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A pattern classification problem usually involves using high-dimensional features that make the classifier
very complex and difficult to train. With no feature reduction, both training accuracy and generalization
capability will suffer. This paper proposes a novel hybrid filter–wrapper-type feature subset selection
methodology using a localized generalization error model. The localized generalization error model for
a radial basis function neural network bounds from above the generalization error for unseen samples
located within a neighborhood of the training samples. Iteratively, the feature making the smallest con-
tribution to the generalization error bound is removed. Moreover, the novel feature selection method
is independent of the sample size and is computationally fast. The experimental results show that the
proposed method consistently removes large percentages of features with statistically insignificant loss of
testing accuracy for unseen samples. In the experiments for two of the datasets, the classifiers built using
feature subsets with 90% of features removed by our proposed approach yield average testing accuracies
higher than those trained using the full set of features. Finally, we corroborate the efficacy of the model
by using it to predict corporate bankruptcies in the US.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the availability of fast computers, broadband Internet, and
cheap, high capacity storage, datasets have become ever larger. Usu-
ally, domain knowledge and personal bias influence the choice of
features. Although these parameters may not fully describe the prob-
lem, some parameters may be included just for fear of losing some-
thing useful. When the number of parameters (input features) of the
dataset becomes large, the pattern classification systems trained for
differentiating the sample points into different classes also get more
complex. On the other hand, if it is not necessary to collect so many
input features, the cost of data collection and storage will be reduced.

A major problem in pattern classification is how to build a sim-
ple classifier that has good performance. By “good performance” we
mean a system that can be quickly trained, is highly accurate and
responds quickly to future unseen samples, and is easily understood
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by people. Perhaps the most straightforward way to reduce the com-
plexity of a classifier is to reduce the number of input features.

Given the training dataset D = {(xb, F(xb))}Nb=1 consisting of N
training samples (xb) with F denoting the unknown input–output
mapping of the classification problem that one would like to approx-
imate using a classifier (e.g. a neural network), the training error
(Remp) and generalization error (Rtrue) for the entire input space (T)
of the classifier f� are defined as

Remp = 1
N

N∑
b=1

(F(xb) − f�(xb))
2 (1)

Rtrue =
∫
T
(F(x) − f�(x))

2p(x) dx (2)

where p(x) denotes the true unknown probability density function
of x, and � denotes the set of parameters in the classifier f�. The ulti-
mate goal of training a classifier is to minimize the generalization er-
ror for unseen samples (i.e. minimizing the differences between the
real unknown input–output mapping function and the mapping ap-
proximated by f�). Moreover the ultimate goal of feature selection is
to maintain the classifier's generalization capability using a reduced
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set of features. Classifiers (e.g. neural networks) are usually not ex-
pected to recognize unseen samples that are too different from the
training samples. Therefore, assessing the generalization capability
of a classifier for those unseen samples may be counter-productive
to classifier learning. So, Ng et al. [1,2] proposed a localized general-
ization error model for bounding the generalization error (R∗

SM) for a
classifier for unseen samples similar to the training samples. In our
proposed feature selection method (RSMFS), we remove the feature
subset that yields the smallest contribution to the R∗

SM . In terms of
probability, the classifier trained using the reduced feature subset
will not lose its generalization capability if R∗

SM remains unchanged.
In this paper, the widely adopted radial basis function neural net-
works (RBFNNs) with Gaussian basis function [3,4] will be used to
demonstrate the RSMFS method.

A brief literature review is presented in Section 2. In Section 3 we
describe the localized generalization error model. The novel feature
selection method RSMFS is presented in Section 4, while experimen-
tal results are shown in Section 5. Section 6 concludes the paper.

2. Existing feature selection methods

Broadly speaking, the number of input features is reduced using
three feature selection approaches: filters, wrappers, and embedded
[5–7]. Under certain circumstances in the learning process of a deci-
sion tree, some features are ignored in the final decision tree if they
have a minor influence on the classification [8]. This is a special case
of feature selection and we will not discuss it in this work. In the
following two sub-sections, we will introduce the filter and wrapper
approaches.

In Fig. 1, we illustrate the relationship between different relevant
measures for feature selection. A relevant measure is employed in
each feature selection method and we will have more discussion on
each of these measures in Sections 2.1 and 2.2.

Principal component analysis [9,10] and other transformation-
based feature reduction methods are not discussed in this paper be-
cause they do not select the features from the original feature set.
These methods transform the feature set into a lower-dimensional
feature vector by combining several features. Transformation-based
feature reduction methods do not reduce the cost of future sample
collection and storage. Moreover, the newly created feature vector is
usually difficult to interpret. For example, in the physiology field, a
feature vector may be composed of blood pressure times the square
of body height and this kind of feature does not help people under-
stand the problem.

2.1. Filter approaches

Filter approaches make use of statistical information of the
dataset to carry out feature selection and are independent of the

Fig. 1. Relationship between relevant measures for feature selection.

classification system. These approaches rely on the definition of a
relevant measure.

The simplest measure may be the correlation between the input
and output using the correlation coefficient [6,7]. The absolute value
of the correlation coefficient may be used because we may want to
focus on the magnitude of the correlation between the input feature
and the output. The major drawback is that it ignores any nonlinear
correlation between input and output.

This problem could be solved by using the mutual information to
replace the correlation coefficient. In mutual information approaches
[11,12], the mutual information between the inputs and outputs are
computed and sorted. The input feature that yields the maximum
mutual information to the outputs is selected. Then the mutual in-
formation between the outputs and also between the selected fea-
ture subsets is computed. The feature yielding the maximum mutual
information is added into the selected subset. These procedures are
repeated until a specified number of features are reached. This ap-
proach has a sound theoretical underpinning, yet the computation of
the probability density function between features and outputs is ex-
pensive. Kwak et al. [13] improved the approach by using the Parzen
Window to estimate the density functions, but the computation ef-
fort is still high for a dataset with large numbers of features and
samples In this work, we adopt the definition of mutual information
proposed in Ref. [11].

Mitra [14] proposed using a similarity measure between input
features. In his work, features are grouped by similarity and only
one feature in each group is selected. This method does not take
into account the performance of the features and simply deletes
similar features. As a result, the performance of the feature selection
is determined by choosing the number of groups and the similarity
measure.

The authors in Refs. [15,16] applied the class separability mea-
sure to select feature subsets. The feature with the maximum class
separability is selected first. The next feature with the maximum
class separability will then be selected after removing the first one.
The process stops when no more features provide class separability
larger than a given threshold. This approach considers the training
classification accuracy indirectly. However it cannot deal with the
case in which the samples from one class are surrounded by sam-
ples from another class. In Ref. [17], the authors proposed removing
features that are inconsistent to the class label (i.e. could not sepa-
rate samples from two classes). However, the point-wise comparison
makes the method infeasible for a large dataset.

One may observe that the above filtering approaches require
users to determine the number of features selected, rather than
providing stopping criteria. Furthermore, the generalization perfor-
mance of the classifier is not a consideration of the filtering feature
selection methodologies, even though it is the ultimate goal of build-
ing classifiers. Yet, they are free from the bias of classifier training.
The feature selection criteria presented in this section relate to the
training accuracy indirectly.

2.2. Wrapper approaches

Wrapper feature selection methodologies combine both the fea-
ture selection and output of the classification system into a sin-
gle system [18]. Most of the wrappers employ the Leave-One-Out
searching method [19] which, in each step, evaluates the training
accuracy when one of the features is left out, and then removes the
feature yielding the least reduction in accuracy. The Leave-One-Out
wrapper feature selection methodology can be applied to any clas-
sification system.

However, the procedures mentioned above only make use of
the training accuracy as the relevant measure. Since a classifier is
built, the validation accuracy is used to ensure that the classification
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Fig. 2. Relationship between accuracy and relevant measures.

accuracy of unseen samples is retained. One may find the general-
ization error using k-fold cross-validation (CV). In Ref. [20], five folds
are suggested. For a k-fold CV, the training dataset is divided into
k disjoint partitions and the pth partition is reserved as the valida-
tion set which will not participate in the classifier training. Then, k
classifiers are trained without the ith feature for the evaluation of
the relevance of the ith feature and the average of the validation er-
ror using the left out partition is used as the relevant measure. This
CV relevant measure is used to estimate the generalization error of
the classifier without the use of the ith feature. For example, if the
average CV error for the classifiers trained with the ith feature omit-
ted yields the least loss, the ith feature will be removed. In the next
round, these steps will be repeated with one less feature. The steps
are repeated until no more features can be removed because none of
the classifiers gives good results after the removal of any feature or
if the pre-selected number of features is reached. Thus, nk classifiers
are required for a problem with n features. Certainly, if k is small, the
estimation of the generalization error may be poor because a larger
portion of training samples are reserved and this makes a significant
difference from the original training dataset. In contrast, if k is large,
the number of classifier trainings and computational effort will be
huge.

There are two major drawbacks of wrapper approaches: they are
computationally expensive for datasets consisting of large numbers
of features, and they are not suitable for datasets with small numbers
of samplesWrapper approaches are usually brute force methods. The
methodologies mentioned above require extremely computationally
intensive nonlinear regression or optimization of high-dimensional
nonlinear systems. They are not scalable when the numbers of in-
put features and training samples are large. Moreover, the use of a
validation set reduces the number of training samples for classifier
training.

2.3. Motivation of the RSMFS

In general, the major difference between filter and wrapper ap-
proaches is that the relevant measures in filter approaches consider
only the training error indirectly, while those in wrapper approaches
consider the generalization error directly (Fig. 2). The ultimate goal
of feature selection is to maintain the generalization capability of
the classifier using a reduced subset of features. Therefore, wrapper
approaches should be a better choice. However, they are very time
consuming and computationally infeasible for a dataset consisting of
large numbers of features and samples. These issues motivate us to
propose the RSMFS to estimate the generalization error for removing
a feature instead of finding its real generalization error by training
a set of new classifiers. Thus, only one trained classifier is required
for selecting one feature. Moreover, we estimate the generalization
error based on the training dataset using the R∗

SM instead of the val-
idation error using a reserved portion of a training dataset.

3. Localized generalization error model

In this work, we concentrate our discussion on the use of RBFNN
as a classifier (f�), which is trained by the minimization of mean-
square error (MSE) that indicates how good the RBFNN is when ap-
proximating the true unknown input–output mapping function (F).
The localized generalization error bound (R∗

SM) is an upper bound
of the MSE of those unseen samples that have features similar to
the training samples (i.e., having a distance smaller than a constant
Q in the input space) [1,2]. We are not interested in the error for
the unseen samples that are very dissimilar to the training samples
because the generalization performance of the classifier on those
samples is usually poor. We do not have any information about un-
seen samples that are very different from the training dataset and
the classifier cannot learn in this part of the input space. The error
of extrapolation in such situations is expected to be high and the
predictions will be misleading Therefore, this may be counterpro-
ductive to assess the generalization performance of the classifier on
them and minimize the generalization error on such samples.

The Q-neighborhood (SQ (xb)) of a training sample xb is defined
as SQ (xb)={x=xb+�x} for all �x that fulfils 0 < |�xi|�Q ∀i=1, . . . ,n,
where n denotes the number of features, Q is a real value and
�x= (�x1, . . . ,�xn)′. The Q-union of the whole training dataset (SQ )
is defined to be the union of all SQ (xb). We define RSM to be the gen-
eralization error for the unseen samples located within the Q-union
(i.e., the shaded region in Fig. 3). With probability 1−�, we have [1,2]:

RSM(Q) =
∫
SQ

(f�(x) − F(x))2p(x) dx

�
(√

ESQ ((�y)2) +
√
Remp + A

)2
+ �

= R∗
SM(Q) (3)

where �y = f�(x) − f�(xb), � = B
√
ln�/(−2N), ESQ ((�y)2), �, A and B

denote the stochastic sensitivity measure (ST-SM), the confidence
of the bound, the difference between the maximum and minimum
values of the target output (F), and the maximum value of the MSE,
respectively. A and B can be fixed when the dataset is given.

The R∗
SM in Eq. (3) can be applied to any type of classifier whose

ST-SM is defined. In particular, with probability 1 − �, we have the
R∗
SM for RBFNN [1,2] as follows:

R∗
SM(Q) ≈

⎛
⎜⎝

√√√√√1
3
Q2

M∑
j=1

�j + 0. 2
9

Q4n
M∑
j=1

�j +
√
Remp + A

⎞
⎟⎠
2

+ � (4)

where x = (x1, x2, . . . , xn)
′, �j = (wj)

2 exp((Var(sj)/2v
4
j ) − (E(sj)/v

2
j )),

E(sj)=
∑n

i=1(�
2
xi +(	xi −uji)

2), Var(sj)=
∑n

i=1(ED[(xi−	xi )
4]−(�2

xi )
2+

4ED[(xi − 	xi )
3](	xi − uji) + 4�2

xi (	xi − uji)
2), sj = ‖x − uj‖2, �j =

�j(
∑n

i=1(�
2
xi + (	xi − uji)

2)/v4j ), �j = �j/v
4
j , M denotes the number of

hidden neurons in the RBFNN,wj, vj and uj=(uj1,uj2, . . . ,ujn)
′ denote

the connection weight, width and center position of the jth hidden
neuron of the RBFNN, and 	xi and �2

xi denote the mean and variance
of the ith input feature, respectively.

For every trained RBFNN, one could compute the maximum Q-
value in which the R∗

SM bound is less than or equal to a threshold


. For example, if F(x) ∈ {(o1, o2, . . . , oK )} for a K-class problem, then
ok = 1 and ‖F(x)‖ = 1 for a sample in class k. The threshold 
 could
be selected to be 0.25, which is the threshold of the squared error
between the classifier output and the target output of a sample clas-
sified correctly. So, the Q-value indicates the coverage of the unseen
samples whose generalization error in MSE is less than 
. Therefore,
a larger Q indicates better generalization of a classifier in a prob-
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Fig. 3. An illustration of Q-union with 20 training samples. The X marks the elements
of the training samples and any other points in the shaded area are the unseen
samples.

ability sense [1,2]. Therefore, for two classifiers yielding the same
R∗
SM with different Q-values, the one that yields a larger Q-value has

better generalization capability. The Q-value is computed by solving
the following quadratic equation:

Q4 0. 2
3

N
M∑
j=1

�j + Q2
M∑
j=1

�j

− 3(
√


 − � −
√
Remp − A)2 = 0 (5)

There is a maximum of four solutions for Eq. (5) and the only one
real non-negative solution will be used as the final result.

4. Feature selection using the localized generalization error

We applied the R∗
SM to RBFNN architecture selection problems [1]

and image classification problems [2]. In this paper, we focus on the
use of the R∗

SM to select the feature subset for pattern classification
problems (i.e. RSMFS ), for RBFNN. We define the irrelevant features
to be those features yielding the smallest contribution to the R∗

SM . By
removing these irrelevant features, one could build a classifier with
a smaller loss or even no loss in generalization performance with re-
duced classifier complexity. Let the candidate feature set for feature
selection be CFS, which is initially equal to the full set of features
(CFS={1, 2, . . . ,n}). We formulate this feature selection method as an
optimization problem:

arg min
Z⊆CFS

R∗
SM(Q) − R∗

SM(Q , Z) (6)

where the R∗
SM(Q , Z) indicates the R∗

SM of holding constant the values
of unseen samples of features in Z and are equal to the mean values
of those samples in the training dataset (i.e., variances equal to zero).
Therefore, the features in Z could be replaced by a constant and
thus could be removed. By doing so, R∗

SM(Q)−R∗
SM(Q , Z) denotes the

differences in the generalization error bounds between all the unseen
samples located within the neighborhood of training samples with
and without the variation in the values of the features in Z. In the
case of RBFNN, with probability 1 − �, we have

R∗
SM(Q , Z) =

⎛
⎜⎝

√√√√√1
3
Q2

M∑
j=1

�j(Z) + 0. 2
9

Q4(n − l)
M∑
j=1

�j

+
√
Remp + A

⎞
⎠
2

+ � (7)

where �j(Z) = �j(
∑n

i=1
i /∈Z

(�2
xi + (	xi − uji)

2)/v4j ), Z denotes the set of

candidate features removed from the full set of features (CFS =
{1, 2, . . . ,n}) and l denotes the number of features in Z.

For example, if we have 10 features and the features that we are
going to test for irrelevance are the 3rd and 5th features, we first
compute the R∗

SM(Q) for the classifier with unseen samples different
from the training samples in all features. Then, we compute the
R∗
SM(Q , {3, 5}) for the classifier with unseen samples different from

training samples in all features except the 3rd and 5th features. The
combined influence of the 3rd and 5th features to the classifier's
generalization error is computed using R∗

SM(Q) − R∗
SM(Q , {3, 5}).

4.1. Feature subset selection algorithm

Unfortunately, the optimal feature subset found by solving Prob-
lem (6) requires comparing all the possible combinations of features
in the power set of the full feature set. If there are n features, there
will be 2n possible combinations and this is computationally pro-
hibitive. So, in this paper, we employ a sequential backward search
for the feature subset selection (i.e., we start with the classifier
trained using a full set of features and remove the most irrelevant
features one by one). This is preferred because it requires only n
classifiers to be trained and we can compare the feature relevance
based on the classifier trained involving the candidate feature and
R∗
SM . In contrast, sequential forward search still requires (n2 + n)/2

classifiers to be trained. First, one selects the most irrelevant feature
by solving

arg min
{z}∈CFS

R∗
SM(Q) − R∗

SM(Q , {z}) (8)

Only n comparisons and one trained classifier are required to
solve Problem (8). Then we add the zth feature to the irrelevant
feature set (IFS) and remove this feature from the candidate feature
set CFS. After that, we iteratively add the most irrelevant feature
to the IFS using a new classifier trained with CFS. The next most
irrelevant feature is selected by

arg min
{z}∈CFS

R∗
SM(Q) − R∗

SM(Q , ({z} ∪ IFS)) (9)

By iteratively solving Problem (9), one obtains a list of irrelevant fea-
tures in the descending order of its irrelevance and a set of classifiers
trained with different numbers of features.

The same Q-value should be used for all RBFNN and feature eval-
uations, such that all the features and RBFNNs are evaluated using
the same set of unseen samples. We may point out that if the Q-
value adopted is too small, the unseen samples being considered by
the R∗

SM may be very few and thus may not be representative. The
Q-value could be selected based on domain knowledge. For exam-
ple, if the input space is in [0,1], a Q-value which is equal to 0.1
represents that the RSMFS considers the unseen samples that deviate
from the training samples by no more than 10%. On the other hand,
this unique Q-value (with a parameter 
 = 0. 25) could be found by
Eq. (5) and the RBFNN is trained using the full set of features. In
this way, we eliminate the bias of choosing Q-value and this will be
adopted in our experiments.

The procedures of implementing the RSMFS are as follows:

1. Initialize the CFS to be equal to the full set of features, and the
IFS to be an empty set,

2. Train the classifier using the dataset with features in CFS,
3. Compute the R∗

SM(Q) for the classifier trained in Step 2,
4. Compute the R∗

SM(Q) − R∗
SM(Q , {z}) for every feature in CFS,

5. Add the zth feature to the IFS and remove it from the CFS if the
R∗
SM(Q)− R∗

SM(Q , {z}) for the zth feature is the smallest among all
choices,

6. If CFS is not empty, go to Step 2. Otherwise end the feature se-
lection process.
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In Step 2, we adopt the twostage training method for RBFNN [3,4].
We first perform unsupervised training with k-means for samples
in each class to find the centers and widths of the hidden neurons
in RBFNN. Then, the centers of all classes are combined to build the
RBFNN and we compute the connection weights using the pseudo-
inverse method. To avoid the rank deficiency problem in finding the
pseudo-inverse of the output matrix of the RBFNN hidden neurons,
a diagonal matrix with very small constant values is added to the
output matrix [3]. One may notice that the RSMFS does not depend
on the training algorithm of the classifier and other training methods
may be adopted in Step 2.

4.2. Generalization performance of the classifier trained with selected
feature subset

The most important problem with feature selection, perhaps, is
the loss in generalization performance of the classifier built using the
reduced feature subset. As mentioned before, the Q value for all the
computations of R∗

SM should be the same value, such that we evalu-
ate all the feature subsets using the same input sub-space (i.e., SQ ). In
the RSMFS, we train a classifier with the full set of features and then
compare the R∗

SM of this classifier with input samples without con-
sidering the zth feature. From Eq. (3), the R∗

SM is computed based on
the training error, ST-SM and two constants ( A and � ). The � is can-
celled out in Eqs. (8) and (9); therefore, it does not affect the choice of
input feature. Moreover, the training error and constant A are fixed
in each iteration of the feature selection; therefore these two param-
eters do not participate in the selection of features. The ST-SM term
(the first term in Eq. (7)) indicates the contribution of the feature
set to the classifier outputs by computing the average squared clas-
sifier outputs differences between the training samples and unseen
samples located within the Q-Union. In R∗

SM(Q , {z}), the zth feature's
value is replaced by a constant, and therefore we compute the R∗

SM
without the contribution of the zth feature. If R∗

SM(Q) − R∗
SM(Q , {z})

is zero, the contribution of the zth feature to the classifier outputs
is zero. Thus, this feature is insignificant and we could remove it
without affecting either the generalization error bound of the classi-
fier or the classification results of the classifier. In practice, one usu-
ally finds non-zero differences and the feature yielding the smallest
R∗
SM(Q) − R∗

SM(Q , {z}) is removed. Therefore, the feature yielding the
smallest contribution to the classifier is removed. In contrast, if the
zth feature yields a large R∗

SM(Q) − R∗
SM(Q , {z}) value, its influence

to both the generalization error bound and classifier outputs is big.
Therefore, the classifier trained by using the feature subset without
this feature may change radically.

Fig. 4 shows the average testing accuracies of the classifier (with
10 independent runs) trained using the full set of features and the
reduced feature subsets in iterations for the UCI Wine dataset. We
find that the average testing accuracies for the classifier trained with
more than four features are not worse than the one trained using
all of the features. When there are only three features left, the av-
erage testing accuracies drop about 0.5%, which is insignificant. The
R∗
SM(Q) − R∗

SM(Q , {z}) become very large when there are only two
features left and the average testing accuracies drop significantly.

4.3. Stopping criterion for RSMFS

Usually, one stops the feature selection algorithm when a pre-
selected number of features are achieved [11]. On the other hand,
one may stop the feature selection when the training accuracy of the
classifiers trained using the current selected feature subset drops sig-
nificantly [12,19]. However, by assuming that we do not have knowl-
edge about the future unseen samples, this could not provide a theo-
retical guarantee on the generalization capability of the classifier. In
contrast, in the RSMFS method, if the minimum R∗

SM(Q)−R∗
SM(Q , {z})
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Fig. 4. Average testing accuracies of the classifier trained with reduced feature
subsets.

value is either very large or larger than a pre-selected threshold, it
indicates that one should stop the feature selection process because
further removal of a feature leads to significant changes in both the
generalization error bound and classifier outputs. However, the se-
lection of the stopping threshold requires an ad hoc choice and do-
main knowledge about the given classification problem. Therefore,
we ignore the stopping criterion in this work and remove the fea-
ture iteratively to show the change in average testing accuracies.
This lends itself to important future research to find a problem-
independent stopping threshold.

4.4. RSMFS—hybrid filter and wrapper

The RSMFS feature selection method enjoys the benefits of both
the wrapper and filter approaches. It uses a trained classifier to start
the feature selection. However, it selects the features based on an
estimated generalization error bound. This estimation reduces the
time-consuming classifier training and provides theoretical justifica-
tion for the selected feature subset, instead of the widely applied em-
pirical brute force Leave-One-Out feature selectionmethod.Wrapper
approaches, including RSMFS method, have classifier bias, yet they
also benefit by feedback from the trained classifier.

4.5. Time complexity for selecting one feature

Let n, M, and N denote the numbers of features, hidden neu-
rons, and samples, respectively. Then the time complexity of RSMFS
method is O(n2M). The time complexity of wrapper approaches fea-
ture selection using RBFNN is O(n(MnN + N3)) due to the training
of n additional classifiers. The filter approaches (e.g., mutual infor-
mation approaches) have a time complexity of O(n2N2) due to the
point-wise comparisons in computing the selection criterion. More-
over, RSMFSmethod requires only one classifier training, while wrap-
per approaches require n classifier trainings. Usually, M�N and the
RSMFS method is advantageous when the dataset consists of large
numbers of samples and features.

4.6. Limitations of RSMFS

The RSMFS feature selection method depends on the ST-SM to
find the error bound (R∗

SM) for the unseen samples located in the Q-
union. So, the RSMFS method cannot be applied to those classifiers
in which their ST-SMs could not be defined (e.g., decision tree and
rule-based systems). Moreover, as with all other wrapper methods,
the feature subsets selected by the RSMFS method are biased to the
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classifier. So, the feature subsets selected for RBFNN using RSMFS
method may not be suitable for SVM.

Although a local concept is adopted in the R∗
SM , a few portions of

unseen samples located outside the Q-union will not have a big im-
pact on the RSMFS method [1]. However, in applications that depend
heavily on detecting or recognizing outliers, both R∗

SM and RSMFS
may not be suitable choices.

5. Experimental results

We perform a thorough comparison among the proposed RSMFS
method and five other feature selection methods using the UCI Wine
dataset [21] in Section 5.1 On top of the average testing accura-
cies of the RBFNNs built using the selected feature subsets by those
methods, we also compare the features selected and show the ad-
vantages of the RSMFS method. In Section 5.2, we provide more ex-
perimental results on a variety of datasets in terms of numbers of
features samples and classes The methods being compared are Sim-
ilarity [14], Separability [16], Correlation Coefficient [6], Mutual In-
formation [13], and Leave-One-Out. These are compared with 5-fold
CV. The maximum information compression index introduced in Ref.
[14] will be used as the similarity measure.

In all our experiments, we perform 10 independent runs with
random splitting of 50% of the samples to be the training dataset and
the other samples to be the testing dataset. In all the experiments, we
use the same RBFNN architecture and training procedures discussed
at the end of Section 4.1. Samples in the testing dataset will not
be used for the training; rather, they serve as unseen samples to
test the generalization capability of the classifiers trained using the
training dataset and selected feature subset. Thus, the 5-fold CV for
the Leave-One-Out method will split the validation dataset from the
training dataset rather than the testing dataset. This is because the
unseen samples should be unknown when we train the classifier.

5.1. Features selected by those feature selection methods

We perform a thorough investigation of the six feature selection
methods using the UCI Wine dataset. The UCI Wine dataset consists
of 13 input features, 178 samples, and 3 classes. In all the experi-
ments, we use seven hidden neurons for the RBFNN [1] and train
them using the two-stage training method described in Section 4.1.
Table 1 shows the three most relevant features selected by these
methods. The feature subsets selected in different-random runs are

Table 1
The three most relevant features selected by the feature selection methods

Feature selection
method

Most relevant
feature

2nd most relevant
feature

3rd most relevant
feature

RSMFS 13th Feature 12th Feature 7th Feature
MI 13th Feature 12th Feature 1st Feature
LOO 13th Feature 9th Feature 6th Feature
COR 12th Feature 7th Feature 6th Feature
SEPA 13th Feature 2nd Feature 1st Feature
SIM 10th Feature 2nd Feature 1st Feature

Table 2
Average (and standard deviation in parenthesis) testing accuracy for the selected feature subsets

Feature selection method Full set 10 Features 5 Features 3 Features 2 Features

RSMFS 92.57% (2.56%) 94.39% (2.52%) 94.27% (2.42%) 92.00% (2.81%) 85.30% (3.44%)
MI 92.57% (2.56%) 93.19% (2.36%) 90.07% (5.52%) 89.22% (4.47%) 85.30% (3.44%)
LOO 92.57% (2.56%) 88.76% (4.88%) 79.33% (5.09%) 65.12% (5.91%) 56.99% (5.75%)
COR 92.57% (2.56%) 90.47% (2.62%) 93.72% (2.05%) 85.60% (4.23%) 84.79% (2.68%)
SEPA 92.57% (2.56%) 94.05% (2.63%) 91.32% (4.70%) 77.23% (5.97%) 61.32% (3.46%)
SIM 92.57% (2.56%) 87.57% (4.39%) 77.80% (5.56%) 70.18% (8.43%) 56.89% (10.10%)

different, and thus we select the feature subsets that occur in most
of the random runs for each feature selection method.

From Table 2, one may notice that the average testing accuracies
of the RBFNNs trained using the feature subsets selected by the
RSMFS method outperform all the others. When only 10 features are
left for RBFNN training, the RBFNNs trained using the feature subset
selected by the RSMFSmethod yield the best average testing accuracy
and outperform the one trained using the full set of features. The
performances of Similarity and Leave-One-Out are the worst among
all the methods. The Similarity method selects a feature subset based
on the dissimilarity of a feature with respect to other features, re-
gardless of whether it is relevant to the classification problem or not.
Moreover, the similarity measure is computed using the statistical
values of the features while ignoring the real distribution of indi-
vidual samples. The idea of discarding similar features may be valid
if we have a better similarity measure. However, the computational
complexity of joint-distributions of features in datasets with large
numbers of features is prohibitive. On the other hand, the Leave-One-
Out method makes use of the estimation of generalization accuracy
by the use of a validation dataset. However the training datasets con-
sist of only 80% of the training samples and they may have too many
differences from the original training dataset, especially for a small
dataset like UCIWine. In a later experiment, we find that this method
performed better for large datasets (around 500,000 samples).

In Table 3, we compute the t-test values between the RBFNNs
trained using the reduced feature subset and those trained using a
full set of features. Onemay observe from Table 3 that the differences
between the RBFNNs trained using a full set of features and those
trained using only the two most relevant features selected by both
RSMFS and Mutual Information methods are statistically insignificant
at the 0.05 level of significance (t-test value is smaller than 1.96 for
approximately normally distributed testing accuracies). In contrast,
the performances of the RBFNNs trained using the five most relevant
features selected by the Leave-One-Out and Similarity methods and
the RBFNNs trained using the three most relevant features selected
by the Separability method are significantly worse than that of the
RBFNNs trained using a full set of features.

In the following figures, we plot both the training and testing
samples together so that we can visualize the generalization capa-
bility of the features being selected. In Fig. 5, we plot the two most
relevant features selected by the Separability method. One may find
that the class separability between the classes may not be the opti-
mum and samples are mixed together in many regions. However, the

Table 3
t-Test values of the RBFNNs trained for the selected feature subsets

Feature selection
method

Full set 10 Features 5 Features 3 Features 2 Features

RSMFS 0 −0.51 −0.48 0.15 1.70
MI 0 −0.18 0.41 0.65 1.70
LOO 0 0.69 2.32 4.26 5.65
COR 0 0.57 −0.35 1.41 2.10
SEPA 0 −0.40 0.23 2.36 7.26
SIM 0 0.98 2.41 2.54 3.42
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Fig. 5. Sample distribution of the two most relevant features selected by the Sepa-
rability method for the UCI Wine dataset.
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Fig. 6. Sample distribution of the two most relevant features selected by the Cor-
relation Coefficient method for the UCI Wine dataset.

mean values, represented by big square dots in Fig. 5, of the three
classes are separated far away from each other. This indicates that
the separability measure is overly dependent on the mean values of
the samples in each class.

Fig. 6 shows the two most relevant features selected by the Cor-
relation Coefficients method. One may notice that these two features
yield a very good linear correlation to the desired output because the
class ID decreases from 3 to 1 when the values of these two features
increase. However, the samples from Class 1 and Class 2mix together
and thus this feature subset yields a poor generalization capability.

Fig. 7 shows the two most relevant features (12th and 13th fea-
tures) selected by both the Mutual Information and the RSMFS meth-
ods. The desired outputs do not increase or decrease when the val-
ues of the 12th and 13th features increase (i.e. they do not have
a linear correlation with the desired outputs). Although these two
features do not show a good linear correlation to the output, they
yield the best separability between the three classes among other
choices of feature pairs. Thus, both methods select the feature sub-
set with the best nonlinear correlation and separability to the out-
put. Furthermore, we plot the sample distributions of the 3-feature
subsets selected by the Mutual Information and the RSMFS methods
in Figs. 8 and 9, respectively. The 3-feature subset selected by the
RSMFS method yields a better separability of the classes than the one
selected by the Mutual Information method. The Mutual Informa-
tion method selects the feature subset based on the best nonlinear
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Fig. 7. Sample distribution of the two most relevant features selected by the Mutual
Information and RSMFS methods for the UCI Wine dataset.

correlation to the output; thus it indirectly minimizes the training
error during the feature selection. In contrast, the RSMFS method
minimizes the change in generalization error for the selection of fea-
ture subsets. Thus the feature subset removed by the RSMFS method
yields the least contribution to the approximation of the true un-
known input–outputmapping (i.e., the RBFNN f�), such that we could
remove them with the least change in generalization performance.
From Fig. 9, the generalization capability of the feature subset can be
visualized as the separability of the samples from different classes
and very few of them are mixed together. One may observe that
the samples in Classes 2 and 3 have more overlapping in Fig. 8 than
those in Fig. 9.

5.2. Experimental results for datasets with varieties in numbers of
features and samples

In this section, we discuss the experiments on six more datasets
in which we perform 10 independent runs for each, with 50% of the
samples randomly selected as training datasets. A Gene dataset from
Ref. [22] consists of extremely large numbers of features and small
numbers of samples. The problem for the Gene dataset is to dis-
tinguish a tissue to be either carcinomatous or non-carcinomatous
by its mRNA gene expression levels, with each feature correspond-
ing to one mRNA gene expression. This is a typical bioinformatics
dataset and is usually characterized by a large number of features
with a small number of samples. In contrast, typical multimedia
datasets consist of large numbers of features, samples, and classes.
The Multiple Feature (MF) Digit Recognition and Isolated Letter (Iso-
let) Speech Recognition datasets are selected from the UCI machine
learning repository [21]. They are typical multimedia datasets that
consist of large numbers of features extracted from some transfor-
mations of the original speech signal or image. The large number
of classes is also a characteristic of this kind of problem (e.g., 26
classes in English letter-recognition problems). On the other hand,
datasets for network security problems usually consist of very large
numbers of samples but medium numbers of features. The KDD CUP
99 dataset (Network Intrusion) is a typical network intrusion detec-
tion problem dataset that consists of a large number of samples but
few features. Due to the growth of network usage and fast broad-
band Internet connections, the number of packets flowing through a
server is very huge, and one is required to distinguish malicious and
legitimate packets in an extremely short period of time. So, reduc-
ing the number of features for this type of problem is particularly
important in lowering the response time of the intrusion detectors.
We remove the samples in other attack types because their numbers
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Fig. 8. Sample distribution of the three most relevant features selected by the Mutual Information method for the UCI Wine dataset.

Fig. 9. Sample distribution of the three most relevant features selected by the RSMFS method for the UCI Wine dataset.

Table 4
Characteristics of datasets and the number of hidden neurons used in experiments

Data
set

Number of
features

Number of
samples

Number of
classes

Number of hidden
neurons in RBFNN

Gene 12,600 203 2 40
Isolet 617 6238 26 100
MF 649 2000 10 100
Network Intrusion 41 494,020 2 80
Sonar 60 208 2 23
Ionosphere 34 351 2 14

are too small when compared with the 494,020 normal and DoS at-
tacks samples. Moreover, two typical medium-size machine learn-
ing datasets are selected from the UCI machine learning repository:
Sonar and Ionosphere. In all of the experiments, we adopt the num-
ber of hidden neurons specified in Table 4 and therefore the perfor-
mances of the RBFNNs are affected only by the feature subset being
selected by these feature selection methods.

The Leave-One-Out method is infeasible for the Gene dataset, as
it consists of 12,600 features, and it requires 396,931,500 RBFNNs
to be trained for the 5-fold CV and combinations of the feature sub-

sets. Another characteristic of typical bioinformatics datasets (e.g.
the Gene dataset in Table 5) is that a huge number of features could
be removed without a significant effect on the testing accuracies of
the trained RBFNNs. The average testing accuracies using all methods
are the same as those using a full set of features when the number
of features is reduced from 12,600 to 500. The t-test values between
the RBFNNs trained using a full set of features and those trained us-
ing reduced feature subsets are given in Table 5. From Table 5, the
performance degradations of the RBFNNs trained using the 50 most
relevant features selected by RSMFS method are statistically insignif-
icant, at the level of 0.05, when compared with those trained us-
ing a full set of features. In contrast, the performance degradations
of the RBFNNs trained using the 50 most relevant features selected
by all other methods are statistically significant. The average testing
accuracy of Mutual Information with 50 features is better than the
RSMFS method; however, the overall trend of performance degrada-
tion from 12,600 features to 1 feature of the RSMFS method is more
superior.

The small number of samples distributed sparsely in such a
high-dimensional space could be easily compressed to a lower-



3714 W.W.Y. Ng et al. / Pattern Recognition 41 (2008) 3706 -- 3719

Table 5
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
trained using a subset of features for Gene dataset

# Features RSMFS MI COR SIM SEPA LOO

12,600 Mean 97.03% 97.03% 97.03% 97.03% 97.03% N/A
Std Dev 1.29% 1.29% 1.29% 1.29% 1.29% N/A
t-Test 0.00 0.00 0.00 0.00 0.00 N/A

500 Mean 97.03% 97.03% 97.03% 97.03% 97.03% N/A
Std Dev 1.29% 1.29% 1.29% 1.29% 1.29% N/A
t-Test 0.00 0.00 0.00 0.00 0.00 N/A

250 Mean 99.01% 98.02% 91.09% 96.04% 97.03% N/A
Std Dev 2.28% 1.63% 2.80% 3.17% 1.29% N/A
t-Test −0.76 −0.48 1.93 0.29 0.00 N/A

150 Mean 96.04% 90.83% 84.16% 85.85% 93.25% N/A
Std Dev 4.72% 4.89% 1.33% 2.09% 3.66% N/A
t-Test 0.20 1.23 6.95 4.55 0.97 N/A

50 Mean 90.10% 91.35% 82.18% 84.61% 86.50% N/A
Std Dev 3.33% 2.42% 1.74% 4.12% 4.64% N/A
t-Test 1.94 2.07 6.86 2.88 2.19 N/A

1 Mean 86.14% 82.18% 82.18% 82.18% 82.18% N/A
Std Dev 1.63% 2.10% 1.88% 4.73% 2.07% N/A
t-Test 5.24 4.42 6.51 3.03 6.09 N/A

Table 6
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
trained using a subset of features for isolated letter speech recognition dataset

# Features RSMFS MI COR SIM SEPA LOO

617 (100%) Mean 83.85% 83.85% 83.85% 83.85% 83.85% 83.85%
Std Dev 0.99% 0.99% 0.99% 0.99% 0.99% 0.99%
t-Test 0.00 0.00 0.00 0.00 0.00 0.00

494 (80%) Mean 85.69% 84.52% 82.77% 82.31% 82.00% 82.56%
Std Dev 2.21% 1.09% 1.66% 1.66% 1.16% 1.47%
t-Test −0.76 −0.46 0.56 0.80 1.21 0.73

370 (60%) Mean 83.08% 82.52% 80.00% 76.31% 73.60% 77.08%
Std Dev 1.24% 0.53% 2.54% 1.54% 2.01% 1.16%
t-Test 0.49 1.18 1.41 4.12 4.57 4.44

247 (40%) Mean 80.46% 77.45% 67.69% 71.54% 46.77% 68.61%
Std Dev 1.66% 1.48% 1.05% 4.75% 1.63% 0.67%
t-Test 1.75 3.59 11.20 2.54 19.44 12.75

123 (20%) Mean 68.77% 63.52% 46.77% 62.00% 38.92% 43.30%
Std Dev 1.40% 1.40% 1.79% 5.55% 1.40% 3.00%
t-Test 8.79 11.86 18.13 3.88 26.20 12.84

62 (10%) Mean 62.15% 38.78% 35.08% 48.92% 30.62% 30.65%
Std Dev 4.02% 3.87% 4.94% 6.54% 4.44% 2.40%
t-Test 5.24 11.28 9.68 5.28 11.70 20.49

dimensional space without affecting the separability between
classes. Both the Mutual Information and RSMFS methods find
feature subsets that yield RBFNNs with better average testing accu-
racies than those trained using a full set of features.

From Table 6, one may notice that the Separability method per-
forms very poorly because of the large number of classes in the prob-
lem, since samples from the 26 classes are mixed together. However,
from Table 7, one can see that the Separability method performance
is reasonable and this indicates that the performance of the Separa-
bility method is dataset dependent. This is because the separability
measure usually makes use of the mean values of the samples in
each class, which is not suitable for datasets in which the samples in
a class surround the samples in another class. On the other hand, the
major drawback of the Leave-One-Out method is the reservation of
validation datasets and this changes the training datasets. So, it per-
forms relatively poorly in most of the datasets except the Intrusion
Detection dataset (see Table 8). The Correlation method also works

Table 7
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
trained using a subset of features for Multiple Feature Digit Recognition dataset

# Features RSMFS MI COR SIM SEPA LOO

649 (100%) Mean 96.90% 96.90% 96.90% 96.90% 96.90% 96.90%
Std Dev 0.56% 0.56% 0.56% 0.56% 0.56% 0.56%
t-Test 0.00 0.00 0.00 0.00 0.00 0.00

519 (80%) Mean 96.88% 96.60% 96.97% 96.32% 96.12% 95.80%
Std Dev 0.52% 0.64% 0.61% 0.42% 0.53% 0.26%
t-Test 0.03 0.35 −0.08 0.83 1.01 1.78

389 (60%) Mean 97.12% 96.55% 96.85% 95.16% 96.67% 94.79%
Std Dev 0.49% 0.49% 0.65% 0.34% 0.55% 0.53%
t-Test −0.30 0.47 0.06 2.66 0.29 2.74

260 (40%) Mean 96.45% 95.85% 95.76% 93.54% 96.56% 92.64%
Std Dev 0.47% 0.46% 0.97% 0.67% 0.48% 0.46%
t-Test 0.62 1.45 1.02 3.85 0.46 5.88

130 (20%) Mean 97.42% 94.33% 92.93% 91.18% 94.62% 86.58%
Std Dev 0.57% 0.61% 1.68% 1.57% 0.36% 0.70%
t-Test −0.65 3.10 2.24 3.43 3.42 11.51

65 (10%) Mean 97.00% 93.95% 88.94% 85.88% 91.74% 82.29%
Std Dev 0.57% 0.61% 1.68% 1.57% 0.36% 0.70%
t-Test −0.13 3.10 4.70 3.20 7.31 18.61

Table 8
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
trained using subset of features for Intrusion Detection dataset

# Features RSMFS MI COR SIM SEPA LOO

41 (100%) Mean 99.54% 99.54% 99.54% 99.54% 99.54% 99.54%
Std Dev 0.06% 0.06% 0.06% 0.06% 0.06% 0.06%
t-Test 0.00 0.00 0.00 0.00 0.00 0.00

33 (80%) Mean 99.54% 99.41% 99.54% 99.49% 99.33% 99.54%
Std Dev 0.06% 0.06% 0.06% 0.04% 0.10% 0.06%
t-Test 0.00 1.53 0.00 0.69 1.80 0.00

25 (60%) Mean 99.50% 99.41% 99.48% 98.39% 99.13% 99.42%
Std Dev 0.06% 0.07% 0.08% 0.04% 0.16% 0.07%
t-Test 0.47 1.41 0.60 15.95 2.40 1.30

16 (40%) Mean 99.46% 99.22% 99.25% 93.44% 99.05% 99.41%
Std Dev 0.09% 0.04% 0.06% 2.00% 0.12% 0.08%
t-Test 0.74 4.44 3.42 3.05 3.65 1.30

8 (20%) Mean 99.30% 99.18% 99.14% 92.14% 98.92% 99.51%
Std Dev 0.13% 0.08% 0.09% 1.91% 0.10% 0.15%
t-Test 1.68 3.60 3.70 3.87 5.32 0.19

4 (10%) Mean 98.50% 98.43% 98.22% 80.51% 98.83% 99.51%
Std Dev 0.18% 0.10% 0.08% 4.66% 0.13% 0.10%
t-Test 5.48 9.52 13.20 4.08 5.17 0.77

poorly for the Isolet dataset (see Table 6) and this may be because
of the nonlinear relationship between the input features and out-
puts being more important than the linear one in this dataset, due to
the large number of classes More importantly, from Tables 6 and 7,
the proposed method removes 60% and 90% of the features without
causing statistically significant loss of the RBFNNs' performances, re-
spectively, for the experiments of the Isolet Speech Recognition and
the MF Digit Recognition datasets.

One may notice from Table 8 that the testing accuracies for all
methods have insignificant differences in their percentages. How-
ever, every 0.01% of the testing accuracy represents 23 samples be-
cause of the large number of testing samples (247,010). In partic-
ular, the Leave-One-Out method performs very well in this dataset
due to the large number of training samples and this reduces the
differences in training sets caused by the reservation of validation
sets for the 5-fold CV. In contrast, the Similarity method performs
the worst in the Intrusion Detection dataset because the statistically
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Table 9
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
trained using a subset of features for Sonar dataset

# Features RSMFS MI COR SIM SEPA LOO

60 (100%) Mean 83.04% 83.04% 83.04% 83.04% 83.04% 83.04%
Std Dev 2.02% 2.02% 2.02% 2.02% 2.02% 2.02%
t-Test 0 0 0 0 0 0

48 (80%) Mean 82.47% 81.05% 80.37% 82.89% 81.15% 82.12%
Std Dev 2.47% 3.21% 3.04% 1.86% 3.44% 2.78%
t-Test 0.18 0.52 0.73 0.05 0.47 0.27

36 (60%) Mean 82.38% 80.95% 80.66% 81.99% 81.53% 80.67%
Std Dev 3.39% 3.21% 3.46% 3.68% 2.63% 2.06%
t-Test 0.17 0.55 0.59 0.25 0.46 0.82

24 (40%) Mean 81.59% 80.18% 81.34% 80.27% 81.34% 79.88%
Std Dev 4.40% 3.99% 3.47% 3.76% 3.48% 3.60%
t-Test 0.30 0.64 0.42 0.65 0.42 0.77

12 (20%) Mean 79.09% 80.89% 77.65% 77.26% 78.72% 77.17%
Std Dev 3.80% 3.85% 3.16% 3.61% 3.91% 3.02%
t-Test 0.92 0.49 1.44 1.40 0.98 1.62

6 (10%) Mean 75.45% 74.06% 76.39% 73.28% 77.07% 76.68%
Std Dev 3.54% 3.41% 3.08% 3.13% 3.02% 3.86%
t-Test 1.86 2.27 1.81 2.62 1.64 1.46

Table 10
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
trained using a subset of features for Ionosphere dataset

# Features RSMFS MI COR SIM SEPA LOO

34 (100%) Mean 84.57% 84.57% 84.57% 84.57% 84.57% 84.57%
Std Dev 0.73% 0.73% 0.73% 0.73% 0.73% 0.73%
t-Test 0 0 0 0 0 0

27 (80%) Mean 84.34% 84.34% 83.97% 83.54% 84.34% 82.43%
Std Dev 1.25% 1.51% 1.52% 1.18% 0.74% 0.98%
t-Test 0.16 0.14 0.36 0.74 0.22 1.75

20 (60%) Mean 85.20% 85.03% 84.71% 84.23% 84.29% 81.29%
Std Dev 2.00% 1.50% 1.53% 1.44% 1.94% 2.35%
t-Test −0.30 −0.28 −0.08 0.21 0.14 1.33

14 (40%) Mean 85.03% 85.03% 84.70% 84.11% 84.80% 82.14%
Std Dev 2.29% 1.68% 1.76% 2.10% 1.27% 2.00%
t-Test −0.19 −0.25 −0.07 0.21 −0.16 1.14

7 (20%) Mean 86.06% 86.06% 85.20% 76.97% 75.43% 82.43%
Std Dev 1.96% 1.91% 1.46% 2.11% 1.51% 2.83%
t-Test −0.71 −0.73 −0.39 3.40 5.45 0.73

3 (10%) Mean 86.97% 84.63% 83.09% 74.80% 77.89% 82.57%
Std Dev 2.12% 1.98% 2.06% 2.60% 1.40% 2.07%
t-Test −1.07 −0.03 0.68 3.62 4.23 0.91

similar features may have significant differences in individual sam-
ples and separability to the classes. Furthermore, Table 8 shows that
the Leave-One-Out method removes 90% of features without making
a statistically significant change to the RBFNN's performances while
the RSMFS removes only 80% of features in this experiment.

From Tables 9 and 10, the testing accuracies of the RBFNNs de-
crease significantly. However, owing to the small number of samples,
most of the reductions in accuracies are not statistically significant.
In contrast, one may observe from Table 10 that the RBFNNs trained
using the three most relevant features selected by RSMFS yield the
highest average testing accuracy in the experiments of the Iono-
sphere dataset. In the experiments of Sonar Target, the performance
degradation of all the feature selection methods is statistically in-
significant when 80% of the features are removed.

One may notice from Table 11 that the numbers of classifiers re-
quired to be trained are the same for all methods except the Leave-
One-Out method. Thus, for a dataset consisting of n features, it has to

Table 11
Number of trained classifiers required

Data set .RSMFS MI COR SIM SEPA LOO

Gene 12,600 12,600 12,600 12,600 12,600 396,931,500
Isolet 617 617 617 617 617 190,653
MF 649 649 649 649 649 210,925
Network Intrusion 41 41 41 41 41 861
Sonar 60 60 60 60 60 1830
Ionosphere 34 34 34 34 34 595

Table 12
Average computational time for training all the RBFNN and feature selections

Data set RSMFS MI COR SIM SEPA LOO

Gene 35h 38h 35h 36h 35h N/A
Isolet 2.5h 3.0h 2.5h 2.5h 2.5h 76h
MF 1.5h 2.1h 1.5h 1.5h 1.5h 52h
Network Intrusion 1.4h 1.9h 1.4h 1.4h 1.4h 31.9h
Sonar 9 s 20 s 17 s 15 s 19 s 588 s
Ionosphere 3 s 5 s 5 s 5 s 5 s 46 s

train (n2+n) /2 classifiers and this is infeasible for a large dataset (e.g.
the Gene dataset). Table 12 shows the average computational time
for the feature selection process together with the trainings of all
classifiers that produce the testing accuracies for each feature subset
selected. The RSMFS uses the least computational time in all exper-
iments. The proposed method uses only 60% of the computational
time when compared with other methods in experiments using the
Sonar and Ionosphere datasets. The RBFNN training time dominates
the computational time when the numbers of samples and features
increase. In addition, the computational time is very large when the
dataset consists of large numbers of features due to the one-by-one
feature selection adopted in this work. The RSMFS can feasibly re-
move more than one feature in each iteration. However, the compu-
tational effort in generating the feature subsets may become large,
and the selection of the number of features being removed in each
iteration needs further investigation.

To summarize the experimental results, the RSMFS is able to re-
move a large percentage of features without statistically significant
decreases in the performances of the RBFNNs trained using the re-
duced feature subsets. The proposed method performs the best for
all datasets in our experiments that consist of combinations of large
and small numbers of features, samples and classes. In addition, the
RSMFS uses the least computational time and performs particularly
well in experiments of datasets with large numbers of classes and
features, while the number of samples does not have a significant
effect on the RSMFS.

The Mutual Information method ignores information from the
trained classifiers; thus it is worse than the RSMFS but still better
than other methods in our experiments. Furthermore, it performs
worse when the number of features is large. On the other hand,
although the Leave-One-Out methodmakes use of the generalization
performance to evaluate the feature subset, it requires reserving sets
for validation and this may change the training dataset significantly
when the K is small for the K-fold cross-validation. However, the
Leave-One-Out method is very time consuming already for K = 5; it
will therefore become infeasible if we increase the value of K further.

5.3. An application to bankruptcy prediction

Bankruptcy and financial distress cost banks and businesses bil-
lions of dollars each year. It is not surprising, therefore, that credit
rating agencies have devoted substantial resources to credit appraisal
[23,24]. Methods used to predict the financial solvency of busi-
nesses range from statistical models [25] to approaches that involve
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Table 13
Feature set of the bankruptcy dataset

−1 Year −2 Year −3 Year Feature name

1 43 85 Total assets
2 44 86 Working capital
3 45 87 Cash
4 46 88 Marketable securities

5@ 47 89 Current ratio
6@ 48 90 Acid test ratio
7 49 91 Quick assets
8 50 92 Current liabilities
9 51 93 Retained earning

10 52 94 Total debt
11 53 95 Long term debt
12 54 96 Shareholder's equity
13 55 97 Total debt/total capital
14 56 98 Total liabilities
15 57 99 Market value of equity

16$ 58 100 Net profit margin
17$ 59 101 Operating margin before depreciation
18@ 60 102 Pre-tax profit margin
19 61 103 Interest coverage before tax
20 62 104 Sales
21 63 105 Inventory turnover
22 64 106 Inventory
23 65 107 Cost goods sold

24@ 66 108@ Receivable turnover
25@ 67 109 Account receivable
26 68 110 Earning before interest and taxes
27 69 111 Net income
28 70 112 Cash flow
29 71 113 Cash flow from operation
30 72 114 Current asset
31 73 115 Net plant
32* 74@ 116 Sales growth in previous 3 years
33$ 75$ 117$ Price end
34 76$ 118$ Dividend
35* 77* 119* Stock return
36$ 78$ 120$ Market return
37* 79* 121* LERET
38 80 122 Market value of firm

39$ 81$ 123$ Share price
40 82 124 Number of outstanding shares
41 83 125 M/B ratio
42 84 126$ LSIGMA = std_dev(monthly price close at that year)

@ Indicate the 22nd–28th irrelevant features. $ Indicate the 8th–21st irrelevant
features. ∗ Indicate the first seven most irrelevant features.

extensive subjective human judgment. There are a lot of data
available to analysts from which they can predict bankruptcy but
the choice of which variables to use is often ad hoc. The large
number of variables and the large universe of firms make our
RSMFS methodology particularly suitable as a tool for predicting
bankruptcy.

To assess the merits of RSMFS in the prediction of bankruptcy
we use a large sample of firms and financial variables drawn from
US corporations in the COMPUSTAT database. We are able to iden-
tify a sample of 312 firms that filed for bankruptcy in the period
1986–2005. We also draw a sample of 9431 firms that had no
bankruptcy. Therefore, in our test sample we have 3.2% of firms
that are bankrupt and 96.8% of firms that remain solvent and these
percentages reflect the relatively infrequent nature of bankruptcies.
Note, however, that when bankruptcies do occur they result in huge
financial losses for creditors, bankers, and investors. We make use
of 42 accounting and financial variables and calculate these vari-
ables at years −1, −2, and −3 relative to the year of bankruptcy
(or non-bankruptcy for the solvent firms); this yields 126 features.
The features consist of financial variables that are potential indica-
tors of a firm's financial health [25,26]. The features are listed in
Table 13.

The total sample of 9743 company observations are divided into
a training set (4872 observations) and a testing set (4871 obser-
vations) drawn randomly in 10-folds. Both the training and testing

Table 14
Averages and standard deviations of training and testing accuracies of the RBFNNs
trained using a subset of features for the bankruptcy dataset

# Features RSMFS MI SEPA

126 (100%) Mean 58.40% 58.40% 58.40%
Std Dev 6.23% 6.23% 6.23%
t-Test 0 0 0

119 (94%) Mean 60.06% 55.13% 52.41%
Std Dev 7.75% 11.13% 5.82%
t-Test −0.12 0.19 0.50

105 (83%) Mean 58.59% 50.96% 47.76%
Std Dev 5.92% 7.34% 2.89%
t-Test −0.02 0.55 1.17

99 (79%) Mean 57.24% 53.37% 47.44%
Std Dev 6.16% 10.54% 3.18%
t-Test 0.09 0.30 1.16

76 (60%) Mean 47.88% 51.28% 50.80%
Std Dev 7.94% 5.66% 9.56%
t-Test 0.74 0.60 0.48

50 (40%) Mean 41.79% 46.80% 45.67%
Std Dev 5.66% 7.08% 5.77%
t-Test 1.40 0.87 1.06

25 (20%) Mean 39.04% 37.82% 36.54%
Std Dev 5.92% 7.20% 6.31%
t-Test 1.59 1.53 1.74

13 (10%) Mean 30.77% 30.29% 25.25%
Std Dev 6.88% 9.83% 5.06%
t-Test 2.11 1.75 2.94

datasets therefore have 156 bankrupt companies and 4716 solvent
companies. The emphasis in our study is on the correct classifica-
tion of bankrupt companies since the misclassification of bankrupt
companies as solvent companies results in substantial losses to in-
vestors and lenders. If a company is predicted to be solvent, then
banks will lend money to it and investors will buy shares in it. If the
company then becomes bankrupt, bankers and investors will lose
their money. In contrast, the costs of misclassifying a solvent firm as
bankrupt are relatively small and may be close to zero when banks
and investors have many lending and investment opportunities.

The testing accuracies of the RSMFS, Mutual Information and Sep-
arability methods are given in Table 14. The testing accuracy of the
full set of 126 features is 58.40%. In this experiment, we only re-
port the testing accuracy of the prediction in bankrupt companies.
Owing to the imbalance of solvent (96.8%) and bankrupt (3.2%) com-
panies, 58.40% testing accuracy on the bankrupt companies' pre-
diction should be considered as reasonable. A reduced set of 119
features yields the highest accuracy rate of 60.06%. Further reduc-
ing the feature set to 105 features gives accuracy rates of 58.59%,
which still performs better than the one using a full set of features.
Thus the RSMFS method is able to meaningfully reduce the set of
features for predicting bankruptcy without unduly reducing accu-
racy. However, owing to the nature of the problem that a small
drop in testing accuracy could cause large investment losses, we
are interested only in those feature subsets that produce an accu-
racy performance at least as good as the one by using the full set
of features. The discussion on statistical significance (or insignifi-
cance) for this problem may not be meaningful due to the very
large standard deviations, which is caused by the small bankrupt
samples.

Table 13 highlights those variables that contribute least to the
testing accuracy. The cells marked with ∗ represent the first 7
features removed; these are the least relevant. The cells marked
with $ represent the next 14 features removed (the next least rel-
evant features) and the cells marked with @ the next 7 features
removed.
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One striking feature of Table 13 is that many of the removed fea-
tures are from year −1. At first glance this might appear counter-
intuitive. That is, the most recent data are the least relevant. Our
explanation for this is that some companies that are in financial dis-
tress resort to manipulating or massaging their financial statements
and so the reported numbers are distorted or even downright fraud-
ulent [27]. Recent corporate scandals (e.g., Enron, Worldcom) have
highlighted the ways in which management manipulates financial
statements [27,28]. The results indicate that the financial statements
in year −2 and year −3 reflect the deteriorating position of the soon-
to-be bankrupt companies but management has not yet started to
manipulate the accounts in a major way.

Another striking feature of Table 13 is that stock market prices
(price end, stock return, and market return) and stock market risk
(LERET and LSIGMA) are largely irrelevant in predicting bankruptcy.
Although one can argue that stock market variables should capture
fundamental information about a company's prospects and risk [25],
our results for the prediction of bankruptcy provide little support for
this viewpoint. The ability of stock market variables to reflect funda-
mental economic factors has also come under recent attack by reg-
ulators and financial commentators. For example, Alan Greenspan,
the ex-Chairman of the US Federal Reserve, coined the term `irra-
tional exuberance' to describe what he saw as an over-priced stock
market. As another example, the financial scandals of the late 1990s
and early 2000s and the ongoing sub-prime banking catastrophes of
2007 and 2008 were largely unpredicted by the stock markets until
it was too late. Similarly, the internet stock bubble in the US was a
classic example of over-valuation by the stock market. In light of this
evidence perhaps we should not be too surprised that stock market
variables do not do a good job in predicting bankruptcies [29].

Our analysis indicates that RSMFS is a valuable tool in develop-
ing a prediction model for corporate bankruptcies. It is able to sub-
stantially reduce the number of features without a significant loss of
testing accuracy for unseen samples. This suggests that the method
will be very useful for financial and credit analysts.

5.4. Experimental comparisons with Gaussian kernel SVM

When compared with SVM, RBFNN is more suitable for prob-
lems with a large number of training samples (N) and multi-classes
because SVM uses nonlinear optimization of its N-by-N kernel ma-
trix. However, when one is given a two-class problem, an interesting
question arises whether should one use RBFNN or SVM for solving it.
In Section 5.4.1, we compare RSMFS with the feature selection using
the R2W2 generalization error bound of a Gaussian kernel SVM [30].
In Section 5.4.2, we replace the k-means clustering algorithm by SVM
with Gaussian kernel for center selection in RBFNN training [31].

5.4.1. Comparison with feature selection by R2W2 error bound of SVM
In Ref. [30], the authors proposed a feature selection method for

SVM based on its R2W2 error bound. We perform experiments of
this method on three 2-class datasets, Gene, Wine and Sonar. In
Tables 15–17, the testing accuracies of RBFNN trained using reduced
features selected by RSMFS, for these three datasets are compared
with Gaussian SVM trained using reduced features selected by the
R2W2 error bound. The t-test value for SVM is computedwith respect
to the testing accuracy of SVM trained with a full set of features
and shows the statistical significance of the reduction in SVM testing
accuracy caused by the R2W2 error bound feature reduction.

SVM outperforms RBFNN when all 12,600 features are used to
train the classifiers. However, the difference in the performances of
these two classifiers is statistically insignificant. More importantly,
RBFNN trained with features selected by RSMFS achieves the best av-
erage testing accuracy when there are only 250 features left. In con-
trast, the testing accuracies of SVM trained using features selected

Table 15
Average (standard deviation) testing accuracies and t-Test values for Gene dataset

# Features RBFNN with RSMFS Gaussian SVM with R2W2

12,600 Mean 97.03% 97.20%
Std Dev 1.29% 0.40%
t-Test 0.00 0.00

500 Mean 97.03% 91.75%
Std Dev 1.29% 2.31%
t-Test 0.00 2.00

250 Mean 99.01% 88.94%
Std Dev 2.28% 1.32%
t-Test −0.76 4.80

150 Mean 96.04% 87.29%
Std Dev 4.72% 1.59%
t-Test 0.20 4.97

50 Mean 90.10% 88.45%
Std Dev 3.33% 1.62%
t-Test 1.94 4.33

1 Mean 86.14% 73.60%
Std Dev 1.63% 1.62%
t-Test 5.24 6.97

Table 16
Average (standard deviation) testing accuracies and t-Test values for Ionosphere
dataset

# Features RBFNN with RSMFS Gaussian SVM with R2W2

34 (100%) Mean 84.57% 89.61%
Std Dev 0.73% 2.18%
t-Test 0.00 0.00

27 (80%) Mean 84.34% 86.18%
Std Dev 1.25% 2.93%
t-Test 0.16 0.67

20 (60%) Mean 85.20% 84.68%
Std Dev 2.00% 3.46%
t-Test −0.30 0.87

14 (40%) Mean 85.03% 82.81%
Std Dev 2.29% 3.35%
t-Test −0.19 1.23

7 (20%) Mean 86.06% 79.53%
Std Dev 1.96% 3.27%
t-Test −0.71 1.85

3 (10%) Mean 86.97% 79.01%
Std Dev 2.12% 3.92%
t-Test −1.07 1.74

by R2W2 error bound fall by a statistically significant amount (t-test
value larger than 1.96) when there are 500 features left.

From Table 16, SVM outperforms RBFNN when a full set of fea-
tures is adopted. However, the average testing accuracy falls when
features are removed by the R2W2 error bound. One may notice that
the RBFNN trained using 3 (10%) features selected by RSMFS outper-
forms the SVM trained using 27 (80%) features selected by R2W2
error bound by about 0.8% average testing accuracy.

From Table 17, the average testing accuracy of SVM falls a statis-
tically significantly amount when there are only 12 (20%) features
left for training. In contrast, RBFNN with RSMFS yields a statistically
insignificant fall in average testing accuracy even when there are
only 6 (10%) features left for training.

To summarize, SVM with Gaussian kernel outperforms RBFNN
when a full set of features is used for training. However, when SVM
works with the R2W2 error bound feature selection, the perfor-
mances of SVM are worse than RBFNN with feature selection by
RSMFS for smaller feature subsets. One possible reason for this is
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Table 17
Average (standard deviation) testing accuracies and t-Test values for Sonar dataset

# Features RBFNN with RSMFS Gaussian SVM with R2W2

60 (100%) Mean 83.04% 84.76%
Std Dev 2.02% 2.00%
t-Test 0 0.00

48 (80%) Mean 82.47% 84.47%
Std Dev 2.47% 2.59%
t-Test 0.18 0.06

36 (60%) Mean 82.38% 82.04%
Std Dev 3.39% 3.67%
t-Test 0.17 0.48

24 (40%) Mean 81.59% 73.79%
Std Dev 4.40% 5.22%
t-Test 0.30 1.52

12 (20%) Mean 79.09% 59.90%
Std Dev 3.80% 4.25%
t-Test 0.92 3.98

6 (10%) Mean 75.45% 56.60%
Std Dev 3.54% 5.36%
t-Test 1.86 3.83

that the decision boundary of the classification problem becomes
more complicated when the number of features is reduced, but SVM
still attempts to find a separating hyperplane that separates samples
in the two classes, which may make SVM overfit. Another issue is
that the R2W2 error bound may not make full use of information
of the training samples while the RSM (localized generalization er-
ror) makes use of statistical information of each feature in the input
space. Further investigation may be needed on the theoretical com-
parison between these two error bounds. From current experimental
results, RSMFS performs better.

5.4.2. SVM initialization of centers for RBFNN
The RSMFS and RSM make use of parameter values of the resulting

RBFNN only and regardless of how the RBFNNs are trained. In previ-
ous sections, we train RBFNN with one of the most standard meth-
ods. In this section, we adopt SVM initialization to find the centers of
RBFNN [31] instead of using k-means. We compare the RSMFS with
two other feature selection methods described in previous experi-
ments: Mutual Information and Separability methods. Experimental
results of Sonar and Ionosphere datasets are presented in Tables 18
and 19, respectively.

Our experimental results using a full set of features coincide with
the results in Ref. [31] in that RBFNN performs better when the
RBFNN centers are selected by SVM instead of k-means. However,
when the percentage of features used for training becomes small
(40% or less), the performances of RBFNN initialized by k-means
perform better. This may be due to the nature of the two RBFNN
center initialization methods. For SVM initialization, support vectors
on the decision boundary are used as the RBFNN centers. As shown in
Refs. [31,32], support vectors of SVM with Gaussian kernel surround
the cluster of samples in the input space. In k-means, centroids of
sample clusters are found for the RBFNN centers.

Nonetheless, the RSMFS is able to make a large reduction in the
number of features without a statistically significant change to the
testing accuracy of the RBFNNs for both k-mean and SVM initializa-
tion of RBFNN centers. Similar to the previous experimental results,
the RSMFS selects better feature subsets in the sense that the RBFNNs
trained with it perform better than those trained using feature sub-
sets selected by Mutual Information and Separability. This indicates
that the RSMFS is robust to changes in the initialization and training
methods of RBFNN.

Table 18
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
(with SVM initialization of centers) trained using a subset of features for Sonar
dataset

# Features RSMFS MI SEPA

60 (100%) Mean 85.63% 85.63% 85.63%
Std Dev 1.87% 1.87% 1.87%
t-Test 0 0 0

48 (80%) Mean 85.63% 84.47% 80.97%
Std Dev 1.87% 2.28% 2.96%
t-Test 0 0.28 0.47

36 (60%) Mean 85.24% 83.11% 80.19%
Std Dev 0.43% 2.80% 3.47%
t-Test 0.17 0.54 1.02

24 (40%) Mean 79.61% 79.81% 78.25%
Std Dev 4.50% 2.32% 4.64%
t-Test 0.95 1.39 1.13

12 (20%) Mean 79.81% 74.56 75.73%
Std Dev 3.32% 3.02% 2.99%
t-Test 1.12 2.26 2.04

6 (10%) Mean 70.87% 65.83% 67.18%
Std Dev 3.88% 6.00% 6.23%
t-Test 2.57 2.52 2.28

Table 19
Average (standard deviation) testing accuracies and t-Test values of the RBFNNs
(with SVM initialization of centers) trained using a subset of features for Ionosphere
dataset

# Features RSMFS MI SEPA

34 (100%) Mean 86.61% 86.61% 86.61%
Std Dev 1.71% 1.71% 1.71%
t-Test 0 0 0

27 (80%) Mean 86.94% 85.14% 86.61%
Std Dev 1.76% 3.15% 1.95%
t-Test −0.09 0.30 0.31

20 (60%) Mean 88.49% 84.82% 86.20%
Std Dev 2.27% 4.15% 1.91%
t-Test −0.47 0.31 0.11

14 (40%) Mean 80.90% 80.90% 80.08%
Std Dev 5.84% 7.41% 5.70%
t-Test 0.76 0.63 0.88

7 (20%) Mean 77.96% 76.41% 77.80%
Std Dev 2.78% 4.73% 1.66%
t-Test 1.93 1.58 2.61

3 (10%) Mean 86.45% 82.78% 83.10%
Std Dev 1.39% 3.68% 0.86%
t-Test 0.05 0.71 1.36

6. Conclusion and discussion

In this paper, we propose removing features that do not con-
tribute to the localized generalization error bound (R∗

SM) of the clas-
sifier. The R∗

SM model bounds from above the generalization error of
unseen samples located within a neighborhood of the training sam-
ples. In the experiments for two of the datasets, the RBFNNs built
using feature subsets with 90% of features removed by the RSMFS
yield average testing accuracies higher than those trained using a
full set of features. Moreover, the experimental results show that
the proposed method consistently removes large percentages of fea-
tures with a statistically insignificant loss of testing accuracy for
unseen samples. Experimental results also show that the RSMFS is
robust to changes in initialization and training methods of RBFNN.
In addition, the RSMFS is fast and independent of the number of
samples.
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Optimal feature subset selection with low time complexity is still
an open problem in feature selection. Fortunately, the computation
of the proposed R∗

SM has a low time complexity. This may provide
research opportunities on low complexity feature selection meth-
ods, and this is an important future research direction for us. Fur-
thermore, we assume the training dataset to be representative of
the classification problem that we want to solve. However this may
not be the case in some situations. Extensions of the current work
to adopt incomplete information or temporal dynamic problems are
also important and challenging works.

Furthermore, one may notice that the R∗
SM is applicable to other

types of classifiers by replacing the ST-SM term (e.g., multilayer per-
ceptron neural networks, support vector machines, etc.). One feasi-
ble future research topic is to select both the classifier type and fea-
ture subset by comparing the differences among their R∗

SM values for
a given dataset. This would be particularly useful to practical prob-
lem solving when a large number of features and several choices of
classifiers are available.
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