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The integration of fuzzy sets and rough sets can lead to a hybrid soft-computing technique
which has been applied successfully to many fields such as machine learning, pattern rec-
ognition and image processing. The key to this soft-computing technique is how to set up
and make use of the fuzzy attribute reduct in fuzzy rough set theory. Given a fuzzy infor-
mation system, we may find many fuzzy attribute reducts and each of them can have dif-
ferent contributions to decision-making. If only one of the fuzzy attribute reducts, which
may be the most important one, is selected to induce decision rules, some useful informa-
tion hidden in the other reducts for the decision-making will be losing unavoidably. To suf-
ficiently make use of the information provided by every individual fuzzy attribute reduct in
a fuzzy information system, this paper presents a novel induction of multiple fuzzy deci-
sion trees based on rough set technique. The induction consists of three stages. First several
fuzzy attribute reducts are found by a similarity based approach, and then a fuzzy decision
tree for each fuzzy attribute reduct is generated according to the fuzzy ID3 algorithm. The
fuzzy integral is finally considered as a fusion tool to integrate the generated decision trees,
which combines together all outputs of the multiple fuzzy decision trees and forms the
final decision result. An illustration is given to show the proposed fusion scheme. A numer-
ical experiment on real data indicates that the proposed multiple tree induction is superior
to the single tree induction based on the individual reduct or on the entire feature set for
learning problems with many attributes.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

Since the concept of rough set was originally proposed by Pawlak [1] in 1982, rough set theory (RST), as a new mathe-
matical tool for processing incomplete information, has become a popular topic for many researchers and has been applied
successfully to many fields [2–5]. An excellent introduction to rough sets can be found in [6], an excellent collection of some
extensions of rough sets has been given in [7]. One particular use of rough set theory is attribute reduction in databases. It
means, for a given a dataset with discrete attribute values, to find a subset of the original attributes with the most informa-
tive (named reduct) and then to remove all other attributes from the dataset so that the information loss is minimum.

Values of attributes in databases are possibly crisp or fuzzy but traditional RST can only handle the crisp case. Fuzzy
values are usually transformed into crisp values to handle. One approach to transformation is to preprocess the data set
by discretization in which continuous values of attributes are classified into several symbols. The discretization does not
consider linguistic terms with membership functions. Noting that real numbers are well ordered but after discretization
the symbols are totally non-ordered, the information loss (at least the order information loss) occurs in the process of dis-
cretization. To reduce the loss of this type of information, fuzzification has been proposed to stand for the discretization.
Fuzzification is first used to fuzzify real attributes for obtaining a number of linguistic terms with semi-order, and then
2008 Published by Elsevier Inc. All rights reserved.
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the attribute reduction technique in RST is used to generate rules for reasoning. Combining RST with fuzzy sets has led to a
hybrid soft-computing technique in which fuzzy attribute reducts can be achieved by the use of fuzzy core [8–10].

In RST the attribute reduct is the crucial idea. Like RST fuzzy reducts are also particularly useful in fuzzy rough set ap-
proaches [11–13]. More and more researchers have been paying attention to investigating the approaches to find fuzzy attri-
bute reducts in fuzzy information system [3,14,15]. The indiscernibility matrix was generalized to fuzzy rough set, by
calculating the relative indiscernibility degree of fuzzy condition attribute set with respect to fuzzy decision attributes using
fuzzy indiscernibility matrix, and several algorithms for finding fuzzy attribute reducts were given in [14]. Dependency de-
gree was extended in [15] to fuzzy rough set, which is based on fuzzy positive region defined by the fuzzy equivalence class.
By calculating fuzzy dependency degree of Q (fuzzy condition attributes) on P (fuzzy decision attribute), a fuzzy attribute
reduct can be found, and an algorithm for finding all fuzzy attribute reducts was given in [15]. Using the algorithm in
[15], the most important fuzzy attribute subsets (reducts) could be found to extract decision rules, but some more important
subsets (reducts) could be discarded. Because every fuzzy attribute reduct may make significant and different contributions
to decision-making, if only one of them is selected to induce decision rules, even if it is the most important one, partial useful
information could be lost. In order to make full use of the information provided by every fuzzy attribute reduct, in this paper,
we present a novel induction of multiple fuzzy decision trees based on the fuzzy rough set technique, the induction approach
consist of three stages. First we find several fuzzy attribute reducts using an improved version based on the algorithm in [15],
then a fuzzy decision tree for each fuzzy attribute reduct is generated by fuzzy ID3 algorithm and therefore a number of fuz-
zy decision trees are obtained. Finally we use the method of multiple classifiers fusion based on fuzzy integral to combine the
outputs of the multiple fuzzy decision trees into a final result.

The rest of this paper is organized as follows. In Section 2, some notions and methods related to rough attribute reduction
and fuzzy rough attribute reduction are introduced and an improved algorithm for finding reducts is given. In Section 3, the
method of single fuzzy decision tree induction is introduced. In Section 4, the method of induction of multiple fuzzy decision
trees based on fuzzy integral and fuzzy rough set technique is presented and an example is provided to illustrate our method.
An experiment is conducted on a real dataset to verify the effectiveness of the proposed method in Section 5. Finally, Section
6 concludes this paper.
2. Rough set and fuzzy rough set attribute reduction

In this section, we recall some notions and methods related to rough attribute reduction and fuzzy rough attribute reduc-
tion, present the improved algorithm. Throughout this paper, we confine ourselves to the consideration only on the finite
universe of discourse.

2.1. Rough set attribute reduction

An information system can be represented as a triple hU, A, {Va}a2Ai, where U is set objects (the universe of discourse), A is
set of attributes and Va is a domain of the attribute a. In a decision system, A = {C [ D}, where C is the set of conditional attri-
butes and D is the set of decision attributes. With any P � A there is an associated equivalence relationIND(P) (called indisc-
ernability relation)
INDðPÞ ¼ fðx; yÞ 2 U � UjaðxÞ ¼ aðyÞ for all a 2 Pg ð1Þ
The partition of U, generated by IND(P) is denoted by U/P and can be calculated as follows:
U=P ¼ �fa 2 PjU=INDfagg ð2Þ
where A � B = {X \ Yj "X 2 A, "Y 2 B, X \ Y 6¼/}, the equivalence classes of the P-indiscernibility relation are denoted [x]P.
Let X � U, the P-lower approximation of a set can be defined as:
PX ¼ [fY 2 U=P;Y � Xg ¼ f½x�Pj½x�P � Xg ð3Þ
Let P and Q be equivalence relations over U, then the P-positive region of Q, denoted by POSP(Q) can be defined as follows:
POSPðQÞ ¼ [X2U=Q PX ð4Þ
The P-positive region of Q contains all objects of the universe U that can be properly classified into classes of U/Q using the
knowledge expressed by the classification U/P.

An important concept in rough set techniques is dependence between attributes; dependency can be defined as follows:
For P, Q � A, Q dependency on P in a degree k (0 6 k 6 1), denoted P)k Q,
k ¼ cPðQÞ ¼
jPOSPðQÞj
jUj ð5Þ
where jSj denotes the cardinality of set S.
By calculating the change in dependency when an attribute is removed from the set of considered conditional attributes, a

measure of the significance of the attribute can be obtained. Given P, Q and an attribute x 2 P, the significance of attribute x
upon Q is defined by
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qPðQÞ ¼ cPðQÞ � cP�fxgðQÞ ð6Þ
the higher the value qP(Q) is, the more significant the attribute is. If the significance is 0, then the attribute is dispensable.
The reduction of attributes is achieved by comparing equivalence relations generated by sets of attributes. In a decision

systems, a reduct is formally defined as a subset R of the conditional attribute set C so that cR(D) = cC(D). The intersection of
all reduct sets is called the core. For a given data set, there exists only one attribute core, while there are many attribute
reducts.

2.2. Fuzzy rough set attribute reduction

A typical fuzzy information system can be represented as Table 1, where A1, A2, . . . ,An are n conditional attributes and Ai

has ki attribute values Ai1;Ai2; . . . ;Aiki
ði ¼ 1;2; . . . ;nÞ. Each attribute value Aij (i = 1, 2, . . . ,n; j = 1, 2, . . . ,ki) can be regarded as a

fuzzy set defined on set of the objects {1, 2, . . . ,N}. That is
Aij ¼
að1Þij

1
þ

að2Þij

2
þ . . .

aðNÞij

N
ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ; kiÞ ð7Þ
which occupies a column in Table 1. The attribute C is the classification (decision) attribute with m attribute values C1,
C2, . . . ,Cm, where
Cl ¼
cð1Þl

1
þ cð2Þl

2
þ . . .þ cðNÞl

N
ðl ¼ 1;2; . . . ;mÞ ð8Þ
There are totally N objects, and each objects corresponds to a row in Table 1. The value of the ith object with respect to jth
attribute is faðiÞj1

; aðiÞj2
; . . . ; aðiÞjkj

g, which can be viewed as a fuzzy set defined on conditional attribute values fAj1;Aj2; . . . ;Ajkj
g.

The rough set attribute reduct (RSAR) described in Section 2.1 can operate effectively on information system containing
discrete-value attribute, but it can not effectively deal with the fuzzy information with fuzzy-value attribute such as Table 1.
By using fuzzy rough set theory [3,11,16], fuzzy attribute reduct can be implemented in fuzzy information system.

Equivalence classes, lower approximation and dependency are central to rough set, in the same way fuzzy equivalence
classes, fuzzy lower approximation and fuzzy dependency are central to fuzzy rough set. They are defined as follows respec-
tively [3].

The fuzzy equivalence classes [x]S for object close to x can be defined as
l½x�P ðyÞ ¼ lPðx; yÞ ð9Þ
where lP(x,y) is fuzzy similarity relation. For example, in Table 1, the fuzzy equivalence class U/P(P={A1}) can be represented
as
U=P ¼ U=fA1g ¼ fA11;A12; . . . ;A1;k1g ð10Þ
which can be regarded as fuzzy partition of U by a set of attributes {A1} using fuzzy similarity relations on U.
The fuzzy lower approximation is defined as follows:
lPXðxÞ ¼ sup
F2U=P

minðlFðxÞ; inf
y2U

maxf1� lFðyÞ; lXðyÞgÞ ð11Þ
each set in U/P denotes an equivalence class.
The membership of an object x 2 U belonging to the fuzzy positive region defined by
lPOSP ðQÞðxÞ ¼ sup
x2U=Q

lPXðxÞ ð12Þ
Fuzzy dependency degree cP(Q) (0 6 cP(Q) 6 1) of Q on the set of attribute P is defined by
cPðQÞ ¼
P

x2UlPOSP ðQÞðxÞ
jUj ð13Þ
information system

A1 A2 . . . An C

A11 A12 . . . A1k1
A21 A22 . . . A2k2

. . . An1 An2 . . . Ankn
C1 C2 . . . Cm

að1Þ11 að1Þ12 . . . að1Þ1k1
að1Þ21 að1Þ22 . . . að1Þ2k2

. . . að1Þn1 að1Þn2 . . . að1Þnkn
cð1Þ1 cð1Þ2 . . . cð1Þm

að2Þ11 að2Þ12 . . . að2Þ1k1
að2Þ21 að2Þ22 . . . að2Þ2k2

. . . að2Þn1 að2Þn2 . . . að2Þnkn
cð2Þ1 cð2Þ2 . . . cð2Þm

. . . . . . . . . . . . . . .

aðNÞ11 aðNÞ12 . . . aðNÞ1k1
aðNÞ21 aðNÞ22 . . . aðNÞ2k2

. . . aðNÞn1 aðNÞn2 . . . aðNÞnkn
cðNÞ1 cðNÞ2 . . . cðNÞm
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Using the fuzzy dependency degree cP(Q), an algorithm for generating fuzzy attribute reducts was presented in [15]. But
using the algorithm, the most important fuzzy attribute subset (reduct) can be found, while some other more important sub-
sets (reducts) could be discarded. In order to compensate for the inadequacy, in this paper, we propose an improved algo-
rithm based on the algorithm in [15] as follows:

Suppose that {A1, A2, . . . ,An, D} are a fuzzy attribute set in a fuzzy information system, where A1, A2, . . . ,An are n fuzzy con-
dition attributes, and D is a decision attribute. Let Bi = {A1, A2, . . . ,Ai}.

Step 1: Select one fuzzy condition attribute with the maximum cAi
ðDÞ ði ¼ 1;2; . . . ;nÞ as candidate attribute of fuzzy

attribute reduct. For the sake of convenience, suppose A1 is selected.
Step 2: From {A2, . . . ,An}, select another fuzzy condition attribute with maximum cA1Aj

ðDÞ ðj ¼ 1;2; . . . ;nÞ and
cA1Aj
ðDÞ > cA1

ðDÞ ðj ¼ 2;3; . . . ;nÞ, suppose that A2 is selected, hence A1 and A2 are two candidate attributes of fuzzy
attribute reduct.

Step 3: If Bk = {A1, A2, . . . ,Ak} is selected as candidate attributes of fuzzy attribute reduct and exist Am (k < m < n) satisfying
cBk[fAmgðDÞ > cBm

ðDÞ ðm ¼ k; kþ 1; . . . ;nÞ, then several fuzzy attribute subsets {A1, A2, . . . ,Ai�1, Ap} (p = k, k + 1, . . . ,n)
are fuzzy attribute reducts, if cA1 ;...;Ak�1Ap

ðDÞ > cA1 ;...;Ak�1
ðDÞ, and different fuzzy attributes reduct are different in their

degrees of importance.

3. Single fuzzy decision tree induction

One powerful heuristic for generating crisp decision trees is ID3 algorithm proposed by Quinlan [17,18], which makes a
decision tree for classification from the symbolic data. As the increasing uncertainty is incorporated into the knowledge-
based system, the fuzzy decision tree suggested by several authors [19–24] will be regarded as a generalization of the crisp
case. Recently another decision tree learning algorithm with fuzzy labels was proposed by Qin and Lawry [25].

Fuzzy ID3 [22,24] are popular and efficient methods of making fuzzy decision trees from a group of training examples,
which is very similar to ID3. The probability of fuzzy event is used to replace the probability of crisp value for numerical
attribute values. The average fuzzy classification entropy is used to measure the disorder of the fuzzified data. According
to the average fuzzy classification entropy of each attribute, the most suitable attribute is selected for branching. The average
fuzzy classification entropy is defined as follows [22]:

Suppose there are N training examples and n attributes A(1), A(2), . . . ,A(n). For each k (1 6 k 6 n), the attribute A(k) takes mk

values of fuzzy subsets, AðkÞ1 ;AðkÞ2 ; . . . ;Ak
mk

, A(n+1) denotes the classification (decision) attribute, taking m values C1, C2, . . . ,Cm,
which are also fuzzy sets. We use the symbol M(A) to denote the sum of all membership degrees for a fuzzy set A.

The key of fuzzy ID3 is to select the expanded attribute, which can be performed in the following four steps:

(1) For each attribute value (fuzzy subset) Ak
i ; ði ¼ 1;2; . . . ;mkÞ, to calculate its relative frequencies with respect to class

Cj,(j = 1, 2, . . . ,m) as follows:
pðkÞij ¼ MðAðkÞi \ CjÞ=MðAðkÞi Þ ð14Þ
the relative frequency is regarded as the degee of truthfulness of a fuzzy rule in [21].

(2) For each attribute value (fuzzy subset) Ak
i ði ¼ 1;2; . . . ;mkÞ, to calculate its fuzzy classification entropy as follows:
EntrðkÞi ¼ �
Xm

j¼1

pðkÞij log
pðkÞ

ij
2 ð15Þ
(3) To calculate the average fuzzy classification entropy of the kth attribute as follows:
Ek ¼
Xmk

i¼1

MðAðkÞi Þ
.Xmk

j¼1

MðAðkÞj Þ
 !

EntrðkÞi ð16Þ
(4) Select such an integer k0, that
Ek0 ¼ min
16k6n

fEkg ð17Þ
In what follows, we briefly describe the induction based on fuzzy ID3 algorithm [21].
With given evidence significant level a and truth level threshold b, the induction process consists of the following steps:

1. Measure the average fuzzy classification entropy associated with each attribute and select the attribute with the smallest
average fuzzy classification entropy as the root decision node.

2. Delete all empty branches of the decision node. For each nonempty branch of the decision node, calculate the truth level
of classifying all objects within the branch into each class. If the truth level of classifying into one class is above a given
threshold b, terminate the branch as a leaf. Otherwise, do further research if an additional attribute will further partition
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the branch (i.e. generate more than one nonempty branch). If yes, select the attribute with the smallest average fuzzy
classification entropy as a new decision node from the branch. If not, terminate this branch as a leaf. At the leaf, all objects
will be labeled to one class with the highest truth level.

3. Repeat step 2 for all newly generated decision nodes until no further growth is possible, the decision tree then is
complete.

By using fuzzy rough set method, several fuzzy attribute reducts of the fuzzy information system can be found, and then
for every fuzzy attribute reduct, a fuzzy decision tree can be generated by fuzzy ID3 algorithm mentioned above.

4. Induction of multiple fuzzy decision tree based on fuzzy integral

In this section we first review the concepts of fuzzy measure, fuzzy integral, and method of multiple classifier fusion
based on fuzzy integral, then introduce the induction of multiple fuzzy decision tree generated by several fuzzy attribute
reducts with fuzzy rough set technique.

4.1. Fuzzy measure and fuzzy integral

Consider the finite space X = (x1, x2, . . . ,xn), we briefly recall the concepts of fuzzy measures and fuzzy integrals.
The concept of fuzzy measure was originally introduced by Sugeno [26] in the early 1970s in order to extend the classical

measure through relaxation of the additive property. The fuzzy measure in finite space is defined as follows:

Definition 1 [26]. A set function g: 2X ? [0,1] is a fuzzy measure if

(1) g(/) = 0, g(X) = 1.
(2) If A � B, then g(A) 6 g(B).

A fuzzy measure gk is called a Sugeno measure [26], if it satisfies the following additional property for some k > �1:
If A \ B = /, then gk(A [ B) = gk(A) + gk (B) + kgk(A)gk(B).
Let gi = g({xi}), the value gi is called the density of the measure. The value of k can be determined by
kþ 1 ¼
Yn

i¼1

ð1þ kgiÞ ð18Þ
The value of g(Ai) is computed recursively as follows:
gðA1Þ ¼ gðfx1gÞ ¼ g1 ð19Þ
gðAiÞ ¼ gðfx1gÞ ¼ gi þ gðAi�1Þ þ kgigðAi�1Þ ð1 6 i 6 nÞ ð20Þ
Definition 2 [27,28]. Let g be a fuzzy measure on X. The discrete Choquet integral of function h: X ? R+with respect to g is
defined as:
ðcÞ
Z

f dl ¼
Xn

i¼1

fhðxiÞ � hðxi�1ÞggðAiÞ ð21Þ
where 0 6 h(x1) 6 . . . 6 h(xn) 6 1, and h (x0) = 0.
4.2. Induction of multiple fuzzy decision tree based on fuzzy integral

In this section, multiple decision trees generated from fuzzy attribute reducts are regarded as multiple fuzzy classifiers.
The final result is obtained by using fuzzy integral to combine the outputs of the multiple classifiers.

Multiple classifier fusion means that the outputs of all designed classifiers are used to derive a consensus decision. Since
different designs of classifiers potentially offer complementary information about patterns to be classified; the fusion of var-
ious classifiers can make full use of information about subset of feature space. It has been demonstrated that in many situ-
ations combining the outputs on the several classifiers leads to an improved classification result [29–31]

There are many strategies for classifier fusion. The approaches used most often include the majority vote [32,33], average
[34]; the weighted average [35,36], the Dempster–Shafer theory [37,38], and the fuzzy integral [39,40]. There is a brief list of
the appropriate use of fusion schemes.

If labels are available, majority vote can be easily used.
If posterior probabilities are supplied, average can be used.
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If the classifier outputs are interpreted as fuzzy membership values, fuzzy rules and Dempster–Shuffer techniques are
suitable for the fusion.

If the fuzzy measure can be determined and the interaction among attributes exists, fuzzy integral is a good approach to
multiple classifier fusion, which is selected in this paper as our fusion method.

The method of multiple classifier fusion based on fuzzy integral means that the outputs of all classifier are combined by
fuzzy integral to form a final result.

The aggregating process is given in Fig. 1.
Suppose D = {D1, D2, . . . ,DL} be the set of Lindividual classifiers and C = {c1, c2, . . . ,cn} be the label set of classes, X = (x1,

x2, . . . ,xm) be set of samples. For a given x 2 X, the output of the classifier Di is a n-dimension vector (di1, di2, . . . ,din), where
dij denotes the output of the classifier Di about x belonging to jth class cj. For every x 2 X, a decision profile based on L clas-
sifiers is obtained as follows:
Table 2
Small tr

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
D ¼
d11ðxÞ . . . d1nðxÞ

. . . . . . . . .

dL1ðxÞ . . . dLnðxÞ

2
64

3
75
When computing the degree that a sample x belongs to class ci, the ith column of the decision profile D (di1, di2, . . . ,diL)T is
first regarded as L functions on D, and then the fuzzy integral is computed as
ei ¼ ðcÞ
Z

fi dli ði ¼ 1;2; . . . ;nÞ ð22Þ
where the integral is computed in terms of (21) and li (i = 1, 2, . . . ,n) are fuzzy measures which can be determined by training
examples. Finally the value arg max16i6n{ei}, i.e., the degree that a sample x belongs to class ci, is obtained.

The key to fusion based on fuzzy integral is how to determine the fuzzy measure. Many methods have been proposed by
training or based on human designation. In our experiments, we use the method given in [41] to train our g-lamda fuzzy
measure.

4.3. An Illustration

In this section, we give an example to illustrate the induction process using the small training data set shown in Table 2.
The universe of discourse is X = {1, 2, . . . ,16}. Temperature, outlook, humidity, wind and plan are five fuzzy attributes (fuzzy
sets), Temperature, outlook, humidity, and wind are fuzzy condition attributes, while plan are fuzzy decision attribute.
Fig. 1. Multiple classifiers fusion.

aining set with fuzzy representation

Temperature Outlook Humidity Wind Plan

Hot Mild Cool Sunny Cloudy Rain Humid Normal Windy Not-windy V S W

0.7 0.2 0.1 1.0 0.0 0.0 0.7 0.3 0.4 0.6 0.0 0.6 0.4
0.6 0.2 0.2 0.6 0.4 0.0 0.6 0.4 0.9 0.1 0.7 0.6 0.0
0.0 0.7 0.3 0.8 0.2 0.0 0.2 0.8 0.2 0.8 0.3 0.6 0.1
0.2 0.7 0.1 0.3 0.7 0.0 0.8 0.2 0.3 0.7 0.9 0.1 0.0
0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 1.0 0.0 0.0
0.0 0.7 0.3 0.0 0.3 0.7 0.3 0.7 0.4 0.6 0.2 0.2 0.6
0.0 0.3 0.7 0.0 0.0 1.0 0.8 0.2 0.1 0.9 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.9 0.1 0.1 0.9 0.0 1.0 0.3 0.0 0.7
1.0 0.0 0.0 1.0 0.0 0.0 0.4 0.6 0.4 0.6 0.4 0.7 0.0
0.7 0.2 0.1 0.0 0.3 0.7 0.8 0.2 0.9 0.1 0.0 0.3 0.7
0.6 0.3 0.1 1.0 0.0 0.0 0.7 0.3 0.2 0.8 0.4 0.7 0.0
0.2 0.6 0.2 0.0 1.0 0.0 0.7 0.3 0.7 0.3 0.7 0.2 0.1
0.7 0.3 0.0 0.0 0.9 0.1 0.1 0.9 0.0 1.0 0.0 0.4 0.6
0.1 0.6 0.3 0.0 0.9 0.1 0.7 0.3 0.7 0.3 1.0 0.0 0.0
0.0 0.0 1.0 0.0 0.3 0.7 0.2 0.8 0.8 0.2 0.4 0.0 0.6
1.0 0.0 0.0 0.5 0.5 0.0 1.0 0.0 1.0 0.0 0.7 0.6 0.0
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Using the improved algorithm in Section 2, we can find several fuzzy attributes reducts of the fuzzy information system
shown in Table 2. First of all, the lower approximation needs to be determined. Consider the first attribute in Table 2. Set
P={Outlook} produces the fuzzy partition:
U=P ¼ ffSunnyg; fCloudyg; fRaingg
Similarly, set Q = {Plan} produces the fuzzy partition:
U=Q ¼ ffVg; fSg; fWgg
set B = {temperature} produces the fuzzy partition:
U=B ¼ ffHotg; fMildg; fCoolgg
and set P \ B = {Outlook} \ {Temperature} produces the fuzzy partition:
U=ðP \ BÞ ¼ ffSunny \Hotg; fSunny \Mildg; fSunny \ Coolg; fCloudy \Hotg; fCloudy \Mildg; fCloudy \ Coolg; fRain

\Hotg; fRain \Mildg; fRain \ Coolgg
To determine the fuzzy P-lower approximation of Plan V (lPV(x)), each F 2 U/P must be taken into consideration. For
F = Sunny,
minðlSunnyðxÞ; inf
y2U

maxf1� lSunnyðyÞ; lV ðyÞgÞ ¼ minðlSunnyðxÞ;0:0Þ
Similarly, for F = Cloudy, min(lCloudy(x), 0.3) and F = Rain, min(lRain(x), 0.0). To calculate the extent to which an object xin
the dataset belongs to the fuzzy P-lower approximation of V, the union of these values is calculated. For example, object 1
belongs to PX with a membership of lPV (1), and,
lPV ð1Þ ¼ supfminðlSunnyð1Þ;0:0Þ;minðlRainð1Þ; 0:3Þ;minðlCoolð1Þ;0:1Þg ¼ 0:0
Likewise, for Wind:
lPSð1Þ ¼ 0:3; lPWð1Þ ¼ 0
the degree to which object 1 belongs to the fuzzy positive region can be determined by considering the union of fuzzy P-low-
er approximations:
lPOSP ðPlanÞð1Þ ¼ sup
D2U=Plan

lPDð1Þ ¼ 0:3
Similarly, for the remaining objects,
lPOSP ðPlanÞð2Þ ¼ 0:3; lPOSP ðPlanÞð3Þ ¼ 0:3; lPOSP ðPlanÞð4Þ ¼ 0:3; lPOSP ðPlanÞð5Þ ¼ 0:3;

lPOSP ðPlanÞð6Þ ¼ 0:6; lPOSP ðPlanÞð7Þ ¼ 0:6; lPOSP ðPlanÞð8Þ ¼ 0:1; lPOSP ðPlanÞð9Þ ¼ 0:3;

lPOSP ðPlanÞð10Þ ¼ 0:6; lPOSP ðPlanÞð11Þ ¼ 0:3; lPOSP ðPlanÞð12Þ ¼ 0:1; lPOSP ðPlanÞð13Þ ¼ 0:1;

lPOSP ðPlanÞð14Þ ¼ 0:1; lPOSP ðPlanÞð15Þ ¼ 0:6; lPOSP ðPlanÞð16Þ ¼ 0:3
using these values, the degree of fuzzy dependency of Qon P = {Outlook} can be calculated
cPðPlanÞ ¼

P
x2U

lPOSP ðPlanÞðxÞ

jUj ¼ 5:2
16
Hence
cOutlookðPlanÞ ¼

P
x2U

lPOSP ðPlanÞðxÞ

jUj ¼ 5:2
16
Similarly, we can calculate the following three values
cTemperatureðPlanÞ ¼ 4:8
16

; cHumidityðPlanÞ ¼ 3:2
16

; cWindðPlanÞ ¼ 3:2
16
As attribute ‘‘Outlook” causes the greatest increase in fuzzy dependency degree, it is added to the fuzzy attribute reduct
candidate.

In order to calculate c{Outlook}\{Temperature} (Plan), we must first obtain the membership of each linguistic term in P \ B = U/
{{Outlook} \ {Temperature}}, repeat above calculating process, we can have
cfOutlook;TemperaturegðPlanÞ ¼ 9:3
16

; cfOutlook;HumiditygðPlanÞ ¼ 9:4
16

; cfOutlook;WindgðPlanÞ ¼ 8:4
16
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then the attribute ‘‘Humidity” is also added to the fuzzy attribute reduct candidate, now two attributes are added to the fuz-
zy attribute reduct candidates. Next, we continue to add another member of attributes to the fuzzy attribute reduct
candidate.
Table 3
Training

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Table 4
Training

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
cfTemperature;Outlook;WindgðPlanÞ ¼ 9
16

cfTemperature;Outlook;HumiditygðPlanÞ ¼ 9:8
16

cfOutlook;Wind;HumiditygðPlanÞ ¼ 9:2
16
while
cfTemperature;Outlook;Humidity;WindgðPlanÞ ¼ 9:8
16
Hence, we obtain the following three conditional fuzzy attributes reducts: {Temperature, Outlook, Humidity}, {Temperature,
Outlook Wind} and {Outlook Wind, Humidity}.

Correspondingly, the three fuzzy reduced decision tables, Tables 3–5, are achieved respectively.
In what follows, based on Tables 2–5 four fuzzy decision trees with a = 0.0, b = 0.80 are generated by fuzzy ID3, see Figs.

2–5.
A fuzzy decision tree can be converted into several rules. Based on the rules, we can determine the degree to which class a

sample belongs; an object may be classified into different classes with different degrees. The classification for a given object
is obtained according to the method in [21].

Due to the three fuzzy attribute reducts have important and different contributions to the fuzzy system, every fuzzy attri-
bute reduct provides us with different aspects of a given fuzzy information system, to make full use of the information
set of fuzzy samples corresponding to fuzzy attribute reduct 1

Temperature Outlook Humidity Plan

Hot Mild Cool Sunny Cloudy Rain Humid Normal V S W

0.7 0.2 0.1 1.0 0.0 0.0 0.7 0.3 0.0 0.6 0.4
0.6 0.2 0.2 0.6 0.4 0.0 0.6 0.4 0.7 0.6 0.0
0.0 0.7 0.3 0.8 0.2 0.0 0.2 0.8 0.3 0.6 0.1
0.2 0.7 0.1 0.3 0.7 0.0 0.8 0.2 0.9 0.1 0.0
0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 1.0 0.0 0.0
0.0 0.7 0.3 0.0 0.3 0.7 0.3 0.7 0.2 0.2 0.6
0.0 0.3 0.7 0.0 0.0 1.0 0.8 0.2 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.9 0.1 0.1 0.9 0.3 0.0 0.7
1.0 0.0 0.0 1.0 0.0 0.0 0.4 0.6 0.4 0.7 0.0
0.7 0.2 0.1 0.0 0.3 0.7 0.8 0.2 0.0 0.3 0.7
0.6 0.3 0.1 1.0 0.0 0.0 0.7 0.3 0.4 0.7 0.0
0.2 0.6 0.2 0.0 1.0 0.0 0.7 0.3 0.7 0.2 0.1
0.7 0.3 0.0 0.0 0.9 0.1 0.1 0.9 0.0 0.4 0.6
0.1 0.6 0.3 0.0 0.9 0.1 0.7 0.3 1.0 0.0 0.0
0.0 0.0 1.0 0.0 0.3 0.7 0.2 0.8 0.4 0.0 0.6
1.0 0.0 0.0 0.5 0.5 0.0 1.0 0.0 0.7 0.6 0.0

set of fuzzy samples corresponding to fuzzy attribute reduct 2

Temperature Outlook Wind Plan

Hot Mild Cool Sunny Cloudy Rain Windy Not-windy V S W

0.7 0.2 0.1 1.0 0.0 0.0 0.4 0.6 0.0 0.6 0.4
0.6 0.2 0.2 0.6 0.4 0.0 0.9 0.1 0.7 0.6 0.0
0.0 0.7 0.3 0.8 0.2 0.0 0.2 0.8 0.3 0.6 0.1
0.2 0.7 0.1 0.3 0.7 0.0 0.3 0.7 0.9 0.1 0.0
0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 1.0 0.0 0.0
0.0 0.7 0.3 0.0 0.3 0.7 0.4 0.6 0.2 0.2 0.6
0.0 0.3 0.7 0.0 0.0 1.0 0.1 0.9 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.9 0.1 0.0 1.0 0.3 0.0 0.7
1.0 0.0 0.0 1.0 0.0 0.0 0.4 0.6 0.4 0.7 0.0
0.7 0.2 0.1 0.0 0.3 0.7 0.9 0.1 0.0 0.3 0.7
0.6 0.3 0.1 1.0 0.0 0.0 0.2 0.8 0.4 0.7 0.0
0.2 0.6 0.2 0.0 1.0 0.0 0.7 0.3 0.7 0.2 0.1
0.7 0.3 0.0 0.0 0.9 0.1 0.0 1.0 0.0 0.4 0.6
0.1 0.6 0.3 0.0 0.9 0.1 0.7 0.3 1.0 0.0 0.0
0.0 0.0 1.0 0.0 0.3 0.7 0.8 0.2 0.4 0.0 0.6
1.0 0.0 0.0 0.5 0.5 0.0 1.0 0.0 0.7 0.6 0.0



Table 5
Training set of fuzzy samples corresponding to fuzzy attribute reduct 3

No. Outlook Humidity Wind Plan

Sunny Cloudy Rain Humid Normal Windy Not-windy V S W

1 1.0 0.0 0.0 0.7 0.3 0.4 0.6 0.0 0.6 0.4
2 0.6 0.4 0.0 0.6 0.4 0.9 0.1 0.7 0.6 0.0
3 0.8 0.2 0.0 0.2 0.8 0.2 0.8 0.3 0.6 0.1
4 0.3 0.7 0.0 0.8 0.2 0.3 0.7 0.9 0.1 0.0
5 0.7 0.3 0.0 0.5 0.5 0.5 0.5 1.0 0.0 0.0
6 0.0 0.3 0.7 0.3 0.7 0.4 0.6 0.2 0.2 0.6
7 0.0 0.0 1.0 0.8 0.2 0.1 0.9 0.0 0.0 1.0
8 0.0 0.9 0.1 0.1 0.9 0.0 1.0 0.3 0.0 0.7
9 1.0 0.0 0.0 0.4 0.6 0.4 0.6 0.4 0.7 0.0

10 0.0 0.3 0.7 0.8 0.2 0.9 0.1 0.0 0.3 0.7
11 1.0 0.0 0.0 0.7 0.3 0.2 0.8 0.4 0.7 0.0
12 0.0 1.0 0.0 0.7 0.3 0.7 0.3 0.7 0.2 0.1
13 0.0 0.9 0.1 0.1 0.9 0.0 1.0 0.0 0.4 0.6
14 0.0 0.9 0.1 0.7 0.3 0.7 0.3 1.0 0.0 0.0
15 0.0 0.3 0.7 0.2 0.8 0.8 0.2 0.4 0.0 0.6
16 0.5 0.5 0.0 1.0 0.0 1.0 0.0 0.7 0.6 0.0

Fig. 2. The fuzzy decision tree 1 for Table 2.

Fig. 3. The fuzzy decision tree 2 for Table 3.
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provided by every fuzzy attribute reduct, we use the method of multiple classifiers fusion based on fuzzy integral to com-
bines the outputs of the three fuzzy decision trees into a consensus result.

In the following, based on Choquet integral, we will aggregate the outputs of the three fuzzy decision trees. Here a fuzzy
decision tree can be viewed as a fuzzy classifier.

First of all, we determine the fuzzy measures for every class. The important degree of the every fuzzy decision tree to
every class can be determined using Tables 6–8; they can be viewed as fuzzy density. For example, the fuzzy density with



Fig. 4. The fuzzy decision tree 3 for Table 4.

Fig. 5. The fuzzy decision tree 4 for Table 5.
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respect to every class (V, S, W) of the fuzzy decision tree1 is respectively 0.406, 0.419 and 0.481. The fuzzy densities of the
other two fuzzy decision trees can be similarly obtained. Based on the fuzzy densities, the value k for every class can be
determined by expression (18) in Section 4.1. According to expression (20), the fuzzy measures of the three fuzzy decision
tree classifiers can be achieved as in Table 9, where Di (i = 2, 3, 4) denotes the ith classifier (fuzzy decision tree i), li (i = 1, 2, 3)
denotes fuzzy measure of the ith class.

And then, for every x 2 X, a decision profile can be determined based on the three fuzzy decision trees. Finally according to
the Choquet integral (expression (21) in Section 4.1), the vector of the output of the three fuzzy decision trees can be ob-
tained. For example, for sample 1, the decision profile is as follows:
l1 l2 l3

D1 0:2 0:7 0:0
D2 0:2 0:7 0:0
D3 0:4 0:0 0:0

2
6664

3
7775
Using Choquet integral, we have
eV ¼ 0:2ð1� 0:735Þ þ 0:2ð0:735� 0:460Þ þ 0:4� 0:460 ¼ 0:28
eS ¼ 0:0ð1� 0:765Þ þ 0:7ð0:765� 0:419Þ þ 0:4� 0:419 ¼ 0:54
eW ¼ 0
so the vector of the output is (0.28, 0.54, 0), selecting the class with the highest membership as the class label, so that sample
1 belongs to class S in Plan.

The classification results by fuzzy decision 1 and classification results by fusion of other three fuzzy decision trees (fuzzy
decisions 2, 3 and 4) are shown in Table 10. Among 16 training cases, 14 cases are correctly classified (samples 2 and 16 are
not correctly classified) by the method of the three fuzzy decision trees fusion. The classification accuracy is 87.5%, greater
than the original classification 75% by fuzzy decision tree 1 (samples 2, 8, 13, and 16 are not correctly classified). The true
degree of the fuzzy rules is more than 80%. Obviously, the classification accuracy is improved after aggregating the three



Table 6
Membership of {Outlook} \ {Temperature} \ {Humidity}

No. Hot Hot Hot Hot Hot Hot Mild Mild Mild Mild Mild Mild Cool Cool Cool Cool Cool Cool V S M
Sunny Sunny Cloudy Cloudy Rain Rain Sunny Sunny Cloudy Cloudy Rain Rain Sunny Sunny Cloudy Cloudy Rain Rain
Humid Normal Humid Normal Humid Normal Humid Normal Humid Normal Humid Normal Humid Normal Humid Normal Humid Normal

1 0.7 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.6 0.4
2 0.6 0.4 0.4 0.4 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.7 0.6 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.2 0.2 0.0 0.0 0.2 0.3 0.2 0.2 0.0 0.0 0.3 0.6 0.1
4 0.2 0.2 0.2 0.2 0.0 0.0 0.3 0.2 0.7 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.9 0.1 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.5 0.5 0.3 0.3 0.0 0.0 1.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.7 0.0 0.0 0.3 0.3 0.3 0.3 0.2 0.2 0.6
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.7 0.2 0.0 0.0 1.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.7
9 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.0

10 0.0 0.0 0.3 0.2 0.7 0.2 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.3 0.7
11 0.6 0.3 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.4 0.7 0.0
12 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.6 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.7 0.2 0.1
13 0.1 0.2 0.1 0.7 0.0 0.0 0.1 0.2 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6
14 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.6 0.3 0.1 0.1 0.0 0.0 0.3 0.3 0.1 0.1 1.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.7 0.4 0.0 0.6
16 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.0
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Table 7
Membership of {Outlook} \ {Temperature} \ {Wind}

No. Hot Hot Hot Hot Hot Hot Mild Mild Mild Mild Mild Mild Cool Cool Cool Cool Cool Cool V S M
Sunny Sunny Cloudy Cloudy Rain Rain Sunny Sunny Cloudy Cloudy Rain Rain Sunny Sunny Cloudy Cloudy Rain Rain
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy
Windy N-

Windy

1 0.4 0.6 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.6 0.4
2 0.6 0.1 0.4 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.7 0.6 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.2 0.2 0.0 0.0 0.2 0.3 0.2 0.2 0.0 0.0 0.3 0.6 0.1
4 0.2 0.2 0.2 0.2 0.0 0.0 0.3 0.3 0.3 0.7 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.9 0.1 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.5 0.5 0.3 0.3 0.0 0.0 1.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.6 0.0 0.0 0.3 0.3 0.3 0.3 0.2 0.2 0.6
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.1 0.7 0.0 0.0 1.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.7
9 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.0

10 0.0 0.0 0.3 0.1 0.7 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.3 0.7
11 0.2 0.6 0.0 0.0 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.4 0.7 0.0
12 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.6 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.7 0.2 0.1
13 0.0 0.2 0.0 0.7 0.0 0.0 0.0 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6
14 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.6 0.3 0.1 0.1 0.0 0.0 0.3 0.3 0.1 0.1 1.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.7 0.2 0.4 0.0 0.6
16 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.0
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Table 8
Membership of {Outlook} \ {Humidity} \ {Wind}

No. Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Rain Rain Rain Rain V S M
Humid Humid Normal Normal Humid Humid Normal Normal Humid Humid Normal Normal
Windy N-Windy Windy N-Windy Windy N-Windy Windy N-Windy Windy N-Windy Windy N-Windy

1 0.4 0.6 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.4
2 0.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.0
3 0.2 0.8 0.1 0.1 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.6 0.1
4 0.3 0.3 0.2 0.2 0.3 0.7 0.2 0.2 0.0 0.0 0.0 0.0 0.9 0.1 0.0
5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 1.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.4 0.6 0.3 0.3 0.2 0.2 0.6
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.2 0.0 0.0 1.0
8 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.8 0.0 0.8 0.3 0.0 0.7
9 0.4 0.4 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.0

10 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.1 0.7 0.1 0.1 0.1 0.0 0.3 0.7
11 0.0 0.7 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.0
12 0.0 0.0 0.0 0.0 0.3 0.7 0.3 0.3 0.0 0.0 0.0 0.0 0.7 0.2 0.1
13 0.1 0.0 0.2 0.0 0.1 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6
14 0.0 0.0 0.0 0.0 0.7 0.3 0.1 0.1 0.1 0.1 0.1 0.1 1.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.2 0.4 0.0 0.6
16 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.0

Table 9
Fuzzy measures of three classifiers

l1 l2 l3

D1 0.406 0.419 0.481
D2 0.413 0.438 0.463
D3 0.406 0.375 0.463
D1D2 0.735 0.765 0.725
D1D3 0.730 0.715 0.725
D2D3 0.735 0.730 0.776
D1D2D3 1.00 1.00 1.00

Table 10
Comparison classification results among known data, fuzzy decision 1, and multiple fuzzy decision tree fusion

No. Classification known in training data Classification results with fuzzy decision 1 Classification results with multiple fuzzy decision tree fusion

V S W V S W V S W

1 0.0 0.6 0.4 0.2 0.7 0.0 0.28 0.54 0.00
2 0.7 0.6 0.0 0.2 0.6 0.0 0.36 0.46 0.00
3 0.3 0.6 0.1 0.3 0.7 0.0 0.27 0.36 0.00
4 0.9 0.1 0.0 0.7 0.3 0.0 0.59 0.23 0.00
5 1.0 0.0 0.0 0.5 0.1 0.0 0.58 0.04 0.00
6 0.2 0.2 0.6 0.3 0.0 0.7 0.22 0.13 0.70
7 0.0 0.0 1.0 0.0 0.0 1.0 0.00 0.00 1.00
8 0.3 0.0 0.7 0.1 0.0 0.1 0.07 0.00 0.10
9 0.4 0.7 0.0 0.0 0.6 0.0 0.16 0.64 0.00

10 0.0 0.3 0.7 0.2 0.3 0.7 0.20 0.22 0.51
11 0.4 0.7 0.0 0.3 0.6 0.0 0.24 0.46 0.00
12 0.7 0.2 0.1 0.6 0.2 0.0 0.56 0.15 0.00
13 0.0 0.4 0.6 0.1 0.0 0.1 0.07 0.04 0.10
14 1.0 0.0 0.0 0.6 0.1 0.1 0.64 0.08 0.10
15 0.4 0.0 0.6 0.3 0.0 0.7 0.30 0.00 0.70
16 0.7 0.6 0.0 0.5 0.5 0.0 0.20 0.37 0.00
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fuzzy decision trees. A fuzzy attribute reduct is an important set of attributes and every fuzzy attribute reduct provides us
with different aspects of the system. By aggregating their outputs, the classification accuracy can be improved.

5. An experiment on real dataset

A dataset is obtained by collecting 212 medical CT images from Baoding local hospital. All CT images are classified into 2
classes, i.e., normal class and abnormal class. The dataset has 170 normal cases and 42 abnormal cases. Totally 35 features
are initially selected. They are 10 symmetric features, nine texture features and 16 statistical features including mean, var-
iance, skewness, kurtosis, energy and entropy.
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We use the cross-validation procedure. Each database is randomly partitioned into 10 disjoint subsets; each size is m/10
where m is the number of examples of the dataset. The procedure is then conducted 10 times, each time using a different one
of these subsets as the validation (testing) set and combining the other nine subsets for the training set. The training and
testing accuracies are then averaged. For each time, the experimental procedure is the following:

(A) Fuzzify the database according to a specified fuzzification procedure which is selected in this experiment as the tri-
angular membership forms given in [21], then generate a single fuzzy decision tree.

(B) Calculate all fuzzy attribute reducts based on the algorithm listed at the end of Section 2.
(C) Generate a fuzzy decision tree for each reduct based on the fuzzy ID3 algorithm listed in Section 3.
(D) Convert each fuzzy decision tree into a set of fuzzy IF-THEN rules and calculate the corresponding training and testing

accuracies.
(E) Fuse the individual outputs of each fuzzy decision tree based on the algorithm given in Section 4.2.

Our experimental results (averaged training and testing accuracies for the 10 times) together with the results given by the
single fuzzy ID3 are summarized as follows:
Training accuracy
 Testing accuracy
Single fuzzy ID3
 0.93
 0.91

Our fusion scheme
 0.98
 0.97
Averagely the experimental results show that the fusion of multiple decision trees with respect to different reducts of
attributes are superior to the single decision tree induction (single fuzzy ID3). The most difficult problem for the integral-
based fusion is the determination of fuzzy measures. In this paper we select a training procedure given in [41] to obtain
the g-lamda fuzzy measure.

6. Conclusion

Fuzzy attribute reduct is a set of important fuzzy attributes that plays a key role in a fuzzy information system. For a given
fuzzy information system, we could find several fuzzy attribute reducts rather than only one, and each fuzzy attribute reduct
could provide us with some important information from different aspects. If only one of them is selected to induce decision
rules, even if it is the most important one, much useful information could be lost. In order to make full use of the information
provided by every fuzzy attribute reduct, in this paper, we present a method of induction of multiple fuzzy decision trees
based on fuzzy rough set, and use the fuzzy integral as the aggregating tool to combine the outputs of the multiple fuzzy
decision trees into a consensus result. The experimental results confirm the effectiveness of the proposed method.
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