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This paper proposes a fast fuzzy classifier of multicategory support vector machines
(FMSVM) based on support vector domain description (SVDD). The main idea is that
the proposed FMSVM is obtained by directly considering all data in one optimization
formulation, using a fuzzy membership to each input point. The fuzzy membership is
determined by support vector domain description (SVDD). For making support vector
machine (SVM) more practical, we use an implement of the modified sequential minimal
optimization (SMO) that can quickly solve SVM quadratic programming (QP) problems
without any extra matrix storage or the use of numerical QP optimization steps at all.
Compared with the existing SVMs, the newly proposed FMSVM that uses the L2-norm
in the objective function shows improvement with regards to accuracy of classification
and reduction of the effects of noises and outliers. The experiment also shows the effi-
ciency of the modified SMO for expediting the training of SVM.

Keywords: Fuzzy membership; support vector machines; multicategory classification;
modified sequential minimal optimization; support vector domain description.

1. Introduction

Support vector machines (SVMs) proposed by Vapnik18 are trained by solving a
quadratic optimization problem. SVMs were originally designed for binary classifi-
cation. Since many real-world applications are problems of multicategory classifica-
tion, how to effectively extend two-class SVMs to a multicategory SVM is still an
ongoing research issue. Currently, there are two types of approaches for multicat-
egory SVM. One is by constructing and combining several binary classifiers: one-
against-all algorithm transforms a k-class problem into k two-class problems where
one class is separated from the remaining ones; one-against-one (pair-wise) algo-
rithm converts the k-class problem into k(k−1)/2 two-class problems where pairwise
optimal hyperplanes for each pair of classes are constructed and max-voting strat-
egy is used to predict their classes; and DAGSVM is the same as the one-against-one
method in the training phase, however, in the testing phase, it uses a rooted binary
directed acyclic graph which has k(k − 1)/2 internal nodes and k leaves;7,13,18 the
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other is by directly considering all data in one optimization formulation based on
multiclass support vector machines (MSVM).4,20 We propose a new classifier of
fuzzy multicategory Support Vector Machines, which extends the method of mul-
ticlass support vector machines (MSVM) by using a fuzzy membership to each
input point. Our formulation that uses the L2-norm in the objective function has
some additional advantages such as strong convexity. It aims to enhance the gener-
ation capability of the FMSVM. Fuzzy Support Vector Machines (FSVMs) can be
applied to reduce the effects of noises and outliers.8,9,17 The fuzzy membership is
determined by the method of support vector domain description (SVDD). The fuzzy
membership is defined according to the position of samples in sphere space.11,15,16

For speeding up the training of SVM, we use an implement of the modified
SMO that can quickly solve the SVM (support vector machine) QP (quadratic
programming) problems without any extra matrix storage or the use of numerical
QP optimization steps at all.6,14 SMO decomposes the overall QP problem into
QP sub-problems by using Osuna’s theorem to ensure convergence. For making
SVM more practical, special algorithms are developed, such as Vapnik’s chunk-
ing, Osuna’s decomposition, Platt’s SMO12 and Joachims’s SVMlight.5 They make
the training of SVM possible by breaking the large QP problem into a series of
smaller QP problems and optimizing only a subset of training data patterns at
each step. These approaches are categorized as the working set methods. Later,
Keerthi et al.6,14 ascertained inefficiency associated with Platt’s SMO and sug-
gested two modified versions of SMO that are much more efficient than Platt’s
original SMO. The second modification is particularly good and used in popular
SVM packages such as a library for support vector machines (LIBSVM).3 We use
the second modified SMO algorithm.

Compared with the existing SVM algorithms, the newly proposed FMSVM show
improvement in aspects of classification accuracy and reduction of the effects of
noises and outliers. Numerical simulations show the feasibility and effectiveness of
this algorithm.

This paper consists of the following sections. Section 2 gives an overview of
the modified SMO. Section 3 proposes the new classifier of the fuzzy multicate-
gory support vector machines (FMSVM). Section 4 provides some simulations to
demonstrate the feasibility and effectiveness of the FMSVM. And the last section
concludes this paper.

2. The Modified SMO

Given l data points (x1, y1), . . . , (xl, yl), where xi ∈ RN and yi ∈ {−1, 1}. Training
an SVM in classification can be formulated as

min
w,b,ξ

ψ(w, b, ξ) =
1
2
‖w‖2 + C

l∑
i=1

ξi

s.t. yi((w · xi) − b) + ξi ≥ 1, ξi ≥ 0, i = 1, . . . , l.

(1)
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The Wolfe dual problem of (1) is

max
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj)

s.t.
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l

(2)

where K(xi, xj) is the kernel function. αi is the Lagrange multiplier to be optimized.
C is the penalty parameter. After solving the problem (2), the decision function

f(x) = sgn

(
l∑

i=1

αiyiK(xi, x) − b

)
.

Fig. 1. The index of training data patterns.

Let

I0 ≡ {i : 0 < αi < C} I1 ≡ {i : yi = +1, αi = 0} I2 ≡ {i : yi = −1, αi = C}
I3 ≡ {i : yi = +1, αi = C} I4 ≡ {i : yi = −1, αi = 0}

Fi ≡
l∑

j=1

αjyjK(xj , xi) − yi, bup = min{Fi : i ∈ I0 ∪ I1 ∪ I2},

blow = max{Fi : i ∈ I0 ∪ I3 ∪ I4}
Iup = arg min

i
Fi, Ilow = argmax

i
Fi, τ = 10−6.

The idea of the modified SMO is to optimize the two αi associated with bup and
blow at each step. Their associated indexes are Iup and Ilow

αnew
2 = αold

2 − y2(F old
1 − F old

2 )
η

, αnew
1 = αold

1 + s(αold
2 − αnew

2 ) (3)

where s = y1y2, η = 2K(x1 · x2) − K(x1 · x1) − K(x2 · x2), 0 ≤ αnew
1 , αnew

2 ≤ C.
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After optimizing α1 and α2, Fi denoting the error on the ith training data
pattern, is updated according to the following:

F new
i = F old

i + (αnew
1 − αold

1 )y1K(x1, xi) + (αnew
2 − αold

2 )y2K(x2, xi). (4)

Based on the updated values of Fi, bup and blow, the associated index Iup and
Ilow are updated again according to their definitions. The updated values are then
used to choose another two new αi to optimize at the next step.

The value of (2), represented by Dual, is updated at each step

Dualnew = Dualold − αnew
1 − αold

1

y1
(F old

1 − F old
2 ) +

1
2
η

(
αnew

1 − αold
1

y1

)2

. (5)

DualityGap, representing the difference between the primal and the dual objective
functions in SVM, is calculated by

DualityGap =
l∑

i=0

αiyiFi +
l∑

i=0

εi (6)

where

εi =

{
C max(0, b − Fi), if yi = 1

C max(0,−b + Fi), if yi = −1.

Dual and DualityGap are used for checking the convergence of the program. A
simple description of the modified SMO in the sequential form can be summarized as

Begin

Select two α 

Update α 

Compute error

Update F

End

Error<eps

Success

N

Defeat

Y

Fig. 2. The heuristics for picking two αi’s for optimization in the modified SMO.
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Modified SMO Algorithm:
Initialize αi = 0, Fi = −yi, Dual = 0, i = 1, . . . , l. Calculate bup, Iup, blow, Ilow and
DualityGap until DualityGap ≤ τ |Dual|
(1) Optimize αIup , αIlow .
(2) Update Fi, i = 1, . . . , l based on Eq. (4).
(3) Calculate bup, Iup, blow, Ilow, DualityGap and update Dual.

Repeat.

3. A New Fuzzy Multicategory Support Vector Machines

3.1. The fuzzy membership

A method defining the affinity among samples is considered here by using a sphere
with minimum volume while containing all (or most of) the samples. When one or
a few very remote objects are in the training set, we may obtain a very large sphere
that will not represent the data well. Therefore, we allow for some data points
outside the sphere and introduce slack variable. Suppose we are given a sequence
of training points {xi, i = 1, . . . , n}. A sphere with minimum volume is obtained by
solving optimal hyperplane problem

min F (R, a, ξi) = R2 + D

n∑
i=1

ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, i = 1, . . . , n

(7)

where ξi is slack variable; R is the radius of the minimum sphere; a is the center of
the minimum sphere; D > 0 is the penalty parameter.

To solve this optimization we construct the Lagrangian

L(R, a, β, γ, ξ) = R2 + D

n∑
i=1

ξi −
n∑

i=1

βi{R2 + ξi − ‖xi − a‖2} −
n∑

i=1

γiξi (8)

where βi, γi are Lagrangian non-negative multipliers.
Finding the saddle point of L(R, a, β, γ, ξ), which has to be maximized with

respect to β, γ and minimized with respect to R, a, ξ, and setting the partial deriva-
tives with respect to R, a, ξ to zero, we obtain

∑n
i=1 βi = 1, a =

∑n
i=1 βixi,

D − βi − γi = 0, i = 1, . . . , n.
Applying these equations into the Lagrangian (8), the primal problem (7) can

be transformed into the following equivalent dual problem

max Q(β) =
n∑

i=1

βi(xi · xi) −
n∑

i,j=1

βiβj(xi · xj)

s.t.
n∑

i=1

βi = 1, 0 ≤ βi ≤ D, i = 1, . . . , n.

(9)
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The radius of the minimum sphere R = ‖xi − a‖, where the point xi is a support
vector, determined by βi which is randomly selected in (0, D). The objects that
have nonzero coefficients βi are called support objects. Objects with βi = D are
outside the sphere. These support vectors are considered to be outliers or noises.
Because of the constraint

∑n
i=1 βi = 1 and βi ≥ 0, we only choose the parameter

D as 1
n ≤ D ≤ 1.

The fuzzy membership s(x) is defined according to the position of samples in
sphere space

s(xi) =




0.6 ×
(

1 − d(xi)
R

1 + d(xi)
R

)
+ 0.4, d(xi) ≤ R

0.4 ×
(

1
1 + (d(xi) − R)

)
, d(xi) > R

(10)

where d(xi) = ‖xi − a‖, i = 1, . . . , n.

3.2. Reformulate FMSVM

Suppose we are given a set S of labeled training points with associated fuzzy mem-
bership (x1, y1, s1), . . . , (xl, yl, sl), each training point xi ∈ RN is given a label
yi ∈ {1, 2, . . . , k} and a fuzzy membership σ ≤ si ≤ 1 (i = 1, . . . , l), where σ is a
sufficiently small positive number. Let z = ϕ(x) denote the corresponding feature
space vector with a mapping ϕ from RN to a feature space Z. The fuzzy mem-
bership si is the attitude of the corresponding point xi toward one class and the
parameter ξi is a measure of error in the SVM, the term siξi is a measure of error
with different weight.

The optimal hyperplane problem is regarded as the solution to

min
(wm,bm,ξm)

1
2

k∑
m=1

((wm · wm) + b2
m) +

C

2

l∑
i=1

∑
m �=yi

sm
i (ξm

i )2

s.t. ((wyi · xi) + byi) ≥ (wm · xi) + bm + 2 − ξm
i , (11)

i = 1, . . . , l; m, yi ∈ {1, . . . , k}; m �= yi,

where C is a constant. A smaller si reduces the effect of the parameter ξi in problem
(11) such that the corresponding point xi is treated as less important. Note that no
explicit non-negative constraint is needed on ξm

i , because if any component ξm
i is

negative, the objective function can be decreased by setting that ξm
i = 0 while still

satisfying the corresponding inequality constraint. Note further that the L2-norm
of the error vector ξm

i is minimized instead of the L1-norm, and the margin between
the bounding planes is maximized with respect to both the orientation wm and the
relative location of samples to the origin bm. This formulation has some additional
advantages such as strong convexity of the objective function.
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To solve this optimization we construct the Lagrangian

L(w, b, ξ, α) =
1
2

k∑
m=1

((wm · wm) + b2
m) +

C

2

l∑
i=1

k∑
m=1

sm
i (ξm

i )2

−
l∑

i=1

k∑
m=1

αm
i [((wyi − wm) · xi) + byi − bm − 2 + ξm

i ] (12)

where αm
i is the non-negative Lagrangian multipliers, with

αyi

i = 0, ξyi

i = 2, syi

i = 1, i = 1, . . . , l

and constraints αm
i ≥ 0, 0 < σ ≤ sm

i ≤ 1, i = 1, . . . , l, m ∈ {1, . . . , k}\yi.
Finding the saddle point of L(w, b, ξ, α) which has to be maximized with respect

to α and minimized with respect to w, b, ξ; and introducing the notation

cn
i =

{
1 if yi = n

0 if yi �= n
, Ai =

k∑
m=1

αm
i . (13)

Computing the partial derivatives with respect to wn, bn and ξn
j , in the saddle

point the solution should satisfy the conditions:

∂L(w, b, ξ, α)
∂wn

= 0 ⇒ wn =
l∑

i=1

(cn
i Ai − αn

i )xi

∂L(w, b, ξ, α)
∂bn

= 0 ⇒ bn =
l∑

i=1

cn
i Ai −

l∑
i=1

αn
i (14)

∂L(w, b, ξ, α)
∂ξn

j

= 0 ⇒ Csn
j ξn

j = αn
j and 0 ≤ αn

j ≤ C1s
n
j

where C1 = maxi,n(Cξn
i ).

Applying these conditions (14) into the Lagrangian (12), the problem (11) can
be transformed into the following equivalent dual problem

max 2
∑
i,m

αm
i +

∑
i,j,m

(
−1

2
cyi

j AiAj + cm
i Aiα

m
j − 1

2

(
1 +

1
Csm

i

)
αm

i αm
j

)

+
∑
i,j,m

(
−1

2
cyi

j AiAj − 1
2
αm

i αm
j + αm

i αyi

j

)
(xi · xj)

s.t. bm =
l∑

i=1

cm
i Ai −

l∑
i=1

αm
i , 0 ≤ αm

i ≤ C1s
m
i , αyi

i = 0,

i = 1, . . . , l; m, yi ∈ {1, . . . , k}, m �= yi

(15)

where C1 = maxi,m(Cξm
i ).
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This gives the decision function

f(x, α) = argmax
n

{
l∑

i=1

(cn
i Ai − αn

i )[(xi · x) + 1]

}
. (16)

As usual, the inner products (xi · xj) can be replaced with the convolution of the
inner products K(xi · xj) and the Kuhn–Tucker conditions are defined as

αm
i [((wyi − wm) · xi) + (byi − bm) − 2 + ξm

i ] = 0,

i = 1, . . . , l; yi, m ∈ {1, . . . , k}, m �= yi. (17)

The point xi with the corresponding αi > 0 is called a support vector. There are
also two types of support vectors. One with corresponding 0 < αi < C1si lies on
the margin of the hyperplane while the other with corresponding αi = C1si is
misclassified. An important difference between SVM and FSVM is that the points
with the same value of αi may indicate a different type of support vectors in FSVM
due to the factor si.

The parameter C in SVM controls the tradeoff between the maximization of
margin and the amount of misclassifications. In the FMSVM, we can set C to be a
sufficiently large value. It is the same as SVM in that the system will get a narrower
margin and allow less misclassifications if we set all si = 1. With different values of
si, we can control the tradeoff of the respective training point xi in the system. A
small value of si makes the corresponding point xi less important in the training.

FMSVM Algorithm:

(1) Given training data (x1, y1), . . . , (xl, yl), parameter D and kernel function, find
an optimal solution β by solving the dual problem (9).

(2) Compute the center of sphere a =
∑n

i=1 βixi and the radius of sphere R =
‖xi − a‖.

(3) Compute the fuzzy membership s(xi) according to formula (10).
(4) Given training data (x1, y1, s1), . . . (xl, yl, sl), parameters C and kernel function

etc. find an optimal solution α by solving the dual problem (15).
(5) Determine the decision function f(x, α) = argmaxn[

∑l
i=1(c

n
i Ai − αn

i )((xi · x)
+1)].

4. Numerical Examples

To evaluate the performance of the proposed method FMSVM, several experi-
ments have been conducted on the UCI machine learning respository1 and Statlog
database.10 The description for the six selected data sets is given in Table 1.

Small-scale real-world data: Iris is from the UCI machine learning respository.1

Large-scale real-world data: Segment (image segmentation), satimage (classifi-
cation in a satellite image), letter (classification of the English alphabet images),
DNA (classification between exons and introns in the DNA sequence) and vehicle
are from Statlog database.10
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Table 1. The description of the date sets.

Date Set #Training Data #Testing Data #Classes #Attributes

Iris 150 0 3 4
Vehicle 846 0 4 18
Segment 2310 0 7 19
Satimage 4435 2000 6 36
Letter 15000 5000 26 16
DNA 2000 1186 3 180

The performance of the FMSVM is compared with three used methods: one-
against-all SVM (1-a-a), one-against-one SVM (1-a-1) and multiclass support vector
machines (MSVM). The criteria for evaluating the performance of these methods
are their accurate rate of classification in Table 4, and model building time in
Table 5.

We choose the best parameters by performing the model selection. That is,
alternative models are constructed on the training data where the test data are
assumed unknown and then the parameter set, with the best performance for the
test set, is selected for constructing the final model. In the experiment of determin-
ing fuzzy membership, the detailed descriptions of parameter values are given in
Table 2. In the experiment of four SVM methods, to reduce the search of parameter
sets, here we train all datasets only with the RBF kernel K(xi, xj) ≡ eγ‖xi−xj‖2

.
For each problem, we estimate the generalized accuracy by using different kernel
parameters γ and cost parameters C. For datasets satimage, letter and DNA where
both training and testing sets are available, for each pair of (C, γ), the validation
performance is measured by training 70% of the training set and testing the other
30% of the training set. Then, we train the whole training set by using the pair of
(C, γ) that achieves the best validation rate and predict the test set. The resulting
accuracy is presented in Table 3. For datasets iris, vehicle and segment where test
data may not be available, we simply conduct a ten-fold cross-validation on the
whole training data and report the average rate of the ten-fold cross-validation.

Table 2. Parameters in methods.

Kernel D Epsilon

Linear 0.3 1e-7

Table 3. Parameters (C, γ) (C: cost parameter, γ: kernel parameter).

Date Set 1-a-1 1-a-a MSVM FMSVM

Iris (212, 2−9) (29, 2−3) (210, 2−7) (210, 2−7)
Vehicle (29, 2−4) (211, 2−4) (29, 2−4) (29, 2−4)
Segment (26, 20) (27, 20) (20, 23) (20, 23)
Satimage (24, 20) (22, 21) (22, 22) (22, 22)
Letter (24, 22) (22, 22) (23, 22) (23, 22)
DNA (23, 2−6) (22, 2−6) (21, 2−6) (21, 2−6)
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Table 4. Testing accuracy (%).

Date Set 1-a-1 1-a-a MSVM FMSVM

Iris 100 100 100 97.333
Vehicle 86.1702 86.5248 86.8794 86.882

Segment 96.8254 96.2963 95.9436 96.98
Satimage 90.35 90.9 90.7 91.35
Letter 97.02 96.92 96.84 97.97
DNA 94.5194 94.688 94.6037 95.76

Table 5. Times (seconds).

Date Set 1-a-1 1-a-a MSVM FMSVM

Iris 0.5 0.10 0.9 0.91
Vehicle 1.1 2.3 17 19
Segment 1.2 2.4 2.7 2.8
Satimage 2.2 4.1 7.3 7.7
Letter 33 1105 540 675

DNA 1.9 2.8 2.2 3.1

Experimental results are shown in Tables 4 and 5. For making support vector
machine (SVM) more practical, we use an implement of the modified sequential
minimal optimization (SMO) that can quickly solve SVM quadratic programming
(QP) problems. The experimental results demonstrate that by using the proposed
method (FMSVM) a better or comparable performance is achieved in terms of
accuracy and efficiency for most of the multiclass data sets (except iris data). For the
testing error accuracy, the FMSVM is the best (except iris data). The generalization
ability of the FMSVM is superior to the other three methods while its training
speed is a little slower. The main factor for training/testing change is that we use
the fuzzy membership. For the training time, one-against-one SVM is the best.
Compared with the methods of Refs. 19 and 20, the FMSVM by using the modified
SMO is much faster.19,20

5. Conclusions

This paper proposes a fast fuzzy classifier of multicategory support vector machines
(FMSVM) based on support vector domain description (SVDD). The main idea
is that the proposed FMSVM extends the method of multiclass support vector
machines (MSVM) by using a fuzzy membership to each input point. The fuzzy
membership is determined by support vector domain description (SVDD). For
making support vector machine (SVM) more practical, we use an implement of
the modified sequential minimal optimization (SMO). Compared with the existing
SVMs, the newly proposed FMSVM shows improvement in classification accuracy
and reduction of the effects of noises and outliers. The experiment also shows the
efficiency of the SMO for expenditing the training of SVM.
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The algorithm is effective and efficient for datasets. Further research involves the
parallelization of the algorithm for handling large datasets and selection of proper
fuzzy membership function.
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