � feAðaÞg and eB0 � eB, then we have
minðeRðeB0Þ � eRðeB � feAðaÞgÞÞP 0 ð10Þ

maxðeRðeB0Þ � eRðeBÞÞ 6 1� b ð11Þ
From the formulae (10) and (11), we know that the formula maxðeRðeB � feAðaÞgÞ � eRðeBÞÞ 6 1� b holds, i.e.eAðaÞ 62 CorebðeBÞ. This shows that CorebðeBÞ � ð\ReductbðeBÞÞ. h

The significance of attributes is also an important concept in knowledge reduction of rough set theory. In
the following, the concept of the significance of the degree of fuzzy attributes is given:

Definition 10. For eB0 � eB, let c ¼
P

i<j
rij

nðn�1Þ=2, where rij 2 eRðeB0Þ, n is the size of the universe, then we say that the
significance degree of eB0 in eB is c.

Example 3. Consider Table 2 again, suppose that M = {x1,x3,x4} is the subset of U 0.
(1) Calculate fuzzy indiscernibility degree of eAð1Þ in eA.Fuzzy similarity matrix eRðeA � eAð1ÞÞ can be obtained
as follows:
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eRðeA � eAð1ÞÞ ¼

1 0:9 0:7 0:2 0:1 0:1 0:1 0:2

0:9 1 0:8 0:3 0:1 0:2 0:2 0:3

0:7 0:8 1 0:2 0:1 0:1 0:1 0:2

0:2 0:3 0:2 1 0:1 0:1 0:1 0:6

0:1 0:1 0:1 0:1 1 0:3 0:3 0:1

0:1 0:2 0:1 0:1 0:3 1 0:9 0:1

0:1 0:2 0:1 0:1 0:3 0:9 1 0:1

0:2 0:3 0:2 0:6 0:1 0:1 0:1 1

2
66666666666664

3
77777777777775
According to Definition 7, the indiscernibility degree of eAð1Þ, eAð2Þ, eAð3Þ and eAð4Þ in eA is as follows:
b ¼ maxðeRðeA � eAð1ÞÞ � eRðeAÞÞ ¼ max

0 0 0:5 0:1 0 0 0 0

0 0 0:6 0:2 0 0 0:1 0

0:5 0:6 0 0 0 0 0 0

0:1 0:2 0 0 0 0 0 0:5

0 0 0 0 0 0 0:3 0

0 0 0 0 0 0 0:8 0

0 0:1 0 0 0:3 0:8 0 0

0 0 0 0:5 0 0 0 0

2
66666666666664

3
77777777777775
¼ 0:6
In the same way, the indiscernibility degree of eAð2Þ, eAð3Þ and eAð4Þ can be calculated. They are 0.4, 0.1 and 0,
respectively.

(2) Find all 0.9-reducts and the 0.9-core of eA in S0 ¼ ðU 0; eAÞ.
According to Definition 9, the 0.9-core of eA is the subset of condition attributes: feAð1Þ, eAð2Þ}.
Let eA0 ¼ feAð1Þ, eAð2Þ, eAð3Þg, then
maxðeRð eA0 Þ � eRðeAð4ÞÞÞ ¼ 0 < 0:1 maxðeRðeA0 � eAð1ÞÞ � eRðeAÞÞ ¼ 0:9 > 0:1

maxðeRðeA0 � eAð2ÞÞ � eRðeAÞÞ ¼ 0:7 > 0:1 maxðeRðeA0 � eAð3ÞÞ � eRðeAÞÞ ¼ 0:6 > 0:1
According to Definition 8, the subset eA0 ={eAð1Þ, eAð2Þ, eAð3Þ} is 0.9-reduct of eA.
In the same way, all 0.9-reducts of eA can be found. They are eA0 ={eAð1Þ, eAð2Þ, eAð3Þ} and eA00 ¼ feAð1Þ, eAð2Þ, eAð4Þ}.

Their intersections are eA0 \ eA00 ¼ feAð1Þ, eAð2Þ}. This result demonstrates that the fundamental relation between
reducts and core in rough set theory is maintained after the proposed extension.

4.2. Fuzzy relative reduct and fuzzy relative core

The concepts of fuzzy reduct and fuzzy core are limited to many applications such as fuzzy decision table.
We, therefore, generalize them to fuzzy relative reduct and fuzzy relative core, which is also the generalization
of the traditional relative reduct and relative core. In this section, we describe and exemplify basic concepts of
fuzzy relative attribute reduction that is the inconsistence degree between two samples, the relative indispens-
ability degree, fuzzy relative reduct and fuzzy relative core.

First, the inconsistence degree is given as follows:

Definition 11. For xi,xj 2 U, let
t ¼ eRðeBÞðxi; xjÞ � eRðeAðmþ1ÞÞðxi; xjÞ; rij ¼
t if t > 0

0 otherwise

�

Then rij is called the inconsistence degree of xixj on eB with respect to eAðmþ1Þ.
Let TeAðmþ1Þ ðeBÞ ¼ ðrijÞn�n, then TeAðmþ1Þ ðeBÞ is called the inconsistence matrix of fuzzy condition attributes set eB

with respect to fuzzy decision attribute eAðmþ1Þ on U.
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In the following, we extend the concepts of relative indispensability, fuzzy relative reduct and core based on
the fuzzy inconsistence degree.

Definition 12. 8eAðjÞ 2 eB, let b ¼ maxðTeAðmþ1Þ ðeB � feAðjÞgÞ � TeAðmþ1Þ ðeBÞÞ, then we say that eAðjÞ is b-indispensable
in eB with respect to eAðmþ1Þ, or we say that the relative indispensability degree of eAðjÞ in eB with respect to eAðmþ1Þ

is b.

Definition 13. For eB0 � eB and the given threshold b, b 2 [0,1], if the following two formulae hold:
maxðTeAðmþ1Þ ðeB0Þ � TeAðmþ1Þ ðeBÞÞ 6 1� b ð12Þ

8eAðjÞ 2 eB0; maxðTeaðmþ1Þ ðeB0 � feAðjÞgÞ � TeAðmþ1Þ ðeBÞÞ > 1� b ð13Þ
Then eB0 is called b-reduct of eB with respect to eAðmþ1Þ, denoted by ReductbeAðmþ1Þ
ðeBÞ.

Note that the b-reduct of eB with respect to eAðmþ1Þ is not unique.

Definition 14. Given the threshold b, b 2 [0, 1], the set eP consists of fuzzy attributes whose relative
indispensability degrees with respect to eAðmþ1Þ are greater than 1 � b. Then eP is called the b-core of eB with
respect to eAðmþ1Þ, denoted by CorebeAðmþ1Þ

ðeBÞ.
Definition 15 gives the concept of the significance degree of fuzzy attributes with respect to fuzzy decision

attribute.

Definition 15. For eB0 � eB, let c ¼
P

i<j
tij

nðn�1Þ=2
, where tij 2 eT eAðmþ1Þ ðeB0Þ and n is the size of the universe, we say that

the significance degree of eB0 in eB with respect to eAðmþ1Þ is c.

In the following, we analyze the threshold b in Definitions 13 and 14.
If b = 1, Definition 13 degenerates into the traditional definition of the relative reduct and Definition 14

degenerates into the traditional definition of relative core.
Likewise, we set that b > minðTeAðmþ1Þ ðeBÞÞ.
Fuzzy relative reduct and fuzzy relative core satisfy the following theorem:

Theorem 2. For an arbitrary threshold b > minðTeAðmþ1Þ ðeBÞÞ, b 2 [0,1], the formula CorebeAðmþ1Þ
ðeBÞ ¼

\ReductbeAðmþ1Þ
ðeBÞ always holds.

Proof. First we prove that CorebeAðmþ1Þ
ðeBÞ 	 \ReductbeAðmþ1Þ

ðeBÞ. We complete the proof by contradiction.

Suppose that 9eAðjÞ 2 \ReductbeAðmþ1Þ
ðeBÞ, and eAðjÞ 62 CorebeAðmþ1Þ

ðeBÞ. According to Definition 13, it is easy to see

that the formula maxðTeAðmþ1Þ ðeB � feAðjÞgÞ � TeAðmþ1Þ ðeBÞÞ 6 1� b holds. Then, the subset of fuzzy attributes seteQ � eB � feAðjÞg must exist, where eQ satisfies maxðTeAðmþ1Þ ðeQÞ � TeAðmþ1Þ ðeBÞÞ 6 1� b. And 8eAðkÞ 2 eQ, the

formula maxðTeAðmþ1Þ ðeQ � feAðkÞgÞ � TeAðmþ1Þ ðeBÞÞ > 1� b always holds. This shows that eQ is the b-reduct of eB
with respect to eAðmþ1Þ and eAj 62 eQ. This contradicts our supposition. Thus, we have shown that ifeAðjÞ 2 \ReductbeAðmþ1Þ

ðeBÞ, then eAðjÞ 2 CorebeAðmþ1Þ
ðeBÞ, i.e. CorebeAðmþ1Þ

ðeBÞ 	 \ReductbeAðmþ1Þ
ðeBÞ.

Next, we prove CorebeAðmþ1Þ
ðeBÞ � \ReductbeAðmþ1Þ

ðeBÞ. That is to say, we need to prove that if

eAðjÞ 62 \ReductbeAðmþ1Þ
ðeBÞ, then eAðjÞ 62 CorebeAðmþ1Þ

ðeBÞ.
Suppose that eQ is b-reduct of eB with respect to eAðmþ1Þ. Let eAðjÞ 2 eB � eQ, then we haveeAðjÞ 62 \ReductbeAðmþ1Þ

ðeBÞ. According to the definition of inconsistence matrix, we get
maxðTeAðmþ1Þ ðeQÞ � TeAðmþ1Þ ðeBÞÞ 6 1� b ð14Þ

minðTeAðmþ1Þ ðeQÞ � TeAðmþ1Þ ðeB � feAðjÞgÞÞP 0 ð15Þ
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From the formulae (14) and (15), the formula maxðTeAðmþ1Þ ðeB � feAðjÞgÞ � TeAðmþ1Þ ðeBÞÞ 6 1� b holds, i.e.eAðjÞ 62 CorebeAðmþ1Þ
ðeBÞ. This shows that CorebeAðmþ1Þ

ðeBÞ � \ReductbeAðmþ1Þ
ðeBÞ, which completes the proof. h

Example 4. Consider Table 4, which is the subset of training set of learning from fuzzy samples in Table 1.

Suppose U 0 ¼ fx1; . . . ; x8g is the set of eight samples, every sample is described by a set of fuzzy attributes

feB; eAð5Þg where eB ¼ feAð1Þ; eAð2Þ; . . . ; eAð4Þg is the set of fuzzy condition attributes, and eAð5Þ ¼ class is fuzzy deci-
sion attribute. The membership degrees of every sample are given in Table 4.
(1) Calculate the inconsistent degrees of the sample pairs x1 and x2, x2 and x3 on eB with respect to eAð5Þ.

We can calculate that
Table
Anoth

ej

J = 1
J = 2
J = 3
J = 4
J = 5
J = 6
J = 7
J = 8
t12 ¼ eRðeBÞðx1; x2Þ � eRðeAð5ÞÞðx1; x2Þ ¼ 0:9� 0:6 ¼ 0:3

t23 ¼ eRðeBÞðx2; x3Þ � eRðeAð5ÞÞðx2; x3Þ ¼ 0:2� 0:9 ¼ �0:7
According to Definition 11, the inconsistence degree of x1, x2 on eB with respect to eAð5Þ is r12 = 0.3. The incon-
sistence degree of x2, x3 on eB with respect to eAð5Þ is r23 = 0.

(2) Calculate the relative indiscernibility degree of eAð1Þ, eAð2Þ, eAð3Þ and eAð4Þ in eB with respect to eAð5Þ.
The inconsistence matrix of fuzzy condition attributes set eB with respect to fuzzy decision attribute eAð5Þ is
TeAð5Þ ðeBÞ ¼ ðrijÞ8�8

0 0:3 0 0 0 0 0 0
0:3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

2
6666666664

3
7777777775
According to Definition 12, the relative indispensability degree of eAð1Þ in eB with respect to eAð5Þ is
b ¼ maxðTeAð5Þ ðeB � feAð1ÞgÞ � TeAð5Þ ðeBÞÞ ¼ max

0 0 0:1 0 0 0 0 0
0 0 0 0 0 0 0 0

0:1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0:5 0
0 0 0 0 0 0:5 0 0
0 0 0 0 0 0 0 0

2
66666664

3
77777775
¼ 0:5
4
er subset of training set of learning from fuzzy samples

Class

Outlook Temperature Humidity Windy Class

Sunny Overcast Rain Hot Mild Cool High Normal False True1 Positive Negative

0.9 0.1 0.0 0.9 0.1 0.0 0.8 0.2 0.7 0.4 0.4 0.7
0.9 0.1 0.1 0.8 0.2 0.1 0.9 0.2 0.8 0.3 0.7 0.3

0.1 0.9 0.2 0.9 0.1 0.1 0.9 0.1 0.9 0.1 0.8 0.3
0.0 0.1 0.9 0.1 0.9 0.0 0.6 0.5 0.8 0.3 0.6 0.5
0.1 0.0 0.9 0.0 0.1 0.9 0.0 1 0.8 0.2 0.9 0.2
0.1 0.1 0.9 0.0 0.2 0.9 0.1 0.9 0.1 0.9 0.3 0.8
0.0 1.0 0.0 0.0 0.1 0.9 0.1 0.9 0.2 0.9 0.9 0.3
0.9 0.1 0.0 0.3 0.9 0.1 0.9 0.1 1.0 0.0 0.2 0.9
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The relative indispensability degrees of eAð2Þ, eAð3Þ and eAð4Þ in eB with respect to eAð5Þ can be similarly calculated.
They are 0.3, 0 and 0.5, respectively.

(3) Find one relative 0.9-reduct and relative 0.9-core of eB with respect to eAð5Þ.
According to Definition 14, the relative 0.9-core of eA is {eAð1Þ,eAð2Þ; eAð4Þ}. According to Definition 13, feAð1Þ,eAð2Þ; eAð4Þg is the relative 0.9-reduct of eA.

4.3. Fuzzy reduct and fuzzy core of rule

The fuzzy decision table requires the reduction, not just of fuzzy attributes, but also of the superfluous fuzzy
attribute-values. Reducing fuzzy attribute-values is equivalent to reducing every initial fuzzy rule. This is
because a fuzzy sample corresponds to an initial fuzzy rule in the fuzzy decision table. In this section, we intro-
duce some concepts to reduce the initial fuzzy rules.

First, we define the concept of fuzzy indispensability in the initial fuzzy rule.

Definition 16. For the initial fuzzy rule xi and the fuzzy set (linguistic term) eF ðjÞk (1 6 k 6 pj) describing fuzzy
attribute eAðjÞ, let
b ¼ maxðTeAðmþ1Þ ðeB � feAðjÞ � feF ðjÞk ggÞ � TeAðmþ1Þ ðeBÞÞðxi; �Þ
Then we say that fuzzy attribute-value eF ðjÞk ðxiÞ is b-indispensable in the initial fuzzy rule xi, or we can say that
the indispensability degree of fuzzy attribute-value eF ðjÞk ðxiÞ in the initial fuzzy rule xi is b.

In the following, we assume that eB0 is composed of several modified fuzzy condition attributes. Here the
modified fuzzy attribute is obtained by removing one or several fuzzy sets describing it.eA0ðmþ1Þ is obtained by removing one or several fuzzy sets from fuzzy decision attribute eAðmþ1Þ. We replaceeAðmþ1Þ by eA0ðmþ1Þ in the following definitions if the following two formulae hold:
max TeA 0ðmþ1Þ ðeBÞ � TeAðmþ1Þ ðeBÞ� �
ðxi; �Þ 6 1� b ð16Þ
For the kth fuzzy set (linguistic term) eF ðmþ1Þ
k of fuzzy attribute eA0ðmþ1Þ,
maxðT
feA 0ðmþ1Þ�feF ðmþ1Þ

k gg
ðeBÞ � TeAðmþ1Þ ðeBÞÞðxi; �Þ > 1� b ð17Þ
Definition 17. For the initial fuzzy rule xi and the given threshold b, b 2 [0,1], if the following two formulae
hold:
maxðTeA 0ðmþ1Þ ðeB0Þ � TeA 0ðmþ1Þ ðeBÞÞðxi; �Þ 6 1� b ð18Þ
for the kth fuzzy set (linguistic term) eF ðjÞk (1 6 k 6 pj) of fuzzy attribute eAðjÞ,

maxðTeA 0ðmþ1Þ ðeB0 � feAðjÞ � feF ðjÞk ggÞ � TeA 0ðmþ1Þ ðeBÞÞðxi; �Þ > 1� b ð19Þ
then eB0ðxiÞ ! eA0ðmþ1ÞðxiÞ is called b-reduct rule of the initial fuzzy rule xi, denoted by
ReductbeA 0ðmþ1Þ

ðeBÞðxiÞ ! eA0ðmþ1ÞðxiÞ.

Note that b-reduct rule of the initial fuzzy rule xi is not unique.

Definition 18. For the initial fuzzy rule xi and the given threshold b, b 2 [0,1], the set eP consists of fuzzy
attribute-values whose indispensability degrees in initial fuzzy rule xi are greater than 1 � b. TheneP ! eA0ðmþ1ÞðxiÞ is called the b-core rule of the initial fuzzy rule xi, denoted by CorebeA 0ðmþ1Þ

ðeBÞðxiÞ ! eA0ðmþ1ÞðxiÞ.
Likewise, we set that b > max

n

i¼1
ðminðTeA 0ðmþ1Þ ðeBÞÞðxi; �ÞÞ. If b 6 minðTeA 0ðmþ1Þ ðeBÞÞðxi; �Þ, i ¼ 1; . . . ; n, then there

exists no b-reduct rule of the initial fuzzy rule xi satisfying Definition 17.
In the following, we define the concept of significance degree of fuzzy attribute-values.
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Definition 19. For the initial fuzzy rule xi and eB0 � eB, let c ¼
Pn

j¼1
tij

nðn�1Þ=2
, where tij 2 eT eAðmþ1Þ ðeB0Þðxi; �Þ and n is the

size of the universe, we say that the significance degree of eB0 in eB with respect to eAðmþ1Þ of the initial fuzzy rule
xi is c.

Theorem 3. For an arbitrary threshold b > max
n

i¼1
ðminðTeA 0ðmþ1Þ ðeBÞÞðxi; �ÞÞ, b 2 [0,1], the formula

ReductbeA 0ðmþ1Þ
ðeBÞðxiÞ ¼ CorebeA 0ðmþ1Þ

ðeBÞðxiÞ, 1 6 i 6 n always holds.

The proof is similar to Theorem 2. We omit the details of the proof.
To reduce initial fuzzy rules, we need to propose the following new definitions such as covering and rough

covering of fuzzy rules, etc.

Definition 20. For i; j ¼ 1; 2; . . . ; n and j 5 i, if the similarity degree between the conditional attributes of the
initial rules xi and xj is greater than or equal to k, then we say that the rules xi and xj k-rough cover each other.

Definition 21. For i; j ¼ 1; 2; . . . ; n and j 5 i, if the similarity degree between the conditional attributes of
the initial rules xi and xj is greater than or equal to k, and the similarity degree between the decision attributes
of the initial rule xi and xj is greater than or equal to k too, then we say that the rules xi and xj k-cover each
other.

Definition 22. For the kth b-reduct rule of an initial rule xi, find all initial rules which are k-rough covered by
this reduct rule and add the number of these initial rules to RNik, we say that the sum RNik is the k-rough
covering degree of the kth b-reduct rule of the initial rule xi.

Definition 23. For the kth b-reduct rule of an initial rule xi, find out all initial rules which are k-covered by this
reduct rule and count these initial rules and assign the number to Nik, we say that the number Nik is the k-cov-
ering degree of the kth b-reduct rule of the initial rule xi.

Definition 24. For any fuzzy rule, count the linguistic terms (fuzzy sets), which are included in the antecedents
of this fuzzy rule, and assign the number to d, then d is called the rank of this rule.

Definition 25. For any fuzzy rule xi, / is the k-rough covering degree of xi, and u is the k-covering degree of
this fuzzy rule xi, then we say that u// is the true degree of the fuzzy rule xi.

In this section, our approach to the reduction of initial fuzzy rules has been to ignore the small perturbation
of fuzzy data as represented by the value 1 � b. The smaller the threshold 1 � b, the smaller and simpler the
decision rule set. But a smaller threshold is not necessarily better. Rather, the choice of a threshold is depen-
dent on the tolerance of the small perturbations of fuzzy data.

Example 5. Consider Table 4 again.
(1) Calculate the indiscernibility degree of fuzzy attribute-value eF ð4Þ1 ðx2Þ of the condition attribute eAð4Þ in the
initial fuzzy rule x2.

Consider the fuzzy attribute-value eF ð4Þ1 ðx2Þ (i.e. Windy (false, 0.8)) which is the attribute-value of the fuzzy
set ‘‘false’’ of the condition attribute eAð4Þ (i.e. Windy) in the initial fuzzy rule x2 in Table 4. The indiscernibility
degree of this value is calculated as follows:
b¼maxðTeAð5Þ ðeB�feAð4Þ �feF ð4Þ1 ggÞ�TeAð5Þ ðeBÞÞðx2; �Þ ¼maxðð0:3 0 0 0 0 0 0 0Þ�ð0:3 0 0 0 0 0 0 0ÞÞ¼ 0
(2) Calculate the 0.9-reduct rule of the initial fuzzy rule x1 in Table 4.

Suppose eB0 is composed of several modified fuzzy attributes which are eA0ð1Þ ¼ outlookðovercastÞ andeA0ð3Þ ¼ humidityðhighÞ. eA0ð5Þ (i.e. class(Negative)) is obtained by removing one fuzzy set from the fuzzy deci-
sion attribute eAð5Þ. Replace eAð5Þ by eA0ð5Þ in the initial fuzzy rules x1.
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Consider the rule eB0ðx1Þ ! eA0ð5Þðx1Þ (i.e. outlook(overcast,0.1) ^ humidity(high,0.8)! class(Nega-
tive,0.7)), we have
maxðTeA 0ð5Þ ðeB0Þ � TeA 0ð5Þ ðeBÞÞðx1; �Þ ¼ 0:1 6 0:1
For the fuzzy set eF ð1Þ2 (i.e. outlook(overcast)) from eB0,

maxðTeA 0ð5Þ ðeB0 � feAð1Þ � feF ð1Þ2 ggÞ � TeA 0ð5Þ ðeBÞÞðx1; �Þ ¼ 0:3 > 0:1
For the fuzzy set eF ð3Þ1 (i.e. humidity(high)) from eB0;

maxðTeA 0ð5Þ ðeB0 � feA0ð3Þ � feF ð3Þ1 ggÞ � TeA 0ð5Þ ðeBÞÞðx1; �Þ ¼ 0:4 > 0:1
According to Definition 17, the rule outlook (overcast, 0.1) ^ humidity(high,0.8)! class(Negative,0.7) is 0.9-
reduct rule of the initial fuzzy rule x1.

5. The procedure and algorithms of learning from fuzzy decision table and an illustrative example

In this section, we first give the procedure of learning from the fuzzy decision table and then provide five
algorithms to learning fuzzy rules. We also give an illustrative example to demonstrate the learning result.

5.1. The procedure of learning from fuzzy decision table

The procedure of learning fuzzy rules from the fuzzy decision table is provided in Fig. 1.

(1) Preprocessing: First, identify the condition and decision attributes. Next, transform the fuzzy data into
decision table format. Finally, use a fuzzy similarity matrix or fuzzy inconsistent matrix to represent
fuzzy information in the fuzzy decision table.

(2) Fuzzy attribute reduction: Remove the superfluous attributes from a fuzzy decision table by ignoring the
small perturbations of the fuzzy inconsistent matrix. That is to say, compute the attribute reducts of ini-
tial fuzzy dataset.

(3) Reducing fuzzy attribute-values: Remove the superfluous and irrelevant attribute-values from the dataset
by ignoring the small perturbation of fuzzy inconsistent matrix and compute all reduct rules of each ini-
tial fuzzy rule.

(4) Fuzzy rules induction: From all reduct rules of every initial rule, induce the rules which are most repre-
sentative so as to form a decision rule set.

(5) Classification: The rule set can be used in classification. In the following eB ¼ feAð1Þ; eAð2Þ; . . . ; eAðmÞg
denotes the set of fuzzy condition attributes, eAðmþ1Þ denotes fuzzy decision attribute. Reik denotes the
kth b-reduct rule of the initial rule xi. Ki denotes the number of b-reduct rules of the initial rule xi.
Initial fuzzy dataset Preprocessing

Classification

Fuzzy rules induction 

Attribute reduction  

Reduced dataset Reducing fuzzy attribute-values 

Rule set 

Fig. 1. The program of learning fuzzy rules from fuzzy sample
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Algorithm 1 (Finding all fuzzy relative reducts).

Input: S ¼ ðU ; eAÞ is the initial fuzzy dataset, eB ¼ feAð1Þ; eAð2Þ; . . . ; eAðmÞg and eAðmþ1Þ are the set of all fuzzy con-
dition and fuzzy decision attributes, respectively. H is the set of fuzzy attributes, which are b-indis-
pensable in eB. l is a positive integer and b is the given threshold.

Output: R is the set of all b-reducts in eB with respect to eAðmþ1Þ.

Step 1: Initialize l = 1, R = U, H = U, eB ¼ feAð1Þ; eAð2Þ; . . . ; eAðmÞg ¼ feF ðjÞ1 ; eF ðjÞ2 ; . . . ; eF ðjÞpj
jj ¼ 1; 2; . . . ;mg andeAðmþ1Þ.

Step 2: According to Definition 12, compute the indispensability degree with respect to eAðmþ1Þ of each linguis-
tic term eF ðjÞk (j ¼ 1; 2; . . . ;m, k ¼ 1; 2; . . . ; pjÞ. Add the fuzzy linguistic terms, which are b-indispens-

able with respect to eAðmþ1Þ, to H. Let Q ¼ eB � H .

Step 3: According to Definition 13, if H is the b-reduct with respect to eAðmþ1Þ, then add it to the set R and
Stop; Otherwise, go to Step 4.

Step 4: Compute the power set P of Q.
Step 5: If such a set Nl 2 P, which has l elements, exists, go to Step 7; Otherwise, go to Step 6.

Step 6: Let l = l + 1, go to Step 5.
Step 7: Select a set Ml 2 P which has l elements. Let H 0 = H [Ml.
Step 8: According to Definition 13, if H 0 is the b-reduct with respect to eAðmþ1Þ, then add it to the set R and let

P = P � {M 2 PjMl �M}, go to Step 9; Otherwise, let P = P � {Ml}, go to Step 9.
Step 9: If P 5 U, go to Step 5; Otherwise, Stop.

According to algorithm 1, the time complexity of finding all fuzzy relative reducts is Oð2jLAj � jU j2Þ,
where jLAj is the number of the linguistic terms of all condition attributes, jUj is the cardinality of
the universe of discourse U. Because the time complexity of the algorithm increases exponentially
with the total number of linguistic terms, it is impossible to find all reducts in large dimensional data-
sets and it is unnecessary to find all reducts in real applications. For this reason, we describe a more
effective heuristic algorithm for finding the close-to-minimal attribute reducts.

Algorithm 2 ((Heuristic): Finding the close-to-minimal fuzzy reduct).

Input: S ¼ ðU ; eAÞ is the initial fuzzy dataset, eB ¼ feAð1Þ; eAð2Þ; . . . ; eAðmÞg and eAðmþ1Þ are the set of all fuzzy con-
dition and fuzzy decision attributes, respectively. H is the set of fuzzy attributes which are b-indis-
pensable with respect to eAðmþ1Þ in eB. b is the given threshold.

Output: R is the close-to-minimal b-reduct.

Step 1: Initialize R = U, H = U, eB ¼ feAð1Þ; eAð2Þ; . . . ; eAðmÞg ¼ feF ðjÞ1 ;
eF ðjÞ2 ; . . . ; eF ðjÞpj

jj ¼ 1; 2; . . . ;mg and eAðmþ1Þ.

Step 2: According to Definition 12, compute the indispensability degree with respect to eAðmþ1Þ of each linguis-

tic term eF ðjÞk (j ¼ 1; 2; . . . ;m, k ¼ 1; 2; . . . ; pjÞ. Add those linguistic terms which are b-indispensable

with respect to eAðmþ1Þ, to H. Let Q ¼ eB � H .
Step 3: According to Definition 13, if H is the b-reduct with respect to eAðmþ1Þ, add it to the set R and Stop;

Otherwise, go to Step 4.
Step 4: Add an arbitrary linguistic term Mt 2 Q (t ¼ 1; 2; . . . ; jQj. Here jQj is the cardinality of Q) into H,

denoted as H 0t ¼ H [Mt.
Step 5: According to Definition 15, compute the significance degree of fuzzy attributes subset

H 0t ðt ¼ 1; 2; . . . ; jQjÞ.
Step 6: If the significance degree of H 0k ¼ H [Mk is the maximum one, let H = H [Mk.
Step 7: According to Definition 13, if the subset H is the b-reduct with respect to eAðmþ1Þ, then let R = H and

Stop; Otherwise, let Q = Q � {Mk}, go to Step 4.
Using the above heuristic Algorithm 2, it is possible to obtain the close-to-minimal b-reduct. For the

worst case scenario, the time complexity of this heuristic algorithm is O ðjLAj2þjLAjÞ
2

� jU j2
� �

.

The algorithms for finding all fuzzy reduct rules from each initial fuzzy rule are given as follows:



4508 X. Wang et al. / Information Sciences 177 (2007) 4493–4514
Algorithm 3 (Finding all fuzzy reduct rules of the initial fuzzy rule).

Input: xi is the initial fuzzy rule of S ¼ ðU ; eAÞ, F(xi) and eAðmþ1ÞðxiÞ are the set of all fuzzy condition attribute-
values and the set of all fuzzy decision attribute-values of the rule xi, respectively. H(xi) is the set of
fuzzy attribute-values which are b-indispensable in the rule xi. l is a positive integer and b is the given
threshold.

Output: Ri is the set of the b-reduct rules of the initial rule xi.
Step 1: Initialize l = 1, Ri = U, H(xi) = U, F ðxiÞ ¼ feF ðjÞ1 ðxiÞ; eF ðjÞ2 ðxiÞ; . . . ; eF ðjÞpj

ðxiÞjj ¼ 1; 2; . . . ;mg andeAðmþ1ÞðxiÞ ¼ feF ðmþ1Þ
1 ðxiÞ; eF ðmþ1Þ

2 ðxiÞ; . . . ; eF ðmþ1Þ
pmþ1
ðxiÞg.

Step 2: According to the formulae (14) and (15), replace eAðmþ1ÞðxiÞ by eA0ðmþ1ÞðxiÞ in the initial fuzzy rules xi.
Step 3: For the rule F ðxiÞ ! eA0ðmþ1ÞðxiÞ, compute the indispensability degree of fuzzy attribute-values eF ðjÞk ðxiÞ

(j = 1,2, . . . ,m, k = 1,2, . . . ,pj). Add the fuzzy attribute-values, which are b-indispensable, to H(xi).
Let Q(xi) = F(xi) � H(xi).

Step 4: According to Definition 17, if the rule HðxiÞ ! eA0ðmþ1ÞðxiÞ is the b-reduct rule of the initial rule xi, add
it to the set Ri and Stop; Otherwise, go to Step 5.

Step 5: Compute the power set P of Q(xi).
Step 6: If there exists a set Nl 2 P which has l elements, go to Step 8; Otherwise, go to Step 7.
Step 7: Let l = l + 1, go to Step 6.
Step 8: Select a set Ml 2 P which has l elements. Let H 0(xi) = H(xi) [Ml.
Step 9: According to Definition 17, if the rule H 0ðxiÞ ! eA0ðmþ1ÞðxiÞ is the b-reduct rule of the initial rule xi, add

it to the set Ri and let P = P � {M 2 PjMl �M}, go to Step 10; Otherwise, let P = P � {Ml}, go to
Step 10.

Step 10: If P 5 U, go to Step 6; Otherwise, Stop.
Algorithm 4 ((Heuristic): Finding the close-to-minimal fuzzy reduct rule of the initial fuzzy rule).

Input: xi is the initial fuzzy rule of S ¼ ðU ; eAÞ, F(xi) and eAðmþ1ÞðxiÞ are the set of all fuzzy condition attribute-
values and the set of all fuzzy decision attribute-values of the rule xi, respectively. H(xi) is the set of
fuzzy attribute-values which are b-indispensable in the rule xi. b is the given threshold.

Output: Ri is the close-to-minimal b-reduct rule of the initial fuzzy rule xi.
Step 1: Initialize l = 1, Ri = U, H(xi) = U, F ðxiÞ ¼ feF ðjÞ1 ðxiÞ; eF ðjÞ2 ðxiÞ; . . . ; eF ðjÞpj

ðxiÞjj ¼ 1; 2; . . . ;mg andeAðmþ1ÞðxiÞ ¼ feF ðmþ1Þ
1 ðxiÞ; eF ðmþ1Þ

2 ðxiÞ; . . . ; eF ðmþ1Þ
pmþ1
ðxiÞg.

Step 2: According to the formulae (14) and (15), we replace eAðmþ1ÞðxiÞ by eA0ðmþ1ÞðxiÞ in the initial fuzzy rules xi.
Step 3: For the rule F ðxiÞ ! eA0ðmþ1ÞðxiÞ, compute the indispensability degree of fuzzy attribute-values eF ðjÞk ðxiÞ

(j ¼ 1; 2; . . . ;m, k ¼ 1; 2; . . . ; pjÞ. Add those fuzzy attribute-values, which are b-indispensable, to
H(xi). Let Q(xi) = F(xi) � H(xi).

Step 4: According to Definition 17, if the rule HðxiÞ ! eA0ðmþ1ÞðxiÞ is the b-reduct rule of the initial rule xi, then
add it to the set Ri and Stop; Otherwise, go to Step 5.

Step 5: Add an arbitrary attribute-value Mt(xi) 2 Q (xi) ðt ¼ 1; 2; . . . ; jQðxiÞjÞ into H(xi), denoted as
H 0(xi) = H(xi) [Mt(xi). Here jQ(xi)j is the number of the attributes values in Q(xi).

Step 6: According to Definition 19, compute the significance degree of fuzzy attribute-values subset H 0tðxiÞ.
Step 7: If the significance degree of H 0kðxiÞ ¼ HðxiÞ [MkðxiÞ is the maximum, let H(xi) = H(xi) [Mk(xi).
Step 8: According to Definition 17, if the rule HðxiÞ ! eA0ðmþ1ÞðxiÞ is the b-reduct rule of the initial rule xi, add

it to the set Ri and Stop; Otherwise, let Q(xi) = Q(xi) � {Mk(xi)}, go to Step 5.
The final step in learning from fuzzy samples based on rough set technique is to learn rules from all
fuzzy reduct rules. A heuristic algorithm of inducing fuzzy rules from the fuzzy decision table is given
as follows:
Algorithm 5 ((Heuristic): Inducing fuzzy rules).

Input: P is the set of initial fuzzy rules, R is the set of fuzzy reduct rules of every initial rule, and b, k are the
given thresholds.



X. Wang et al. / Information Sciences 177 (2007) 4493–4514 4509
Output: Q is the close-to-minimal fuzzy rule set.
Step 1: Initialize P = U, R = U and Q = U.
Step 2: For each initial fuzzy rule xi (1 6 i 6 n) in P, compute all b-reduct rules and add them to R.
Step 3: For each b-reduct rule Reik (1 6 i 6 n, 1 6 k 6 Ki) in R, find all initial fuzzy rules in P, which are

k-covered by the rule Reik, and compute the k-covering degree Nik of the rule Reik.
Step 4: For each b-reduct rule Reik(1 6 i 6 n,1 6 k 6 Ki) in R, find all initial rules in P, which are k-rough

covered by the rule Reik, and compute the k-rough covering degree RNik of the rule Reik.
Step 5: Compute CRik ¼ Nik�Nik

RN ik
as the criterion to select the most informative b-reduct rule.

Step 6: Select the most informative b-reduct rules. Among them, choose the b-rule Re• whose rank is the
smallest. Remove this rule Re• from R and add it to Q.

Step 7: From P, remove those initial fuzzy rules which are b-rough covered by the rule Re•.
Step 8: If P 5 U, go to Step 3; Otherwise, Stop.

In Step 2, it is also feasible to find the close-to-minimal fuzzy reduct rule instead of finding all
b-reduct rules.
For the algorithms mentioned above, If b = k = 1 the algorithms degenerate into the traditional algo-
rithms proposed in [16,17]. That is to say, when the threshold b and k are set to 1, the algorithms
proposed in this paper can be use to learn from nominal data.
5.2. An illustrative example

Using the heuristic algorithms mentioned above, when b = k = 0.7 we learn the close-to-minimal rule set
from Table 1 as follows:

Rule 1-1: humidity(high,0)! class(positive,0.8) true degree: 0.8571
Rule 1-2: outlook(overcast, 0.1) ^ humidity(normal,0.1)! class(negative, 0.9) true degree: 1
Rule 1-3: outlook(overcast, 1)! class(positive,0.8) true degree: 1
Rule 1-4: outlook(overcast, 1)! class(positive,0.6) true degree: 1
5.3. Analysis about the time complexity of the method proposed in this paper

In this paper, we present a method of learning fuzzy rules from fuzzy samples based on rough set technique.
The fuzzy information is represented in the form of a fuzzy matrix. The families of fuzzy indiscernibility rela-
tions proposed in this paper and the families of fuzzy matrices are isomorphic. That is to say, the method pro-
posed in this paper is fuzzy matrix computation for fuzzy information systems. So, all those families of time
complexities in this paper (such as the time complexity of finding fuzzy indispensability relation, the time com-
plexity of finding fuzzy core) are equal to the corresponding time complexities in the matrix computation of
the traditional rough set theory, respectively [7]. In this paper, the time complexities of the method are ana-
lyzed as follows: First, the time complexity of computing fuzzy indiscernibility relation is equal to the time
complexity of finding the corresponding fuzzy matrix O(jAj · jUj2). Here jUj is the cardinality of the universe
of discourse U and jAj is the cardinality of the set of attributes. Secondly, the time complexity of computing
fuzzy indiscernibility degree of certain attribute is O(jAj · jUj2). The time complexity of finding fuzzy core
attributes is OðjAj2 � jU j2Þ. Thirdly, according to Algorithm 1, the time complexity of finding all fuzzy attri-
bute reducts is Oð2jLAj � jU j2Þ. Here, jLAj is the total number of the linguistic terms of all condition attributes.
According to Algorithm 3, the time complexity of finding all fuzzy reduct rules of each initial rule is
O(2jLAj · jUj). It is unnecessary to find all fuzzy attribute reducts or all fuzzy reduct rules of each initial rule.
Then, the heuristic Algorithms 2 and 4 are given. For the worst case, the time complexity of finding the close-

to-minimal attribute reduct is O ðjLAj2þjLAjÞ
2

� jU j2
� �

. The time complexity of finding the close-to-minimal reduct

rule of each initial rule is O ðjLAj2þjLAjÞ
2

� jU j
� �

. Finally, according to the heuristic Algorithm 5, the time com-

plexity of extracting the close-to-minimal rule set from all fuzzy reduct rules is O(jLAj · jUj · nr), where nr is
the number of the reduct rules of every initial rule.
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6. Experimental comparison of proposed with other methods

In this section, we describe some experiments. Some compare the proposed method with the attribute
reduct method using fuzzy rough sets (seen in [1]). Others compare the proposed method with the method
of learning fuzzy rules from fuzzy samples (seen in [8,27]).

6.1. Fuzzification of the dataset

A simple algorithm [34] is used to generate triangular membership functions on a numerical dataset. The
triangular membership functions are defined as follows:
T 1ðxÞ ¼
1 x 6 m1

ðm2 � xÞ=ðm2 � m1Þ m1 < x < m2

0 m2 6 x

8<
:

T kðxÞ ¼
1 x P mk

ðx� mk�1Þ=ðmk � mk�1Þ mk�1 < x < mk

0 x 6 mk�1

8<
:

T iðxÞ ¼

0 x P miþ1

ðmiþ1 � xÞ=ðmiþ1 � miÞ mi 6 x < miþ1

ðx� mi�1Þ=ðmi � mi�1Þ mi�1 < x < mi

0 x 6 mi�1

8>>><
>>>: i ¼ 2; 3; . . . ; k � 1
In this case, the centers mi; i ¼ 1; . . . ; k can be calculated by using Kohonen’s feature-maps algorithm [13].
For the datasets selected in this paper, only inputs need to be fuzzified, outputs are nominal classification

sets.

6.2. Comparison with a method of attribute reduction

As mentioned previously, this paper proposes one attribute reduction method based on the fuzzy rough set
technique which is different with Ref. [1]. The method proposed in [1] builds on the notion of fuzzy lower
approximation to enable reduction of attributes, while the method proposed in this paper considers the change
in degree of fuzzy inconsistence to introduce the concepts of fuzzy attribute reduction. In the following, we
compare the difference between these two methods experimentally.

6.2.1. Experimental setup

We use the datasets, ‘‘Wine’’, ‘‘Haberman’’ and ‘‘New_thyroid’’, from the UCI Machine Learning repos-
itory [10] to compare our proposed method with the method proposed in [1]. The information from these data-
sets is summarized in Table 8. The classification performance of the selected attributes has been measured by
applying ID3 Algorithm [20,34].

Four indices have been used for comparison of these methods: (1) Number of the selected attributes; (2)
Total running time to select attributes; (3) Training accuracy of classification; (4) Testing accuracy of classi-
fication. The comparison results are summarized in Tables 5–7.

6.2.2. Experimental analysis

Considering the effect of attribute reduction on classification performance in Tables 5–7, the method pro-
posed in this paper exhibits better classification accuracy. The highest test classification accuracy (0.9101 and
0.9113 in Tables 5 and 7, respectively) is obtained by the method proposed in this paper. However, the method
proposed in [1] finds the attribute reduction quicker than our proposed method. The time complexity associ-

ated with identification of the attribute reduction is O ðjLAj2þjLAjÞ
2

� jU j2
� �

in our proposed method, while the

time complexity of the method proposed in [1] is O ðjLAj2þjLAjÞ�jU j
2

� �
.



Table 5
Comparison of attribute reduction on dataset ‘‘Wine’’

Fuzzified dataset
‘‘Wine’’

Selected attributes Number of
the selected
attributes

Total running time
to select attributes
(CPU seconds)

Training
accuracy
of classification

Testing
accuracy
of classification

All initial attributes 1,2,3, . . . , 39 39 –a 0.9866 0.8640
Reduct by this paper 1,3,4,13,19,22,28,34,37 9 5.7813 0.9912 0.9101

Reduct by [1] 4,8,10,13,14,16,17,25,29,32,38 11 1.8420 0.9619 0.8370

a We need no running-time because we have selected all condition attributes.

Table 6
Comparison of attribute reduction on dataset ‘‘Haberman’’

Fuzzified dataset
‘‘Haberman’’

Selected
attributes

Number of the
selected attributes

Total running time to select
attributes (CPU seconds)

Training accuracy
of classification

Testing accuracy
of classification

All initial attributes 1,2,3, . . . , 9 9 –a 0.7896 0.7189
Reduct by this paper 1,3,4,7 4 1.6406 0.7915 0.7268

Reduct by [16] 1,4,5,6 4 0.7010 0.7424 0.7234

a We need no running-time because we have selected all the condition attributes.

Table 7
Comparison of attribute reduction on dataset ‘‘New_thyroid’’

Fuzzified dataset
‘‘New_thyroid’’

Selected attributes Number of
the selected
attributes

Total running time
to select attributes
(CPU seconds)

Training accuracy
of classification

Testing accuracy
of classification

All initial attributes 1,2,3, . . . , 15 15 –a 0.9821 0.8955
Reduct by this paper 1,3,4,5,6,7,10,13,15 9 2.8125 0.9804 0.9113

Reduct by [1] 1,3,4,7,10,11,12,14,15 9 1.0910 0.9544 0.8890

a We need no running-time because we have selected all the condition attributes.
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The method proposed in [1] and the method in this paper share several common attributes. This shows that
some informative attributes can been found by each of the both methods.

From the above results, it is concluded that the method proposed in this paper is feasible and effective to
find the attribute reduction in fuzzy decision systems.

6.2.3. Comparison with methods of learning fuzzy rules from fuzzy samples

The method proposed in this paper can find the attribute reduction and the close-to-minimal rule set. In this
section, we compare our method with the methods described in [8,27], both of which learn fuzzy rules from
fuzzy samples using fuzzy rough set technique.

6.2.4. Experimental setup

We use the datasets, ‘‘New_thyroid’’, ‘‘Haberman’’ and ‘‘Diabetes’’, from the UCI Machine Learning
Repository [10] summarized in Table 8 to compare the methods of rules induction using fuzzy rough sets.
Table 8
Information of some datasets from UCI

Dataset Number of
objects

Number of original
attributes column

Number of attributes
column after fuzzification

Decision
classes

New_thyroid 215 6 16 3
Diabetes 768 9 25 2
Haberman 306 4 10 2
Wine 178 14 40 3



Table 9
Results of comparisons of the learning fuzzy rules from fuzzy samples

Dataset Method proposed
in this paper

Method proposed
by Hong [8]

Method proposed
by Wang [27]

New_thyroid Number of selected rules 4 7 11
Total running time (CPU seconds) 2.1090 0.28125 5.3594
Classification accuracy 0.9256 0.8000 0.9070

Haberman Number of selected rules 5 4 17
Total running time (CPU seconds) 2.6410 0.8410 2.1875
Classification accuracy 0.7682 0.7418 0.8693

Table 10
Comparison of three methods on dataset ‘‘Diabetes’’*

Diabetes_part (composed of 100
objects randomly chosen from Diabetes)

Method proposed
in this paper

Method proposed
by Hong [8]

Method proposed
by Wang [27]

Number of selected rules 9 6 27
Total running time (CPU seconds) 15.2652 1229.2 248.7656
Classification accuracy 0.7682 0.6953 0.7370

* Only half of objects in diabetes are selected to use in this comparison.
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These datasets have a different number of decision classes and all condition attributes in these datasets shown
in Table 8 are numerical.

Three indices have been used for comparison: (1) The size of the rule set which is learned from fuzzy sam-
ples; (2) Total running time needed to find the close-to-minimal rule set; and (3) Accuracy of classification
using the selected rule set. Results of comparison are summarized in Tables 9 and 10.

6.2.5. Comparison and experimental analysis

In the following, we analyze the comparison results in three areas: (1) the capability to find both reduct and
rule set (2) the quality of rule set, i.e. classification performance and size of rule set, and (3) the time
complexity.

For the capability to find both reduct and rules, it should be pointed out that the methods in [8,27] cannot
find the attribute reduction which is not mentioned in [8]. Using the method in [8], only a set of maximally
general fuzzy rules for an approximate coverage of training samples can be found. The method in [27] cannot
find the attribute reduction either; only the concepts of rule reduction are proposed and discussed in [27].

For the quality of the rule set, we can find the comparison results from Table 9. Table 9 shows that the
classification accuracy of the method in [27] is relatively high at the cost of a large rule set. The reason
may be hidden in the process of transforming fuzzy data into crisp data [27]. Membership degrees of attribute
values (fuzzy sets) are not exploited in the process of learning from fuzzy samples in [27], and so, much infor-
mation of membership degrees may be lost. The method in [8] is also quick to find the close-to-minimal rule
set. The set of rules is smaller than the method in [27]. Because the uncovered samples are focused in each
iterative induction process, the number of rules required to cover instances are thus reduced [8]. The classifi-
cation accuracy of the method in [8] is slightly lower than our proposed method. Compared with the methods
in [8,27], high classification accuracy and the compact rule set are the advantages of the method proposed in
this paper. The reason may be that each membership degree is sufficiently applied in the process of inducing
the rule set.

Tables 9 and 10 show the comparison results of the running time. The method in [8] is the quickest one to
find the rule set. In [8], only the uncovered samples are focused in each iterative induction process, the execu-
tion time and number of the rules required to cover instances are thus reduced. Comparatively, the total run-
ning time of our proposed method is higher. The method proposed in this paper builds on the notion of fuzzy
similarity relation to find the close-to-minimal rule set. Therefore, the time complexity of our proposed
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method increases with the square of the size of the universe (i.e.jUj2, here jUj is the cardinality of the universe
U). We may conclude that the method proposed in this paper is suitable for a case where the size of the uni-
verse is small.

Table 10 shows that the running time of methods in [8,27] is far slower than of the method proposed in this
paper in datasets that have a large number of fuzzified attributes (there are 25 fuzzified attributes in dataset
‘diabetes’). The time complexity of computing fuzzy equivalence relation in [8] increases exponentially with the
number of original attributes. According to the algorithm used to identify the minimal reduct rule of each ini-
tial fuzzy rule in [27], the time complexity of finding a minimal reduct rule in [27] also increases exponentially
with the number of original attributes. It implies that the methods in [8,27] are also suitable for a case where
the attribute number is not very large.
7. Conclusions

This paper makes a number of contributions. First, we show that the underlying relationship between the
reduct and core of the traditional rough set approach is still pertinent, even after the proposed extension. Sec-
ond, to represent the initial information, we propose a fuzzy similarity matrix as a replacement for the parti-
tion of the universe of discourse. Third, by introducing a threshold to the concepts of the reducts and core, we
produce a learning result, which is less sensitive to small perturbations of attribute-values. Finally, the fuzzy
model proposed in this paper can also be used to learn from nominal data where the thresholds b and k are set
to 1.

Future work should focus on improving the fuzzy model proposed in this paper to process an information
system whose attribute-values are continuous data. We consider realizing the reduction process by not imple-
menting the discretization or fuzzification of continuous data.
Appendix

In [8], the concepts of fuzzy equivalence relation are defined as follows:
When the same linguistic term Rik of an attribute Ai exists in two fuzzy objects obj(i) and obj(r) with mem-

bership values f i
jk and f r

jk larger than zero, obj(i) and obj(r) are said to have a fuzzy indiscernibility relation (or
fuzzy equivalence relation) on attribute Ai with membership value min(f i

jk,f r
jkÞ If the same linguistic terms of

an attribute subset B exist in both obj(i) and obj(r) with membership values larger than zero, obj(i) and obj(r) are
said to have a fuzzy indiscernibility relation (or a fuzzy equivalence relation) on attribute subset B with a mem-
bership value equal to the minimum of all the membership values. These fuzzy equivalence relations thus par-
tition the fuzzy object set U into several fuzzy subsets that may overlap, and the result is denoted by U/B.

Suppose that each attribute has three linguistic terms.

Let U be the universe of discourse, eAð1Þ; eAð2Þ; . . . ; eAðmÞ and eAðmþ1Þ be a set of fuzzy attributes. Suppose each
fuzzy attribute eAðjÞ consists of three linguistic terms: F ðeAðjÞÞ ¼ feF ðjÞL ; eF ðjÞN ; eF ðjÞH g ðj ¼ 1; 2; . . . ;mþ 1Þ. Accord-
ing to the definition of fuzzy equivalence relation in [8,9], the fuzzy equivalence relation with single attributeeAðjÞ partitions the universe of discourse Uinto three fuzzy subsets:
U=eAðjÞ ¼ fðobjðeF ðjÞL Þ;l
ðjÞ
L Þ; ðobjðeF ðjÞN Þ; l

ðjÞ
N Þ; ðobjðeF ðjÞH Þ; l

ðjÞ
H Þg ðj ¼ 1; 2; . . . ;mþ 1Þ
Here objðeF ðjÞL Þ is the set of objects which have the same term eF ðjÞL in the attribute eAðjÞ. lðjÞL is the corresponding
membership value. The fuzzy equivalence relation with two attributes B ¼ feAðjÞ; eAðkÞg partitions the universe

of discourse U into 3 · 3 fuzzy subsets: U=B ¼ fðobjðeF ðjÞL
eF ðkÞL Þ; l

jk
LLÞ; ðobjðeF ðjÞN

eF ðkÞL Þ; l
jk
NLÞ; ðobjðeF ðjÞH

eF ðkÞL Þ; l
jk
HLÞ;

ðobjðeF ðjÞL
eF ðkÞN Þ;l

jk
LN Þ; ðobjðeF ðjÞN

eF ðkÞN Þ; l
jk
NN Þ; ðobjðeF ðjÞH

eF ðkÞN Þ; l
jk
HN Þ; ðobjðeF ðjÞL

eF ðkÞH Þ; l
jk
LH Þ; ðobjðeF ðjÞN

eF ðkÞH Þ; l
jk
NH Þ; ðobjðeF ðjÞHeF ðkÞH Þ; l

jk
HH Þg ðj; k ¼ 1; 2; . . . ;mþ 1 and j 6¼ kÞ. Here objðeF ðjÞL

eF ðkÞL Þ is the set of objects which have the same

terms eF ðjÞL and eF ðkÞL in the attributes set B ¼ feAðjÞ; eAðkÞg. lðjkÞ
LL is the corresponding membership value. Similarly,

for the worst case scenario, fuzzy equivalence relation with n attributes partitions the universe of discourse set
into 3n fuzzy subsets. This means that the time complexity of computing fuzzy equivalence relation increases
exponentially with the number of original attributes.
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