
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr
Neurocomputing 71 (2008) 1515–1526

www.elsevier.com/locate/neucom
A definition of partial derivative of random functions and its
application to RBFNN sensitivity analysis

Xi-Zhao Wanga, Chun-Guo Lia,�, Daniel So Yeungb, ShiJi Songc, HuiMin Fenga

aDepartment of Mathematics and Computer Science, Hebei University, Baoding, Hebei, China
bDepartment of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong

cDepartment of Automatization, Tsinghua University, Beijing, China

Received 21 January 2006; received in revised form 24 October 2006; accepted 8 May 2007

Available online 7 June 2007
Abstract

Considering the inputs of a feed-forward neural network as random variables, this paper proposes a definition of partial derivative

of a function with respect to a random variable in the probability measure space. The mathematical expectation of the mean square

or absolute value of the partial derivative is regarded as a type of measure of the network’s sensitivity, which extends Zurada’s

sensitivity definition of networks in Zurada et al, [Perturbation method for deleting redundant inputs of perceptron networks,

Neurocomputing 14 (1997) 177–193] from the certain environment to the stochastic environment. Furthermore, for the purpose

of network’s redundant feature deletion or feature selection, the new sensitivity measure is applied to the sensitivity analysis of Radial

Basis Function Neural Networks (RBFNNs). The feasibility and the effectiveness of the sensitivity approach to redundant feature

deletion are illustrated.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Partial derivative of a random variable; Probability measure space; Sensitivity measure; Mathematical expectation; Feature selection; RBFNN
1. Introduction

Radial Basis Function Neural Networks (RBFNNs) are
powerful computational tools for regression and classifica-
tion. Based on the training data sets, RBFNNs form a
special structure, which employs the high dimension of the
hidden layer and the nonlinear hidden neurons, to simulate
the training data sets within a required accuracy. This
special structure usually leads to a problem, that is, the
hidden layers sometimes are too high to be studied.
Therefore, it is necessary to introduce the simplification
of the networks.

A number of researchers have proposed many meth-
odologies to solve the network simplification problem, such
as improving the training algorithm [1,2], sensitivity-based
feature selection [3,4] and sensitivity analysis of the centers
of the hidden neurons [5]. These methodologies aim to
simplify the network without depressing its performance.
e front matter r 2007 Elsevier B.V. All rights reserved.

ucom.2007.05.005

ing author.

ess: licg@mail.hbu.cn (C.-G. Li).
Among these methodologies, the sensitivity-based network
simplification is one of the most effective and most
promising techniques.
Sensitivity analysis of features is a fundamental issue in

neural network design. It can be used as the means of
feature selection, simplifying the neural network and
improving the generalization performance. A number of
useful methodologies have been put forward to investigate
the sensitivity of the networks [6, 10–12]. For a Multilayer
Feed-Forward Neural Network (MFNN), one of the most
popular techniques in network simplification is to delete
redundant features by using the derivative-based sensitivity
measure which is defined in [6] by Jacobian matrix. It is
assumed in [6] that the network performs a nonlinear,
differentiable mapping. To apply the sensitivity measure to
delete the redundant inputs, Zurada et al. in [6] suggested
several ways of averaging the set of training patterns.
Zurada’s methods to delete redundant inputs can also be
used to the RBFNN since RBFNNs are one kind of feed-
forward neural network with a single hidden layer and
perform the nonlinear, differentiable mapping.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.05.005
mailto:licg@mail.hbu.cn


ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–15261516
Considering the inputs of a feed-forward neural network
as random variables, this paper proposes a definition of
partial derivative of a random function with respect to a
random variable in the probability measure space. Noting
that in [6] the sensitivity measure is defined as the partial
derivative in common sense, this paper considers the
mathematical expectation of the partial derivative as a
type of measure of the network’s sensitivity, which extends
Zurada’s sensitivity definition of networks in [6] from the
certain environment to the stochastic environment.
Furthermore, for the purpose of network’s redundant
feature deletion or feature selection, the new sensitivity
measure is applied to the sensitivity analysis of RBFNNs.
The feasibility and the effectiveness of the approach to
redundant feature deletion are illustrated.
2. Definition of derivative with respect to a random variable

Let f ðx1;x2; . . . ;xnÞ be a given real differentiable
function with n real variables. We use the function f to
denote the output of a feed-forward neural network and
x1;x2; . . . ;xn to denote the network inputs (features). As
assumed in [6], the network performs a nonlinear and
differentiable mapping. According to Zurada et al. [6]
where the network output is multi-values, the network
sensitivity at an input point ða1; a2; . . . ; anÞ is defined as the
vector

qf

qx1
;
qf

qx2
; . . . ;

qf

qxn

� �����
a1;a2;...;anð Þ

. (2.1)

Then, Zurada et al. suggested in [6] that the network
sensitivity on a training set is resulted from (2.1). Over a
given training set

D ¼ a
ðjÞ
1 ; a

ðjÞ
2 ; . . . ; a

ðjÞ
n

� ����
j¼1;2;...;N

� �
,

one type of network sensitivity, i.e., the mean square
average sensitivity, is defined as ðs1; s2; . . . ; snÞ

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j¼1

qf

qxi

a
ðjÞ
1 ; a

ðjÞ
2 ; . . . ; a

ðjÞ
n

� �� �2

vuut , (2.2)

where N is the number of patterns in the given training set.
This paper is aiming at generalizing the network sensiti-

vity (2.2) from the case of real variables x1; x2; . . . ;xn to the
case of random variables x1; x2; . . . ; xn. In order to
accomplish this extension, first of all, the definition of
partial derivative in the probability space is given.

Some definitions of a random process with respect to
time variable t can be found in Refs. [e.g. 13–16]. For
example, suppose one defined random process fX ðtÞ; t 2

Tg has the second moment. The random process is mean

square differential at t if ðX ðtþ hÞ � X ðtÞÞ=h converges to
X 0ðtÞ in mean square for given t 2 T . X 0ðtÞ is defined as the
mean square derivative of X(t). X 0ðtÞ is still one random
process having finite second moment, i.e. E½X 0ðtÞ�2o1.
Note that this derivative definition was defined with
respect to the time item, not to the random variable. To
generalize the sensitivity definition referred in [6], we need
to consider the derivative of the function of random
variable, with respect to its random variable. Motivated by
the sensitivity improvement, the new derivative definition is
given below with respect to its random variable.

Definition 2.1. [7] Let x, x1; x2; . . . ; xn; be a series of random
variables defined on a probability space ðO;A;PÞ. fxng is
said to converge in probability to x if and only if the
following limit:

P xn � x
�� ��X�

 �� 

! 0ðn!1Þ (2.3)

holds true for 8�40.

We use xn�!
P

xðn!1Þ to denote that fxng converges in
probability to x.

Definition 2.2. Let x be a random variable defined on a
probability space ðO;A;PÞ and f ðxÞ be a real differentiable
function. Replacing the real variable x with random
variable x inside f, we can construct a series of random
variables

tn ¼
f ðxþ DnÞ � f ðxÞ

Dn

(2.4)

for any fixed real sequence fDnjDna0; n ¼ 1; 2; . . .g con-
verging to 0. If there exists a random variable t such that
the sequence ftng converges in probability to t, then we call
the random variable t as the derivative of f ðxÞ with respect
to x, denoted by f 0ðxÞ.

Theorem 2.1. Let x be a random variable and f ðxÞ be a real

differentiable function. Then the following equality holds:

f 0ðxÞ ¼
df

dx
ðxÞ, (2.5)

where the left is defined as in Definition 2.2 and the right
means that the real variable x in the real function df/dx is
replaced with the random variable x.

Proof. The correctness of Eq. (2.5) is equivalent to prove
that

P
f ðxþ DnÞ � f ðxÞ

Dn

�
df

dx
ðxÞ

����
����X�

� �
! 0; ðn!1Þ (2.6)

holds true for 8�40. It is sufficient to verify

E
f ðxþ DnÞ � f ðxÞ

Dn

�
df

dx
ðxÞ

� �2

! 0; ðn!1Þ

is valid [7].
Noting that lim

n!1
f ðxþ DnÞ � f ðxÞð Þ=Dn ¼ df =dx implies

that f ðxþ DnÞ � f ðxÞð Þ=Dn � df =dx
�� ��o� for 8�40, we

obtain

f ðxþ DnÞ � f ðxÞ

Dn

�
df

dx

� �2

o�2.



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–1526 1517
According to the Control and Convergence Theorem [9],
the above formula can be followed by

E
f ðxþ DnÞ � f ðxÞ

Dn

�
df

dx
ðxÞ

� �2

¼

Z 1
�1

f ðxþ DnÞ � f ðxÞ

Dn

�
df

dx

� �2

jðxÞ dx

o�2
Z 1
�1

jðxÞ dx ¼ �2,

where jðxÞ is the density function of random variable x.
Thus (2.6) is proved to be valid. The proof is completed.

Similar to the derivative of real-valued function, the
derivative given in Definition 2.2 has the following simple
properties.

Theorem 2.2. Let x be a random variable, f ðxÞ and gðxÞ be

two real differentiable functions, and c1, c2 be two real

constants. Then the following equalities hold:

ðiÞ ðc1f ðxÞ þ c2gðxÞÞ
0
¼ c1f

0
ðxÞ þ c2g

0ðxÞ, (2.7)

ðiiÞ ðf ðxÞ � gðxÞÞ0 ¼ f 0ðxÞ � gðxÞ þ f ðxÞ � g0ðxÞ, (2.8)

where the derivatives are given by Definition 2.1.

Theorem 2.2 can be easily proved based on Theorem 2.1
according to the properties of the derivative of real-valued
function.

Definition 2.2 can be easily extended to the case of
multiple variables.

Definition 2.3. Let x1; x2; . . . ; xn be n random variables defi-
ned on a probability space ðO;A;PÞ and f ðx1;x2; . . . ;xnÞ be
a real differentiable function. Replacing the ith real
variable xi with random variable xi inside f for each
ið1pipnÞ, we can construct a series of random variables

tn ¼
f ðx1; . . . ; xi þ Dn; . . . ; xnÞ � f ðx1; . . . ; xi; . . . ; xnÞ

Dn

(2.9)

for any fixed real sequence fDnjDna0; n ¼ 1; 2; . . .g con-
verging to 0. If there exists a random variable t such
that the sequence ftng converges in probability to t, then
we call the random variable t as the partial derivative

of f ðx1; x2; . . . ; xnÞ with respect to xi, denoted by
f 0ðiÞðx1; x2; . . . ; xnÞ, in short, f 0ðiÞ.

Similar to Theorem 2.1, we have the following Theorem 2.3.

Theorem 2.3. Let x1; x2; . . . ; xn be n random variables and

f ðx1;x2; . . . ;xnÞ be a real differentiable function. Then we

have:

f 0ðiÞðx1; x2; . . . ; xnÞ ¼
df

dxi

ðx1; x2; . . . ; xnÞ, (2.10)

where the left is defined as Definition 2.3 and the right means

that the real variables x1;x2; . . . ;xn inside the real function

df/dxi are replaced with the random variables x1; x2; . . . ; xn

respectively.

Proof. Similar to the proof of Theorem 2.1.
3. Extending Zurada’s sensitivity from real variables

to random variables

Based on the definitions and theorems proposed in
Section 2, we can generalize the sensitivity Definition 2.2 by
giving the following Definition 3.1.

Definition 3.1. Consider a trained differential feedforward
neural network in which the inputs are random variables
x1; x2; . . . ; xn. The mean square average sensitivity vector is
defined as ðs1; s2; . . . ; snÞ where

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ðf 0ðiÞÞ

2
h ir

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
ðf 0ðiÞðx1;x2; . . . ; xnÞÞ

2dF ðx1;x2; . . . ;xnÞ

s
, ð3:1Þ

where F ðx1; x2; . . . ;xnÞ denotes the joint distribution of
random variables ðx1; x2; . . . ; xnÞ.

It is noted that Eq. (3.1) can be estimated on a sample
set (training set). According to parameter estimation
theory in mathematical statistics [8], (2.2) can be the
best estimation of (3.1) over the training set D ¼

fða
ðjÞ
1 ; a

ðjÞ
2 ; . . . ; a

ðjÞ
n Þjj¼1;2;...;Ng when the distribution of

ðx1; x2; . . . ; xnÞ is never considered. But generally, the
computation of (3.1) will depend on the joint distribution
of ðx1; x2; . . . ; xnÞ. In this sense, our definitions (3.1) indeed
generalizes (2.2) given by Zurada et al. in [6].
For one certain differential feedforward neural network,

the calculating formulae of Eq. (3.1) are expected to be
explicitly derived when the joint distribution is known. For
illustration, we just deduce the sensitivity calculating
formulae for one trained RBFNN in case that the random
variables are independently and normally distributed.

3.1. Sensitivity measure of RBFNN with one output

As a feed-forward network performing a nonlinear and
real differentiable mapping, a trained RBFNN can be
expressed as follows:

f ðx1;x2; . . . ;xnÞ ¼ Sm
j¼1wj exp

Sn
i¼1ðxi � ujiÞ

2

�2v2j

 ! !
, (3.2)

where n is the number of features (i.e. the number of
dimensions of input vector), m the number of centers,
ðuj1; uj2; . . . ; ujnÞ the jth center, vj the spread of the jth
center, and wj the weight of the output layer,
j ¼ 1; 2; . . . ;m. The derivative of the network to the ith
variable is as following:

qf

qxi

¼
Xm

j¼1

wj exp
Sn

k¼1ðxk � ukjÞ
2

�2v2j

 !
xi � uij

�v2j

 !
. (3.3)

Consider all inputs of a RBFNN as random variables
x1; x2; . . . ; xn. According to Theorem 2.3, after replacing the



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–15261518
real variables x1; x2; . . . ;xn in Eq. (3.3) with random
variables x1; x2; . . . ; xn, we can get the following partial
derivative:

f 0ðiÞ ¼
Xm

j¼1

wj exp
Sn

k¼1ðxk � ukjÞ
2

�2v2j

 !
xi � uij

�v2j

 !
. (3.4)

Theorem 3.1. Suppose that random variables x1; x2; . . . ; xn

are independently and normally distributed with mean

ðm1; m2; . . . ; mnÞ and variances ðs21; s
2
2; . . . ;s

2
nÞ. Then the mean

square average sensitivity defined by (3.1) has the following

computational formula:

E½ðf 0ðiÞÞ
2
� ¼

Xm

j¼1

Xm

t¼1

wjwt

s2i
ai

þ
1

v2j v2t

bi

ai

� uij

� �
bi

ai

� uit

� � !

�
Yn

k¼1

vjvtffiffiffiffiffi
ak
p exp �

1

2

ðck � b2
kÞ=ak

v2j v2ts
2
k

 ! !" #

i ¼ 1; 2; . . . ; n, ð3:5Þ

where

ak ¼ v2ts
2
k þ v2j s

2
k þ v2j v2t ,

bk ¼ v2ts
2
kukj þ v2j s

2
kukt þ v2j v2t mk,

ck ¼ v2ts
2
ku2

kj þ v2j s
2
ku2

kt þ v2j v2t m
2
k.

The proof is placed in Appendix A.

Definition 3.1 shows that the new sensitivity measure
given by Definition 3.1 has extended the sensitivity measure
given by Zurada et al. in [6]. The extension is achieved by
considering all real inputs as random variables. Theorem
3.1 shows that for RBFNNs the computational formula of
the sensitivity magnitude depends only on the numerical
characteristics such as means and variances of the inputs
(which are random variables). Since the means and
variances of a random variable can be easily estimated
from a given training set, formula (3.5) is easy to
implement. One key point required to note is that the
formula (3.5) is data-driven. It means that we can compute
the sensitivity of a feature for the RBFNN once the dataset
is given explicitly. Another key point is that the sensitivity
definition given by (3.1) is independent of the perturbation
of variables. There will not exist such a case that a feature
has sensitivity a for a perturbation but has sensitivity
bðaaÞ for another perturbation.

In comparison with the sensitivity measure given in [6],
we list the following differences and similarities.
(1)
 This paper investigates only one type of feed-forward
neural networks, i.e., RBFNNs while paper [6] in-
vestigates the general feed-forward neural networks.
(2)
 The network outputs in this paper are reduced into one
value for simplicity while the paper [6] handles the
multi-valued output.
(3)
 All real inputs of the network in [6] are here replaced
with random variables.
(4)
 The sensitivity measure is based on the joint distribu-
tion of random input-variables instead of the training
data.
(5)
 When the distribution information of the random
inputs is not considered, the sensitivity estimation over
a training set will degenerate to the case given in [6].
(6)
 Both sensitivity measures can be used for redundant
feature deletion or feature selection of a feed-forward
neural network.
(7)
 The computational complexity of the sensitivity mea-
sure proposed in this paper is Oðn�m2Þ but the
corresponding complexity in [6] is OðN � n2 �mÞ.
(8)
 With different distributions of the inputs, the sensitivity
formulae (3.5) will change. The calculating formulae
would be derived correspondingly.
Unfortunately, for the above item (8), when the random
variables are non-Gaussian distribution, the calculating
formulae are usually very difficult to derive, or very
complex. For example, when the random variables are
uniform distribution, the calculating formula (3.1) is (B.1),
which can be found in Appendix B (the formula also
illustrates the changes go with different distribution). To
deal with this situation, we can recur to the approximation
of the sensitivity measure (3.1) on the training set.
Given the training dataset D ¼ fða

ðjÞ
1 ; a

ðjÞ
2 ; . . . ; a

ðjÞ
n Þjj¼1;2;...;Ng

the sensitivities can be estimated on the training dataset,
taking the distribution into consideration. The sensitivity
formula of ith feature of the network (3.1) can be rewritten as

s2i ¼ E ðf 0ðiÞÞ
2

h i
¼

Z
ðf 0ðiÞðx1;x2; . . . ;xnÞÞ

2 dF ðx1;x2; . . . ;xnÞ. ð3:6Þ

Assuming the random variables are all independently and

continuously distributed, Eq. (3.6) can go a further step:

s2i ¼

Z 1
�1

� � �

Z 1
�1

ðf 0ðiÞðx1;x2; . . . ;xnÞÞ
2 dF ðx1;x2; . . . ;xnÞ

¼

Z 1
�1

� � �

Z 1
�1

ðf 0ðiÞðx1;x2; . . . ;xnÞÞ
2
Yn

k¼1

jðxkÞdx1 dx2 . . . dxn,

ð3:7Þ

where jðxiÞ ð1pipnÞ is the density function of the ith
feature. This integration can be approximated by

s2i ¼

Z 1
�1

� � �

Z 1
�1

ðf 0ðiÞðx1; x2; . . . ; xnÞÞ
2
Yn

k¼1

jðxkÞdx1 dx2 . . . dxn

¼
XN

j¼1

ðf 0ðiÞðx
j
1; x

j
2; . . . ; x

j
nÞÞ

2
Yn

k¼1

jðxj
kÞ dsj, ð3:8Þ

where ðx
j
1;x

j
2; . . . ;x

j
nÞðj ¼ 1; 2; . . . ;NÞ is the jth pattern of

the whole dataset, N is the number of the dataset,
dsi ¼ ðb1 � a1Þðb2 � a2Þ . . . ðbn � anÞ=N, ai ¼ minfx

j
i ; j ¼ 1;

2; . . . ;Ng, bi ¼ maxfx
j
i ; j ¼ 1; 2; . . . ;Ngð1pipnÞ.



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–1526 1519
3.2. Sensitivity measure of RBFNN with multiple outputs

Considering an RBFNN with multiple outputs, the
sensitivity measure can be calculated similarly to the mea-
sure for single output network. Assuming that the RBFNN
has s outputs, then the output vector of the network can be
expressed by ðy1; y2; . . . ; ysÞ. Let wk ¼ ðwk1;wk2; . . . ;wknÞ

T

be the kth weight vector connected to the kth output. Thus,
each output can be calculated by

yk ¼
Xm

j¼1

wkj exp

Pn
i¼1ðxi � ujiÞ

2

�2v2j

 ! !
; k ¼ 1; 2; . . . ; s.

In this situation, the partial derivatives of the network
with respect to the input xi are denoted by the vector
qy1=qxi; qy2=qxi; . . . ; qys=qxi

� 
. The derivatives can be

denoted by Eq. (3.3) via replacing the wj with wkj . That is

qyk

qxi

¼
Xm

j¼1

wkj exp

Pn
k¼1ðxk � ukjÞ

2

�2v2j

 !

�
xi � uij

�v2j

 !
; k ¼ 1; 2; . . . ; s.

According to Theorem 3.1, the expectation of the
derivative vector

ei ¼ E
qy1

qxi

� �
; E

qy2

qxi

� �
; . . . ; E

qys

qxi

� �� �

can be calculated by Eq. (3.5). We would like to measure
the sensitivity of the network with respect to the input by a
real number, not by a vector. There are many ways to
measure the vector, for example, the following three types:
(1)
 Length of the vector: si ¼ eik k. � � � �n

(2)
 Maximum of the vector: si ¼ max E

qy1
qxi

; E
qy2
qxi

; . . . ;

E
qys

qxi

� �o
: � � � �n
(3)
 Minimum of the vector: si ¼ min E
qy1
qxi

;E qy2
qxi

; . . . ;

E
qys

qxi

� �o
:

Thus it gives the sensitivity measure of the multiple-
output network with respect to each input.

4. Simulation and comparison

4.1. Pretreatment

It is noted that the sensitivity measure (3.1) depends on
the joint distribution. In practice, various situations will be
encountered. Therefore pretreatment of the given informa-
tion is needed for numerical simulations. The situations
encountered are perhaps classified into three cases.
Different pretreatment is carried out for different cases.
�
 A complete sample dataset is available and its distribu-
tion is supposed to be known. In this ideal case, Eq. (3.5)
(for normal distribution) or another formula (for
another distribution) can be applied directly. For
simulation, the distribution mean and variance will be
got directly from the distribution. The training dataset
composed of N samples will be drawn according to the
distribution.

�
 A complete sample dataset is available, but its distribu-

tion is unknown. In this case, based on statistical
estimation theory, we may first assume the variable obey
some distribution (such as poisson, exponent, normal-
ity), then use the database to test the hypotheses, and
finally decide whether the hypotheses of the distribution
can be receivable or not. The calculating formula will be
derived according to the gained distribution informa-
tion. For simulation, the training dataset will be the
given sample dataset. The distribution mean and
variance will be given by the sample mean and variance
based on the training dataset.

�
 A sample dataset is not available but only the empirical

mean and variance are given. In this case, if no any
additional information is available, we are mere to
suppose a normal distribution and use formula Eq. (3.5)
by substituting empirical mean and variance for
distribution mean and variance within Eq. (3.5), and
then convert to the first case. That is, for simulation, the
distribution mean and variance will be got directly from
the distribution and the training dataset composed of N

samples will be drawn according to the distribution.

4.2. Rule for selecting the redundant features

We use a simulation to approximate a real function to
show the feasibility and effectiveness of our proposed
sensitivity measure application to redundant feature
reduction.
Let f ðx1;x2; . . . ;xnÞ be a given real differentiable

function with n real variables, and ðx1; x2; . . . ; xnÞ be n

independently distributed random variables. Their mathe-
matical expectations ðm1; m2; . . . ; mnÞ and variances ðs21;s

2
2;

. . . ;s2nÞ can be obtained from their distribution informa-
tion. Consider the random variable f ðx1; x2; . . . ; xnÞ. Ob-
viously the equality s2j ¼ 0 (for some certain j) implies that
the jth variable xj will take the constant value mj. The
constant in a (random) function has no important impact
on the function’s structure and properties. Therefore, we
can regard the variable (feature) being constant in a
function as redundant. Based on this idea, we can think
that a random variable (feature) with very small variance is
considered as redundant.
Training patterns (training data set) can be drawn from

the random variable f x1; x2; . . . ; xnð Þ. Suppose that the N

drawn patterns are represented as

ðxij j ¼ 1; 2; . . . ; n;
�� yiÞ; i ¼ 1; 2; . . . ;N,

where ðxi1;xi2; . . . ;xinÞ is a sample coming from the distri-
bution of random variable xi and yi ¼ f ðx1; x2; . . . ; xnÞ. If xi

has a very small variance, then according to the above
discussions we consider it as a redundant feature.



ARTICLE IN PRESS

Table 1

Feature sensitivities by two sensitivity measures

Feature Sensitivity Gap

(a) Sensitivity by (3.5)

6 0.008718 1.0008

9 0.008725 1.0008

3 0.008732 143.32

2 1.2514 1.0757

5 1.3461 1.0396

4 1.3995 1.2312

10 1.723 1.0934

7 1.8839 1.1712

1 2.2063 3.2277

8 7.1213 0

(b) Sensitivity by (2.2)

3 0.10606 1.5777

6 0.16733 1.1615

9 0.19434 2.1335

2 0.41463 1.0699

4 0.44361 1.0878

5 0.48257 1.3988

10 0.67501 1.0226

7 0.69025 1.256

1 0.86692 1.9199

8 1.6644 0

X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–15261520
Using the N drawn patterns, we can train a network to
approximate the function f ðx1;x2; . . . ;xnÞ. Suppose that
some features have very small variances and therefore are
determined as redundant for the function f ðx1;x2; . . . ;xnÞ.
The problem is whether we can detect these redundant
features by using our sensitivity formula of networks.

When the network training is done, we select the criteria
for pruning inputs similar to the criteria mentioned in [6].

First, we calculate sensitivities of all features according
to the corresponding formulae. Those sensitivities are then
ranked in ascending order,

SðiÞpSðiþ1Þ; i ¼ 1; 2; . . . ; n� 1.

Second, calculate the sensitivity gap between the two
neighbor features,

gi ¼
Sðiþ1Þ

SðiÞ
; i ¼ 1; 2; . . . ; n� 1.

Then find the largest gap gimax
and the second largest gap

gimax II
. If gimax

is much bigger than gimax II
, i.e. Cgimax

4gimax II
,

where C is chosen arbitrarily within the reasonable range,
e.g. C ¼ 0.5, the features whose sensitivities are smaller
than SðimaxÞ are thus selected to the pruning candidate
inputs.

Given a real differentiable function f ðx1;x2; . . . ;xnÞ with
n real variables and a random vector ðx1; x2; . . . ; xnÞ

following some known distribution, we now list our
experimental procedure as follows.

Step 1: Get N patterns according to the pretreatments
mentioned in Section 4.1.
Step 2: Get the mathematical expectations and the
variances for all features.
Step 3: Compute the target output according to the
function f ðx1; x2; . . . ; xnÞ for each pattern.
Step 4: Construct one network and train it with the N

drawn patterns and their target outputs.
Step 5: Calculate the sensitivities according to the
corresponding formulae.
Step 6: Sort the sensitivities in ascending order.
Step 7: Calculate the sensitivity gap of the sorted
features.
Step 8: Find the largest gap gimax

and the second largest
gap gimax II

.
Step 9: Determine the candidate features for deletion
according to the pruning criteria mentioned above.
Step 10: Delete the candidate features and check the
testing accuracy.

4.3. Simulations

Following the experiment procedure steps 1–10, a
number of experiments have been conducted to illustrate
the new sensitivity measure application to feature reduc-
tion. Here we report the experimental results related to the
approximation problem using one RBFNN and the
comparison with sensitivity measure proposed in [6]. The
sensitivity is calculated according to (3.5).
Consider the following function:

f ¼ sinðtanðx2
1Þ � x2x3Þ � x4x5

þ expðx6 sin x7 þ x8Þ þ x9 � x3
10 ð4:1Þ

which is the function we will construct one RBFNN to
approximate. There are 10 features in the function. We can
assume some of them to have very small variance.
Therefore, according to the above discussion, these
features are considered as redundant features existing in
the dataset.
For example, x3, x6 and x9 are assumed to have very

small variance (0.001). Based on a joint normal distribution
where x3, x6 and x9 have very small variances, we can
randomly draw 200 patterns for training and 50 patterns
for testing and then construct a RBFNN to approximate
the given function (4.1). The simulation is then conducted
according to the above procedure steps (1)–(10) where the
sensitivities for inputs are calculated by the formulae both
(3.5) and (2.2), respectively. The intermediate results of the
experiment are show in Table 1 where (a) is the experi-
mental results by formula (3.5) and (b) is by formula (2.2).
The parameter C in the experiments is set to be C ¼ 0.5.

The numbers in bold are the largest gaps and the numbers
in italic are the second largest gaps. From (a), we can get
gimax II

=gimax
¼ 0:022521o0:5. Thus the first three features

are selected to be the pruning candidates. After deleting the
three features, the network keeps the testing accuracy
MSE ¼ 6.3061 the same as before deletion. From (b), we
can get gimax II

=gimax
¼ 0:899940:5. Thus no feature can be



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–1526 1521
pruned. Correspondingly, we get the comparison results of
feature selection shown in bold in the first row of Table 2.
In this sense, the measure of sensitivity by using formula
(3.5) is more meaningful than by using (2.2).

One may argue that the method given by sensitivity (2.2)
also can delete the three redundant features if we choose
the parameter C ¼ 0.02. It is right. But such a selection of
the parameter C is too ad hoc. It seems to be unrealistic.
One can mention that the order of features’ sensitivity in
(a) is almost same as in (b), but the largest gap in (a) is
more significant than in (b). This may result from the fact
that all simulation data are drawn according to normal
distributions.

Similarly, we assume different groups of features being
the redundant features existing in the dataset. The final
comparing results are shown in Table 2. Due to the
randomly drawn data and the trained RBFNN, we get
different results for selecting the same group of redundant
features. However, it can be still seen that the new
proposed measure of sensitivity performs better than the
measure proposed by Zurada et al in [6].

4.4. Experimental results on realistic applications

In this section, we applied the sensitivity measure to 4
realistic or benchmark datasets to check the effectiveness of
the sensitivity formula Eq. (3.5) for deleting redundant
attributes in RBFNNs. Intelligent Image-Text Processing
dataset is obtained from the Intelligent Image-Text
Processing Lab of Hebei University [17]. It is to recognize
the font of a given text image. By Gobar filtering, a text
image can yield a 24-dimensional real vector. Totally, there
are 4 font classes. A RBFNN is trained on the dataset to
help recognize the font of a given vector. Another 3
datasets (MPG, Pima, and Breast Cancer) are selected
from the frequently-used UCI machine learning repository.

The experiments are conducted according to the follow-
ing steps. (n is the number of the attributes and s is the
number of the classes.)

Step 1: Split the dataset into 2 parts randomly, 70% for
training and 30% for testing.
Table 2

Features selected using the sensitivity analysis based on different measures

Redundant features existing By measure (2.2)

Number of deleted features Dele

3,6,9 3 6,3,9

3,6,9 0 Non

2,9 2 2,9

3,5,7,9 0 Non

1,3,5,7 4 1,7,5

2,3,5 0 Non

2,3,5 3 3,2,5
Step 2: Train an RBFNN with n inputs and s outputs by
BP algorithm.
Step 3: Test the trained RBFNN.
Step 4: Compute the sensitivity for each of the n

attributes.
Step 5: Delete the redundant attributes determined by
the rule given in Section 4.2.
Step 6: Re-train an RBFNN with the remaining inputs
and s outputs by BP algorithm.
Step 7: Re-test the new RBFNN.
Step 8: Repeat the above steps 10 times and take the
average of training and testing accuracy.

The deleted redundant attributes change with different
splits of the datasets. For example, we consider the first
dataset, Intelligent Image-Text Processing dataset. During
the 10 experiments, attributes 2, 6, and 21 are deleted 8
times, and attributes 3 and 20 are deleted 6 times. It is
worth noting that, for each experiment, there is a little
difference among the selected redundant features, and
therefore, we take the averaged training/testing accuracy in
Step 8 above.
The averaged training and testing accuracy before and

after deleting the selected redundant attributes is summar-
ized in Table 3. The experimental results indicate that the
testing accuracy has not decreased after deleting attributes
with small sensitivities. They illustrate the effectiveness of
the new sensitivity measure to feature selection.

5. Conclusion

Sensitivity analysis of the input is an efficient way to
simplify the structure of neural networks, especially the
structure of RBFNNs. The sensitivity-based feature selec-
tion (redundant feature deletion) can improve the struc-
ture, performance, calculating time, etc. of the network.
Zurada et al. in [6] proposed a practical and popular

measure of sensitivity that is defined as a matrix of the
partial derivatives of the network output to its inputs. The
sensitivity of each input is evaluated based on the entire
training and testing data set. The largest gap is used in the
pruning criteria.
By new measure (3.5)

ted features Number of deleted features Deleted features

3 6,9,3

e 3 6,9,3

2 2,9

e 1 7

,3 4 1,7,5,3

e 3 5,3,2

3 3,2,5



ARTICLE IN PRESS

Table 3

Averaged training and testing accuracy

Datasets Training accuracy Testing accuracy

Before deleting After deleting Before deleting After deleting

Image-text processing 0.96 0.95 0.95 0.97

MPG 0.8167 0.7916 0.7071 0.7518

Pima 0.7412 0.7420 0.7128 0.7516

Breast cancer 0.9764 0.9875 0.9211 0.9385

X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–15261522
In this paper, we started with proposing the definition of
derivative of one function with a random variable based on
the concept of convergence in probability. The derivative in
the probability measure space has been proved to have the
same form as the real space. That is, the derivative in the
probability space is obtained by replacing the real variables
with the random variables inside the real derivative
formula. The definition of derivative is extended easily to
the partial derivatives in the probability measure space.
Taking inputs of the network as random variables, this
paper extends the sensitivity measure in [6] from the real
space to the probability measure space. The sensitivity
formulae are deduced for RBFNNs as (3.5) which depends
only on the numerical characteristics of the input random
variables with normal distribution. Simulations are con-
ducted to illustrate the effectiveness and universality of the
sensitivity analysis for RBFNNs in the probability measure
space. The pruning criteria are similar to that in [6] for the
purpose of comparison.
It is noted that the sensitivity formula (3.5) is deduced

based on the normally distributed variables. If the
distribution changes, we may deduce the different forms
of sensitivity formulae.
Acknowledgments

This paper is supported by National Natural Science
Foundation of China (Project No. 60473045) and Hebei
Province High Technology Project (Project No. 04213533).
The second author would like to deliver her sincere

appreciation to her colleague Zhang Hui for his helpful
suggestions. Thank Li Qian for her further experiment
conduction.
Appendix A. Proof of Theorem 4.1

From (4.1), we can obtain

ðf 0ðiÞÞ
2
¼

Xm

j¼1

wj exp
Sn

k¼1ðxk � ukjÞ
2

�2v2j

 !
xi � uij

�v2j

 ! !2

¼
Xm

j¼1

Xm

t¼1

wjwt exp �
1

2

Sn
k¼1ðxk � ukjÞ

2

v2j
�

1

2

Sn
k¼1ðxk � uktÞ

2

v2t

 !
�

xi � uij

� 
xi � uitð Þ

v2j v2t

 !

¼
Xm

j¼1

Xm

t¼1

wjwt

ðxi � uijÞðxi � uitÞ

v2j v2t

 !
� exp

Xn

k¼1

�
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !

¼
Xm

j¼1

Xm

t¼1

wjwt

ðxi � uijÞðxi � uitÞ

v2j v2t

 !
�
Yn

k¼1

exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !
.

Notice that the random variables x1; x2; . . . ; xn are independent, we have

E ðf 0ðiÞÞ
2

h i
¼ E

Xm

j¼1

Xm

t¼1

wjwt

ðxi � uijÞðxi � uitÞ

v2j v2t

 !"

�
Yn

k¼1

exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !#



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–1526 1523
¼
Xm

j¼1

Xm

t¼1

wjwtE
ðxi � uijÞðxi � uitÞ

v2j v2t

 !"

� exp �
1

2

ðxi � uijÞ
2

v2j
þ
ðxi � uitÞ

2

v2t

 ! !#

�
Yn

k¼1;kai

E exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !" #
.

Recalling that the random vector (i.e., all of the random variables) is normally distributed with means ðm1;m2; . . . ; mnÞ and
variances ðs21;s

2
2; . . . ;s

2
nÞ, the density function is

f xk
ðxkÞ ¼

1ffiffiffiffiffiffi
2p
p

sk

exp �
1

2

ðxk � mkÞ
2

s2k

� �
.

Considering
R1
�1

f ðxkÞ dxk ¼ 1 holds true for any density function, we get

E exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !" #

¼
1ffiffiffiffiffiffi
2p
p

sk

Z 1
�1

exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !
exp �

1

2

ðxk � mkÞ
2

s2k

� �
dxk

¼
1ffiffiffiffiffiffi
2p
p

sk

Z 1
�1

exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t
þ
ðxk � mkÞ

2

s2k

 ! !
dxk

¼
1ffiffiffiffiffiffi
2p
p

sk

Z 1
�1

exp �
1

2

v2ts
2
kðxk � ukjÞ

2
þ v2j s

2
kðxk � uktÞ

2
þ v2j v2t ðxk � mkÞ

2

v2j v2t s
2
k

 ! !
dxk. ðA:1Þ

Consider the term above the line in the fraction inside integral (A.1), we have

v2t s
2
kðxk � ukjÞ

2
þ v2j s

2
kðxk � uktÞ

2
þ v2j v2t ðxk � mkÞ

2

¼ v2t s
2
kðx

2
k � 2xkukj þ u2

kjÞ þ v2j s
2
kðx

2
k � 2xkukt þ u2

ktÞ þ v2j v2t ðx
2
k � 2xkmk þ m2kÞ

¼ x2
kðv

2
ts

2
k þ v2j s

2
k þ v2j v2t Þ � 2xkðv

2
ts

2
kukj þ v2j s

2
kukt þ v2j v2t mkÞ þ ðv

2
ts

2
ku2

kj þ v2j s
2
ku2

kt þ v2j v2tm
2
kÞ

¼ akx2
k � 2bkxk þ ck

¼ ak xk �
bk

ak

� �2

þ ck �
b2

k

ak

,

where

ak ¼ v2ts
2
k þ v2j s

2
k þ v2j v2t ,

bk ¼ v2ts
2
kukj þ v2j s

2
kukt þ v2j v2t mk,

ck ¼ v2ts
2
ku2

kj þ v2j s
2
ku2

kt þ v2j v2t m
2
k.

Replace the corresponding terms in (A.1) with ak; bk; ck, we get

E exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !" #

¼
1ffiffiffiffiffiffi
2p
p

sk

Z 1
�1

exp �
1

2

akðxk � ðbk=akÞÞ
2
þ ck � ðb

2
k=akÞ

v2j v2t s
2
k

 ! !
dxk



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–15261524
¼
1ffiffiffiffiffiffi
2p
p

sk

Z 1
�1

exp �
1

2

ðxk � ðbk=akÞÞ
2

v2j v2ts
2
k=ak

 !
�

1

2

ck � ðb
2
k=akÞ

v2j v2t s
2
k

 ! !
dxk

¼
vjvtffiffiffiffiffi

ak
p exp �

1

2

ck � ðb
2
k=akÞ

v2j v2t s
2
k

 ! !
1ffiffiffiffiffiffiffiffiffiffi

2pak

p
vjvtsk

Z 1
�1

exp �
1

2

ðxk � ðbk=akÞÞ
2

v2j v2t s
2
k=ak

 ! !
dxk

¼
vjvtffiffiffiffiffi

ak
p exp �

1

2

ck � ðb
2
k=akÞ

v2j v2t s
2
k

 ! !
. ðA:2Þ

Now, we evaluate the following mathematical expectation:

E
ðxi � uijÞðxi � uitÞ

v2j v2t

 !
exp �

1

2

ðxi � uijÞ
2

v2j
þ
ðxi � uitÞ

2

v2t

 ! !" #

¼
1ffiffiffiffiffiffi
2p
p

si

Z 1
�1

ðxi � uijÞðxi � uitÞ

v2j v2t

 !
exp �

1

2

ðxi � uijÞ
2

v2j
þ
ðxi � uitÞ

2

v2t

 ! !

� exp �
1

2

ðxi � miÞ
2

s2i

� �
dxi

¼
vjvtffiffiffiffi

ai
p exp �

1

2

ci � ðb
2
i =aiÞ

v2j v2ts
2
i

 ! !
1ffiffiffiffiffiffiffiffiffi

2pai

p
vjvtsi

Z 1
�1

ðxi � uijÞðxi � uitÞ

v2j v2t

 !
exp �

1

2

xi � ðbi=aiÞ
� 2

v2j v2t s
2
i =ai

 ! !
dxi

¼
1

vjvt
ffiffiffiffi
ai
p exp �

1

2

ci � ðb
2
i =aiÞ

v2j v2ts
2
i

 ! !
1ffiffiffiffiffiffiffiffiffi

2pai

p
vjvtsi

Z 1
�1

ðx2
i � ðuij þ uitÞxi þ uijuitÞ exp �

1

2

ðxi � ðbi=aiÞÞ
2

v2j v2ts
2
i =ai

 ! !
dxi

¼
1

vjvt
ffiffiffiffi
ai
p exp �

1

2

ci � ðb
2
i =aiÞ

v2j v2ts
2
i

 ! !
ðAþ Bþ CÞ,

where

A ¼
1ffiffiffiffiffiffiffiffiffi

2pai

p
vjvtsi

Z 1
�1

x2
i exp �

1

2

xi � ðbi=aiÞ
� 2

v2j v2t s
2
i =ai

 ! !
dxi

¼
v2j v2t s

2
i

ai

þ
bi

ai

� �2

,

B ¼ � ðuij þ uitÞ
1ffiffiffiffiffiffiffiffiffi

2pai

p
vjvtsi

Z 1
�1

xi exp �
1

2

xi � ðbi=aiÞ
� 2

v2j v2t s
2
i =ai

 ! !
dxi ¼ �ðuij þ uitÞ

bi

ai

,

C ¼
1ffiffiffiffiffiffiffiffiffi

2pai

p
vjvtsi

Z 1
�1

uijuit exp �
1

2

xi � ðbi=aiÞ
� 2

v2j v2ts
2
i =ai

 ! !
dxi ¼ uijuit.

It is followed by

E
ðxi � uijÞðxi � uitÞ

v2j v2t

 !
exp �

1

2

ðxi � uijÞ
2

v2j
þ
ðxi � uitÞ

2

v2t

 ! !" #

¼
1

vjvt
ffiffiffiffi
ai
p exp �

1

2

ci � ðb
2
i =aiÞ

v2j v2ts
2
i

 ! !
v2j v2ts

2
i

ai

þ
bi

ai

� �2

� ðuij þ uitÞ
bi

ai

þ uijuit

 !

¼
1

vjvt
ffiffiffiffi
ai
p exp �

1

2

ci � ðb
2
i =aiÞ

v2j v2ts
2
i

 ! !
v2j v2ts

2
i

ai

þ
bi

ai

� uij

� �
bi

ai

� uit

� � !
. ðA:3Þ



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–1526 1525
Replacing the corresponding items in E ðf 0ðiÞÞ
2

h i
with (A.2) and (A.3), we then get

E ðf 0ðiÞÞ
2

h i
¼
Xm

j¼1

Xm

t¼1

wjwtE
ðxi � uijÞðxi � uitÞ

v2j v2t

 !"

� exp �
1

2

ðxi � uijÞ
2

v2j
þ
ðxi � uitÞ

2

v2t

 ! !# Yn

k¼1;kai

E exp �
1

2

ðxk � ukjÞ
2

v2j
þ
ðxk � uktÞ

2

v2t

 ! !" #

¼
Xm

j¼1

Xm

t¼1

wjwt

1

vjvt
ffiffiffiffi
ai
p exp �

1

2

ci � ðb
2
i =aiÞ

v2j v2t s
2
i

 ! !
v2j v2ts

2
i

ai

þ
bi

ai

� uij

� �
bi

ai

� uit

� � !

�
Yn

k¼1;kai

vjvtffiffiffiffiffi
ak
p exp �

1

2

ck � ðb
2
k=akÞ

v2j v2ts
2
k

 ! !" #

¼
Xm

j¼1

Xm

t¼1

wjwt

1

v2j v2t

v2j v2ts
2
i

ai

þ
bi

ai

� uij

� �
bi

ai

� uit

� � !Yn

k¼1

vjvtffiffiffiffiffi
ak
p exp �

1

2

ck � ðb
2
k=akÞ

v2j v2ts
2
k

 ! !" #

¼
Xm

j¼1

Xm

t¼1

wjwt

s2i
ai

þ
1

v2j v2t

bi

ai

� uij

� �
bi

ai

� uit

� � !Yn

k¼1

vjvtffiffiffiffiffi
ak
p exp �

1

2

ck � ðb
2
k=akÞ

v2j v2t s
2
k

 ! !" #

which shows that formula (3.5) given in Theorem 4.1 is correct, and therefore, completes the proof.

Appendix B. The calculating formulae of uniformly distributed random variables

Given independently and uniformly distributed random variables x1; x2; . . . ; xn, the density function is respectively given by

jðxkÞ ¼

1
f k�ek

; ek � xk � f k

0; else

(
1pkpn.

The sensitivity defined by (3.1) is as the following:

E ðf 0ðiÞÞ
2

h i
¼
Xm

j¼1

Xm

t¼1

wjwtAi

Yn

k¼1;kai

Ak, (B.1)

where

Ak ¼
1

f k � ek

exp �
1

2
ðu2vÞjt � vjtððuvÞjtÞ

2
� �� �

�

h
2

exp � 1
2

vjtðek � ðuvÞjtÞ
2

� �� �
þ exp � 1

2
vjtðf k � ðuvÞjtÞ

2
� �� �

þ2
PN�1
l¼1

exp � 1
2

vjtðek þ lh� ðuvÞjtÞ
2

� �� �
2
6664

3
7775

� Nh3

12
2vjtðdk � ðuvÞjtÞ

2
� 2

� �
exp � 1

2
vjtðdk � ðuvÞjtÞ

2
� �� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð1pkpn; kaiÞ,

Ai ¼
1

v2j v2t ðf i � eiÞ
exp �

1

2
ðu2vÞjt � vjtððuvÞjtÞ

2
� �� �

�

h
2

ðei � uijÞðei � uitÞ exp �
1
2

vjtðek � ðuvÞjtÞ
2

� �� �
þ ðf i � uijÞðf i � uitÞ exp �

1
2

vjtðf k � ðuvÞjtÞ
2

� �� �

þ2
PN�1
l¼1

ðei þ lh� uijÞðei þ lh� uitÞ exp �
1
2

vjtðek þ lh� ðuvÞjtÞ
2

� �� �
2
6664

3
7775

� lh3

12
exp � 1

2
vjtðxi � ðuvÞjtÞ

2
� �� � �vjtx

3
i þ x2

i ð�vjtÞð2� ðuij þ uitÞ � vjtÞ

þxið2� vjtuijuit � ðuvÞjt þ ðvjt � ðuvÞjtÞðuij þ uitÞ � ðvjtÞ
2
ðuvÞjtÞ

�vjtðuvÞjtðuijuit � ðuij þ uitÞ þ ðuvÞjtÞ þ ð2� ðuij þ uitÞ � vjtÞ

2
6664

3
7775

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,

vjt ¼
v2tþv2j
v2

j
v2t
; ðuvÞjt ¼

v2t ukjþv2j ukt

v2tþv2
j

, ðu2vÞjt ¼
v2t u2

kj
þv2

j
u2

kt

v2tþv2
j

. The above formula holds for some dk 2 ½ek; f k� ð1pkpnÞ [15].



ARTICLE IN PRESS
X.-Z. Wang et al. / Neurocomputing 71 (2008) 1515–15261526
References

[1] A. Alexandridis, H. Sarimveis, G. Bafas, A new algorithm for online

structure and parameter adaptation of RBF networks, Neural

networks 16 (2003) 1003–1017.

[2] N.B. Karayiannis, Reformulated radial basis neural networks trained

by gradient decent, IEEE Transactions on Neural Networks 10 (3)

(1999) 657–671.

[3] X. Wang, C. Li, A new definition of sensitivity for RBFNN and its

applications to feature reduction, in Second International Sympo-

sium on Neural Networks, LNCS 3496, pp. 81–86, 2005.

[4] W.Y.N.G. Wing, D.S. Yeung, Input dimensionality reduction for

Radial Basis Neural Network classification problems using sensitivity

analysis, in: Proceedings of the First International Conference on

Machine Learning and Cybernetics, 2002, pp. 2214–2219.

[5] D. Shi, D.S. Yeung, J. Gao, Sensitivity analysis applied to the

construction of radial basis function networks, Neural Networks 18

(2005) 951–957.

[6] J.M. Zurada, A. Malinowski, S. Usui, Perturbation method for

deleting redundant inputs of perceptron networks, Neurocomputing

14 (1997) 177–193.

[7] R.M. Dudley, Real Analysis and Probability, Cambridge University

Press, Cambridge, New York, 2002.

[8] P.H. Garthwaite, Statistical Inference, Oxford University Press,

Oxford, New York, 2002.

[9] P.R. Halmos, Measure Theory, New York, 1950.

[10] J.Y. Choi, C.-H. Choi, Sensitivity analysis of multilayer perceptron

with differentiable activation functions, IEEE Transactions on

Neural Networks 3 (1) (1992) 101–107.

[11] X. Zeng, D.S. Yeung, Sensitivity analysis of multilayer perceptron to

input and weight perturbations, IEEE Transactions on Neural

Networks 12 (6) (2001) 1358–1366.

[12] S.W. Piché, The selection of weight accuracies for madalines, IEEE

Transactions on Neural Networks 6 (2) (1995) 432–445.

[13] L. Xu, et al., Mathematic Dictionary, ShanXi Educational Publishing

Company, Southeast University Publishing Company, Science and

Technology Publishing Company of China, Vol. 4, August 2002,

p. 371.

[14] Z. Sheng, S. Xie, C. Pan, Probability Theory and Mathematical

Statistics, third ed., Higher Education Publishing Company, 2001.12.

pp. 241–253.

[15] C. Lin, Numerical Calculating Methodology, Vol. 1, Science

Publishing Company. 2000.8. pp. 178–180.

[16] E. Parzen, Stochastic Processes, Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1999.

[17] http://www.icmlc.org/bsdata.htm.

Xi-Zhao Wang received his B.Sc. and M.Sc.

degrees in mathematics from Hebei University,

Baoding, China, in 1983 and 1992, respectively,

and his Ph.D. degree in computer science from

Harbin Institute of Technology, Harbin, China,

in 1998. From 1983 to 1998, he worked as a

Lecturer, an Associate Professor, and a Full

Professor in the Department of Mathematics,

Hebei University. From 1998 to 2001, he worked

as a Research Fellow at the Department of
Computing, Hong Kong Polytechnic University, Kowloon. Since 2001, he

has been the Dean and Professor of the Faculty of Mathematics and

Computer Science, Hebei University. His main research interests include

inductive learning with fuzzy representation, fuzzy measures and integrals,

neuro-fuzzy systems and genetic algorithms, feature extraction, multi-

classifier fusion, and applications of machine learning. So far, he has

published over 40 international journal papers. He is an IEEE senior

member and is an associate editor of IEEE Transactions on SMC part B,

and is an associate editor of International Journal of Information Science.

Chun-Guo Li received her B.Sc. and M.Sc.

degrees in mathematics application from Hebei

University, Baoding, China, in 2003 and 2006,

respectively. Her research interests focus on the

sensitivity analysis of Radial Basis Function

Neural Networks
Daniel S. Yeung (M’89–SM’99) received his

Ph.D. degree in applied mathematics from Case

Western Reserve University, Cleveland, OH, in

1974. In the past, he has worked as an Assistant

Professor of Mathematics and Computer Science

at Rochester Institute of Technology, Rochester,

NY, as a Research Scientist in the General

Electric Corporate Research Center, and a

System Integration Engineer at TRW, Inc.

Currently, he is a Chair Professor of Computing,
The Hong Kong Polytechnic University, Hong Kong. His current research

interests include neural-network sensitivity analysis, expert neural-net-

work hybrid systems, off-line handwritten Chinese character recognition,

and fuzzy expert systems. Dr. Yeung was the President of the IEEE

Computer Chapter of Hong Kong for 1991 and 1992. He now chairs the

technical committees on Cybernetics of the IEEE Systems, Man, and

Cybernetics Society. He is also an Associate Editor for the IEEE

TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS and

the IEEE TRANSACTIONS ON NEURAL NETWORKS.

http://www.icmlc.org/bsdata.htm

	A definition of partial derivative of random functions and its �application to RBFNN sensitivity analysis
	Introduction
	Definition of derivative with respect to a random variable
	Extending Zurada’s sensitivity from real variables �to random variables
	Sensitivity measure of RBFNN with one output
	Sensitivity measure of RBFNN with multiple outputs

	Simulation and comparison
	Pretreatment
	Rule for selecting the redundant features
	Simulations
	Experimental results on realistic applications

	Conclusion
	Acknowledgments
	Proof of Theorem 4.1
	The calculating formulae of uniformly distributed random variables
	References


