
1294 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

Localized Generalization Error Model and Its
Application to Architecture Selection for

Radial Basis Function Neural Network
Daniel S. Yeung, Fellow, IEEE, Wing W. Y. Ng, Member, IEEE, Defeng Wang, Eric C. C. Tsang, Member, IEEE,

and Xi-Zhao Wang, Senior Member, IEEE

Abstract—The generalization error bounds found by current
error models using the number of effective parameters of a clas-
sifier and the number of training samples are usually very loose.
These bounds are intended for the entire input space. However,
support vector machine (SVM), radial basis function neural
network (RBFNN), and multilayer perceptron neural network
(MLPNN) are local learning machines for solving problems and
treat unseen samples near the training samples to be more im-
portant. In this paper, we propose a localized generalization error
model which bounds from above the generalization error within a
neighborhood of the training samples using stochastic sensitivity
measure. It is then used to develop an architecture selection tech-
nique for a classifier with maximal coverage of unseen samples
by specifying a generalization error threshold. Experiments using
17 University of California at Irvine (UCI) data sets show that, in
comparison with cross validation (CV), sequential learning, and
two other ad hoc methods, our technique consistently yields the
best testing classification accuracy with fewer hidden neurons and
less training time.

Index Terms—Localized generalization error, network architec-
ture selection, radial basis function neural network (RBFNN), sen-
sitivity measure.

I. INTRODUCTION

FOR a pattern classification problem, one builds a classifier
to approximate or mimic the unknown input–output

mapping function , where is the set of parameters selected
from a domain . In this paper, the mean square error (MSE)
is used to measure the difference between and . The
MSE is widely applied in training real-value output classi-
fiers like neural networks, which classify a given sample by
thresholding the real-value classifier output. The behavior of a

Manuscript received September 14, 2005; revised March 2, 2006 and De-
cember 24, 2006; accepted December 26, 2006. This paper was supported in
part by the Hong Kong Research Grant Council under Project B-Q571, in part
by the Hong Kong Polytechnic University Department of Computing Personal
Research Account, and in part by the Hong Kong Polytechnic University Inter-
faculty under Research Grant GYD87.

D. S. Yeung and W. W. Y. Ng are with the Media and Life Science (MiLeS),
Department of Computer Science and Technology, Shenzhen Graduate School,
Harbin Institute of Technology, Shenzhen 518055, China and with the De-
partment of Computing, Hong Kong Polytechnic University, Kowloon, Hong
Kong(e-mail: csdaniel@comp.polyu.edu.hk; wingng@ieee.org).

D. Wang and E. C. C. Tsang are with the Department of Computing, Hong
Kong Polytechnic University, Kowloon, Hong Kong.

X.-Z. Wang is with the Machine Learning Center, Faculty of Mathematics
and Computer Science, Hebei University, Baoding 071002, China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2007.894058

classifier trained by minimizing an MSE and the one trained
by minimizing a classification error (0–1 loss function) are
different. When two classifiers both yield the same, very small
percentage of training classification error, the one which yields
a larger training MSE would produce indecisive outputs which
are more deviated from the target outputs; so a small change
in the inputs may change the classification results [20]. This
is not desirable and it indicates that the training classification
error is not a good benchmark for the generalization capability
of a classifier. Therefore, selecting a classifier using training
classification error or its bound may not be appropriate.

The classification error for the entire input space is defined as

(1)

where denotes the input vector of a sample in the entire input
space , and denotes the true unknown probability density
function of the input .

Given a training data set containing training
input–output pairs, , a classifier
could be constructed by minimizing the empirical risk
over , where

(2)

The ultimate goal of solving a pattern classification problem
is to find which is able to correctly classify future unseen
samples [6], [10], [17]. The generalization error is de-
fined as

(3)

Since both target outputs and distributions of the unseen sam-
ples are unknown, it is impossible to compute the directly.
There are two major approaches to estimate the , namely,
analytical model and cross validation (CV).

In general, analytical models could not distinguish trained
classifiers having the same number of effective parameters but
with different values of parameters. Thus, they yield loose error
bounds [5]. Akaike information criterion (AIC) [1] only makes
use of the number of effective parameters and the number of
training samples. Network information criterion (NIC) [15]
is an extension of AIC for application in regularized neural
networks. It defines a classifier complexity by the trace of the

1045-9227/$25.00 © 2007 IEEE

YEUNG et al.: LOCALIZED GENERALIZATION ERROR MODEL AND ITS APPLICATION TO ARCHITECTURE SELECTION FOR RBFNN 1295

second-order local derivatives of the network outputs with
respect to connection weights. Unfortunately, current analytical
models are only good for linear classifiers due to the singularity
problem in their models [16]. A major problem with these
models is the difficulty in estimating the number of effective
parameters of the classifier and this could be solved by using the
Vapnik–Chervonenkis (VC)-dimensions [17]. However, only
loose bounds of VC-dimensions could be found for nonlinear
classifiers and this puts a severe limitation on the applicability
of analytical models to nonlinear classifiers, except for the
support vector machine (SVM) [3], [4], [5].

Although CV uses true target outputs for unseen samples, it
is time consuming for large data sets and, for -fold CV and
choices of classifier parameters, classifiers must be trained.
CV methods estimate the expected generalization error instead
of its bound. Thus, they cannot guarantee the classifier finally
constructed to have good generalization capability [5].

Many classifiers, e.g., SVM, multilayer perceptron neural
networks (MLPNNs), and radial basis function neural net-
works (RBFNNs), are local learning machines. RBFNN, by
its nature, learns the classification locally and every hidden
neuron captures the local information of a particular region in
the input space defined by the center and width of its Gaussian
activation function [11]. A training sample located far away
from a hidden neuron’s center does not affect the learning of
this hidden neuron [8]. MLPNN learns the decision boundaries
for the classification problem in the input space using the
location of the training samples. However, as pointed out in
[2], the MLPNN output responses to unseen samples far away
from the training samples are likely to be unreliable, so they
proposed a learning algorithm which deactivates any MLPNN
response to unseen samples much different from the training
samples. This observation is further supported by the fact that,
in many interesting industrial applications, such as aircraft de-
tection in synthetic aperture radar (SAR) images, character and
fingerprint recognitions [9], etc., the most significant unseen
samples are expected to be similar to the training samples.

On the other hand, RBFNN is one of the most widely ap-
plied neural networks for pattern classification, with its perfor-
mance primarily determined by its architecture selection. Ref-
erence [6] summarizes several training algorithms for RBFNN.
For instance, a two-stage learning algorithm may be a quick way
to train an RBFNN. The first, unsupervised stage is to select the
center positions and widths for the RBF using self-organizing
map or -means clustering. The second, supervised stage com-
putes the connection weights using least mean square method or
pseudoinverse technique. Some proposed that all training sam-
ples may be selected as centers [6], [22]. In [18], a reformu-
lated RBFNN was proposed which was trained by using a gra-
dient-descent method for its parameters. In [26], the selection
of centers is based on the separability of the data sets. The ex-
perimental results in [18] and [26] indicate that the choice of
the number of hidden neurons indeed affect the generalization
capability of the RBFNNs and an increase in the number of
hidden neurons does not necessarily lead to a decrease in testing
error. In [23] and [24], the optimal architecture was found by se-
quentially adding more hidden neurons to a small RBFNN and,
in [25], genetic algorithm was used to search for the optimal

number of hidden neurons, center position, and width, simulta-
neously. Thus, the selection of the number of hidden neurons
affects the selection of RBFNN architecture and ad hoc choices
or sequential search are the frequently used methods.

In this paper, we propose a localized generalization error
model using the stochastic sensitivity measure (ST-SM),
which bounds from above the generalization error for unseen
samples within a predefined neighborhood of the training
samples. In addition, an architecture selection method based
on the is proposed to find the maximal coverage classifier
with its bounded by a preselected threshold. RBFNN will
be used to demonstrate the use of the and the architecture
selection method.

We introduce the localized generalization error model and
its corresponding architecture selection method in Sections II
and III, respectively. In Section IV, experimental results of the
architecture selection will be presented. We conclude this paper
in Section V.

II. LOCALIZED GENERALIZATION ERROR MODEL

Two major concepts of , the -neighborhood and sto-
chastic sensitivity measure, are introduced in Sections II-A and
II-C, respectively. The derivation of the localized generalization
error model is given in Section II-B and its characteristics are
discussed in Section II-D. Section II-E discusses the method to
compare two classifiers using the localized generalization error
model.

A. Q-Neighborhood and Q-Union

For every sample , one finds a set of samples which
fulfills , where denotes the
number of input features, ,
and is a given real number. In pattern classification problem,
one usually does not have any knowledge about the distribution
of the true input space. Therefore, without any prior knowledge,
every unseen sample has the same chance to appear; so, may
be considered as input perturbations which are random variables
having zero mean uniform distributions

(4)
Then, defines a -neighborhood of the training

sample . Let be the union of all and call it the
-union. All samples in , except , are considered as

unseen samples (i.e., contains no training point other
than).

For , the following relationship
holds:

(5)

One should note that the shape of the -neighborhood is
chosen to be a hypercube for ease of computation, but it could
also be a hypersphere or other shapes. Moreover, in the local-
ized generalization error model, the unseen samples could be
selected from a distribution other than a uniform one. Only the

1296 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

Fig. 1. Illustration of Q-union (S) with 20 training samples. The Xs are
training samples and any point in the shaded area is an unseen sample.

derivation of the ST-SM needs to be modified and the rest of the
paper will remain the same.

B. Derivation of the Localized Generalization Error Bound

Instead of finding a bound for the generalization error for
unseen samples in the entire input space , we find a
bound on , which is the error for unseen samples within

only, i.e., the shaded area in Fig. 1. We ignore the gener-
alization error for unseen samples which are located far away
from training samples [in (6)]. Note that decreases
when increases

(6)
Let

then

and , and be the difference
between the maximum and minimum values of the target
outputs, the maximum possible value of the MSE, and the
number of training samples, respectively. In this paper, we
assume the range of the desired output, i.e., the range of , to

be either known or assigned to a preselected value. Moreover,
is computable because the range of the network outputs will

be known after the classifier is trained. In general, one expects
that the error of unseen samples will be larger than the training
error, so we assume that the average of errors of unseen
samples in will be larger than the training error of .
By the Hoeffding’s inequality [7], the average of the square
errors of samples with the same population mean converges to
the true mean with the following rate of convergence. With a
probability of , we have (7), as shown at the bottom of
the page.

Both and are constants for a given training data set when
an upper bound of the classifier output values is preselected. The

is an upper bound for the MSE of the trained classifier for
unseen samples within the -union. This bound is better than
those regression error bounds (based on AIC and VC-dimen-
sion) which are defined by using only the number of effective
parameters and training samples while ignoring statistical char-
acteristics of training data set such as their mean and variance.
Moreover, those error bounds usually grow quickly with the in-
crease of the number of effective parameters, e.g., number of
hidden neurons in RBFNN and VC-dimension, while the
grows much slower.

The term will be discussed in Section II-C. Fur-
ther discussion on the characteristics of the will be given
in Section II-D.

C. Stochastic Sensitivity Measure for RBFNN

The output perturbation measures the network output
difference between the training sample and the unseen
sample in its -neighborhood . Thus,
the ST-SM measures the expectation of the squares of network

(7)

YEUNG et al.: LOCALIZED GENERALIZATION ERROR MODEL AND ITS APPLICATION TO ARCHITECTURE SELECTION FOR RBFNN 1297

output perturbations between training samples in and
unseen samples in .

The sensitivity measure (SM) of a neural network [12]–[14]
gives a quantified data on the change of network outputs with re-
spect to change of network inputs. Intuitively, it measures how
sensitive the network output is to the input change. In [14], every
input or weight is allowed to have its own mean and variance,
and the input and weight perturbations are allowed to be arbi-
trary. Hence, the perturbed samples (in Section II-A) can be
considered as unseen samples around the training samples .
An analytical formula of the ST-SM for a Gaussian activation
function RBFNN was developed in [12], which is independent
of the number of training samples. We assume the inputs are
independent and not identically distributed and weight pertur-
bations are not considered in this paper; so, every input feature
has its own expectation and variance . The input per-
turbation of the th input feature is a random variable having a
uniform distribution with zero mean and a variance . The
centers and widths of the hidden neurons are constant and the
connection weights are fixed beforehand. An RBFNN could be
described as

(8)

where , , and denote the number of hidden neurons,
the center, and width of the th RBFNN hidden neuron, respec-
tively, and denotes the connection weight between the th
hidden neuron and its corresponding output neuron. Let

, ,

,

denotes the probability density function of the input per-
turbations and , is the number of input fea-
tures and denotes the th input feature of the th center of
the hidden RBF neuron . For uniformly
distributed input perturbations, we have

. Theoretically, we do not restrict the distribution of the
input perturbations as long as the variance of the input perturba-
tion is finite. However, uniform distribution is assumed
here because without any prior knowledge on the distribution of
unseen samples around the training samples, we assume that all
of them have an equal chance of occurrence.

By the law of large numbers, when the number of input fea-
tures is not too low, would have a log-normal distribution;
so, the RBFNN ST-SM is given by

(9)

D. Characteristics of the

From (7), one may notice that the consists of three major
components: training error , ST-SM , and
the constants. The constants and are preselected when the
confidence of the bound and the training data set are
fixed. Moreover, the constant in could be preselected when
the classifier type is selected by fixing the maximum classifier
output bound. is generally very small for large ; so, they will
not affect the result of comparisons of the generalization capa-
bility between classifiers. In contrast, if the classifier could not
generalize the training samples, one may not expect the classi-
fier to have good generalization capability to future unseen sam-
ples. Thus, the training error is one of the key components of the

. Furthermore, the ST-SM term measures the output fluc-
tuations of the classifier. A classifier having high output fluctu-
ations yields high ST-SM because its output varies dramatically
when the input value changes. Due to the classifier bias/variance
dilemma, a classifier yielding a good generalization capability
should minimize both terms or achieves a good balance between
the two [19].

An interesting question is: Can be an effective mecha-
nism for studying a classifier’s bias/variance dilemma?

1) Limiting Cases of : Obviously, when
, and . For

, the relationship
holds. We further extend this relationship to

the limiting case of with

with (10)

This relationship shows that the limiting case of
with bounds from above the . For

(11)

1298 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

Moreover, for the limiting case of bounds
from above. When vanishes, and

we have

(12)

2) for Other Classifiers: The as well as the
could be defined for any classifier trained with MSE. Examples
include feedforward neural networks like MLPNN, SVM, and
recurrent neural networks such as Hopfield networks. The
for other types of classifier could be defined by rederiving the
ST-SM term for the particular type of classifier concerned.

3) Independence of Training Method: The is deter-
mined with no regard to the training methods being used. Only
the parameters of the finally trained classifier are used in the
model. Hence, the model could also be used to compare
different training methods in terms of the generalization capa-
bility of the classifiers being built.

4) Time Complexity: The ST-SM has a time complexity of
. The computational complexities of both the ST-SM

and the are low and they do not depend on the number
of training samples . However, similar to all other archi-
tecture selection methods, requires a trained classifier and
the time for architecture selections is dominated by the classi-
fier training time. Therefore, the proposed architecture selection
method may not have a large advantage in terms of speed when
being compared with other architecture selection methods, ex-
cept the two CV-based methods.

5) Limitations of the Localized Generalization Error Model:
The major limitation of the localized generalization error model
is that it requires a function (i.e.,) for the derivation of the
ST-SM. Classifiers such as rule-based system and decision
tree may not be able to make use of this concept. It will be a
challenging task to find way to determine the for these
classifiers.

Another limitation of the present localized generalization
error model is due to the assumption that unseen samples are
uniformly distributed. This assumption is reasonable when
there is no a priori knowledge on the true distribution of the
input space, and hence, every sample may have the same prob-
ability of occurrence. One would need to rederive a new
when a different distribution of the input space is assumed.
We also remark that even though the distribution of the unseen
samples is known, their true target outputs are still unknown,
and hence, it will be difficult to judge how good the bound is.
On the other hand, if both input and -union distributions are
the same, the localized generalization error model is expected
to be a good estimation for the generalization error for the
unseen samples, but this needs further investigation.

6) and Regularization: From (9), one may notice that
the connection weight magnitude (in the) is directly pro-
portional to the ST-SM, and thus, the . This provides a the-
oretical justification that, by controlling the magnitude of the
connection weights between hidden and output layers, one could
reduce the generalization error which is essential to the regular-
ization of neural network learning [6].

7) Predicting Unseen Samples Outside the Q-Union: In prac-
tice, some unseen samples may be located outside the -union.
This may be due to the fact that the value is too small, and
thus, the -union covers only very few unseen samples. How-
ever, expanding the value will lead to a larger , because

more dissimilar unseen samples are included in the -union,
and a classifier with very large upper bound may not be
meaningful. Furthermore, the bounds from above the MSE
of the unseen samples and the MSE is an average of the errors.
Thus, the bound may still work well even though some of
the unseen samples are located outside the -union. This is sup-
ported by the experimental results presented in a Section IV-B.
When splitting the training and testing data sets, naturally some
unseen testing samples may fall outside the -union. However,
our experiments show that the generalization capability of the
RBFNNs selected by using the is still the best in terms of
testing accuracy when compared with other methods.

On the other hand, if there is a large portion of unseen samples
located outside the -union, i.e., dissimilar to the training sam-
ples, one may consider revising the training data set to include
more such samples and retrain the classifier. As mentioned be-
fore, classifiers may not be expected to classify unseen samples
that are totally different from the training set. We will describe
an experiment for this scenario in Section IV-C.

E. Comparing Two Classifiers Using the

One way to compare two classifiers is to fix the
value and compare the difference between their values. The
other way is to fix the value and compare the of the
two classifiers.

Assume there are two classifiers, and . There exists a
for yielding and a for yielding

. If , then has a better generaliza-
tion capability because covers more unseen samples but still
has the same generalization error upper bound. In other words,
the architecture selection could be done by searching the func-
tional space and seek with the largest producing

. This is an important property of and we
will make use of it to find the optimal classifier with the largest
coverage in Section III.

On the other hand, one could compare the two classifiers,
and , based on their computed using the same
value. The classifier with lower is expected to have a
better generalization capability.

All other comparison methods by not fixing either or
may not be meaningful.

III. ARCHITECTURE SELECTION USING WITH

SELECTED MC SG

The selection of the number of hidden neurons in the RBFNN
is usually done by sequential learning [8], [23], [24], [29] or by
ad hoc choice. The sequential learning technique only makes use
of the training error to determine the number of hidden neurons,
without any reference to the generalization capability. More-
over, [8] and [29] assume that the classifier does not have prior
knowledge about the number of training samples while [23] and
[24] do. For ease of comparison with other architecture selection
method, we assume that the number of training samples in our
experiments is known to the classifier. In this section, we pro-
pose a new technique based on to find the optimal number
of hidden neurons which makes use of the generalization capa-
bility of the RBFNN.

YEUNG et al.: LOCALIZED GENERALIZATION ERROR MODEL AND ITS APPLICATION TO ARCHITECTURE SELECTION FOR RBFNN 1299

For any given threshold on generalization error bound
, the localized generalization error model allows us to

find the best classifier by maximizing , assuming that the
MSE of all samples within the -union is smaller than . One
can formulate the architecture selection problem as a maximal
coverage classification problem with selected generalization
error bound (MC SG), i.e.,

subject to (13)

In the RBFNN training algorithm presented in Section III-B,
once the number of hidden neurons is fixed, the center posi-
tions and widths could be estimated by any automatic clustering
algorithm such as -means clustering, self-organizing map, or
hierarchical clustering; so we only need to concentrate on the
problem of determining the number of hidden neurons. This
means that and because it is not
reasonable to have the number of hidden neurons higher than
the number of training samples.

Problem (13) is a 2-D optimization problem. The first dimen-
sion is the number of hidden neurons and the second di-
mension is the for a fixed . For every fixed and , we
can determine . These two parameters, and , are in-
dependent. Furthermore, by substituting (9) into the (7), with
probability , we have the for RBFNN as follows:

(14)

Let . For every , let the that satisfies
be , where is a constant real number

existing because the second-order derivative of
(14) is positive. We could solve (14) as follows:

(15)

Equation (15) could be solved by the quadratic equation and
two solutions will be found for . For and being
usually a very small constant when the number of samples is
large, there will be one positive and one negative real solution
for because, in (15), the coefficients for the terms and
are positive, but the constant term is negative. This means that
there will be two real and two imaginary solutions for and let

be the only positive real solution among the four. Note that
is defined to be the width of the -neighborhood and as such

it must be a nonnegative real number

else
(16)

For RBFNN architecture selection, (13) is equivalent to

(17)

A. Parameters for MC SG

In (7), the difference between the maximum and minimum
values of target outputs and the number of training samples

are fixed for a given training data set, and the maximum
possible value of the MSE and the confidence level of the
bound, namely, and , could also be selected before any clas-
sifier training.

In a -class classification problem, one may select
where and .

if the sample belongs to the th class, and one minimizes the
MSE of all the RBFNN outputs simultaneously. All the

, and are vectors, and thus, the sum of s of all
the RBFNN outputs are minimized in the MC SG. One may
notice that the minimization of the sum of s of all the out-
puts is equivalent to the minimization of the average of them.
However, the average of s may provide a better interpreta-
tion and its range is not affected by the value .

The determination of the constant is made according to
the classifier’s output schemes for classification. For instance,
if class outputs are different by one, then may be selected as
0.25 because a sample is misclassified if the square of its devi-
ation from the target output is larger than 0.25. From (16), one
may notice that the smaller is, the larger number of hidden
neurons will be selected by the MC SG because the value of
those RBFNNs will be zero if its training error is larger than the

value and training error decreases as the of number of hidden
neurons increases. On the other hand, if the value is selected
to be larger than 0.25, the effect to the architecture selection will
be insignificant. Experimental results show that those RBFNNs
yielding training error larger than 0.25 will not yield good gen-
eralization capability, i.e., poor testing accuracies.

B. RBFNN Architecture Selection Algorithm for MC SG

The solution of (17) is realized using the following selection
algorithm. The SG is independent of any training algo-
rithm of the RBFNN. However, one of the fast RBFNN training
methods is employed in this paper for all of the experiments
[11]. Steps 2) and 3) are the unsupervised learning to find the
centers and widths of the RBFs in the hidden neurons and Step
4) finds the least-square solution of the connection weights by
making use of the linear relationship, shown in (8), between the
hidden neuron outputs and RBFNN outputs. Other training al-
gorithms could be adopted in Steps 2)–4) in the following archi-
tecture selection algorithm.

The architecture selection algorithm of the MC SG is as
follows.

1) Start with (denotes the number of hidden
neurons).

2) Perform -means clustering algorithm to find the centers
for the hidden neurons.

3) For each of the RBF hidden neurons, select its width
value to be the distance between the center of itself and the
one of the nearest hidden neuron.

4) Compute the connection weights using a pseudoinverse
method.

5) Compute the -value for the current RBFNN using (16).
6) If the stopping criterion is not fulfilled, and

go to Step 2).
The stopping criterion could be selected as “ is equal to

the number of training samples” and this will allow the MC SG
to search for all possible number of hidden neurons. However,

1300 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

it is computationally prohibited for large data set and we will
discuss heuristic stopping criterion in Section III-C. Moreover,
constructive approach is employed here because it is more ef-
ficient to start the search with one hidden neuron, and add one
hidden neuron for each iteration.

C. Heuristic Method to Reduce the Computational Time for
MC SG

Same as the other methods, is generally not differ-
entiable with respect to (not a smooth function). One must
try out all possible values in order to find the optimal so-
lution. Our experimental results show that drops to
zero when the classifier becomes too complex, i.e., is too
large, and heuristically, an early stop could be made to reduce
the number of classifier trainings when approaches zero. In
our experiments, we stop the search when the values drop
below a threshold. In fact, does not increase significantly after
it drops below 10% of the maximum value of being found,
and thus, it is used as the threshold to speed up the MC SG.

IV. EXPERIMENTS ON 17 BENCHMARKING UCI DATA SETS

The experimental setup is explained in Section IV-A and we
present and discuss the experimental results in Section IV-B.
Section IV-C shows the special case when the training samples
are drawn with bias.

A. Experimental Setup

In this section, we compare the MC SG with well-known ar-
chitecture selection methods [5], [6]:CV, sequential learning,
and two ad hoc methods. Steps 2)–4) of the architecture selec-
tion algorithm presented in Section III-B are used to train the
RBFNNs for all architecture selection methods. Every data set
is divided into two parts, training and testing, and each consists
of 50% of the samples. This is repeated ten times to generate ten
independent runs for each data set. Table II shows the average
classification accuracies on the testing sets for these ten runs.
The testing data set is treated as future unseen samples. All in-
puts are scaled to to eliminate the effect of large values.
Seventeen real-world data sets from the UCI machine learning
repository Table I are used. A wide range of data sets is selected
from image classification, medical informatics, network secu-
rity, and financial applications. The “DAPRA99 DoS” consists
of normal and denial of service (DoS) types of samples from
the 10% training data set of DAPRA99 data set [21]. The mul-
tiple feature data set consists of large number of features while
DAPRA99 DoS, waveform, mushroom, and optical digit data
sets consist of large number of samples. In addition, small data
sets, e.g., iris, wine, and thyroid gland, and medium data sets are
selected to demonstrate that the proposed method MC SG can
be applied to any variation of classification problems in numbers
of samples, features, and classes. Moreover, in the experiments,
a sample is considered to be incorrect if its error is larger than
0.5 (a squared error of 0.25), and therefore, we will use
as the threshold value for the in MC SG.

As suggested in [5], fivefolds (5-CV) and tenfolds (10-CV)
CVs are used in our experiments. In a -fold CV, the training
data set is divided into disjoint partitions and one of them

TABLE I
SEVENTEEN BENCHMARKING DATA SETS

is used as the validation set. classifiers are trained using dif-
ferent partitions and the average of these validation errors
is used as the CV error. The number of hidden neurons which
yields the lowest CV error will be selected. The “sequen_MSE”
and “sequen_01” methods are to add hidden neurons until, re-
spectively, the training MSE and the classification error
is minimized. The ad hoc method denoted by “ ” uses every
training sample as a center of RBFNN hidden neurons. The
other ad hoc method “SQRT ” selects the number of hidden
neurons to be equal to the square root of the number of training
samples.

B. Experimental Results and Analysis

Experimental results in Tables II and III show that the
MC SG performs best among the methods consistently in
terms of highest average classification accuracy for unseen
samples, smaller average number of hidden neurons, and fast
in training times without regarding to the numbers of training
samples, features, and classes of the data sets. However, we
note that the differences in terms of average testing accuracies
are not very big, therefore, one-tailed McNemar tests [27],
[28] were performed to examine the statistical significance of
the improvements made by the MC SG. Table IV shows that
the RBFNNs selected by MC SG are statistically significantly
better than those RBFNNs selected by other methods at 0.05
level of significance (i.e., McNemar test value larger than 2.71).
Furthermore, the statistical significances shown in Table IV
indicate that the proposed method outperforms other method
more significantly when the number of training samples is
large. It is also interesting to observe that from Tables II and IV,
none of the other six methods performs the second best consis-
tently in all of the experiments while the MC SG consistently
performs best for all 17 data sets.

Table III shows that the CV method is very time consuming,
and it requires 5 to 10 000 times longer to find the best RBFNN.
The reason that less time is required by the MC SG than the two
sequential learning methods is due to the early stopping of the

YEUNG et al.: LOCALIZED GENERALIZATION ERROR MODEL AND ITS APPLICATION TO ARCHITECTURE SELECTION FOR RBFNN 1301

TABLE II
AVERAGE CLASSIFICATION ACCURACY (AND THEIR STANDARD DEVIATION IN BRACKETS) FOR TESTING DATA SET OVER TEN INDEPENDENT RUNS

TABLE III
AVERAGE NUMBER OF HIDDEN NEURONS AND TOTAL RUNNING TIME IN SECONDS OVER TEN INDEPENDENT RUNS (IN BRACKET)

algorithm. However, the MC SG and the two sequential
methods would still be at least five to ten times faster than
the CV methods even if these methods try out all the possible
number of hidden neurons.

A sequential learning method using best training MSE
as a stopping criterion performs better than the one using
training classification error. However, both methods will select
a classifier with a larger number of hidden neurons. Moreover,
they consider the training error only without regarding to the
classifier complexity and generalization capability; thus, their
performances fluctuate. For instance, in Table II, the experi-
mental results for the Pima diabetes, heart disease, German
credit approval, and car evaluation data sets show that the
average testing accuracies of the RBFNNs selected based on
the minimization of the training classification error are 54.37%,
60.37%, 42.99%, and 76.50%, respectively. In contrast, the

average testing accuracies for those RBFNNs selected based on
the training MSE are 72.68%, 79.17%, 69.62%, and 92.33%,
respectively. These experimental results show that the training
classification error may not be an appropriate criterion for
architecture selection of RBFNNs trained using MSE. More-
over, the average testing accuracies of the RBFNNs selected
based on the proposed generalization error model are 79.40%,
83.24%, 76.64%, and 92.35%, respectively. This indicates that
the selection of RBFNN based on training performance may
not be appropriate.

The ad hoc method yields very high accuracy in some data
sets, e.g., wine and breast cancer data sets, while it yields less
than 50% testing accuracy in the experiments of the Japanese
credit approval, German credit approval, and ionosphere data
sets. While SQRT performs better than the method in
many data sets, it does use more hidden neurons than the

1302 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

TABLE IV
MCNEMAR TEST STATISTICS BETWEEN MC SG AND OTHER METHODS FOR TESTING DATA SET OVER TEN INDEPENDENT RUNS

TABLE V
EXPERIMENTAL RESULTS FOR THE BIASED TRAINING DATA SET FOR THE UCI THYROID GLAND DATA SET

MC SG for virtually the same level of classification accuracy.
For example, from the breast cancer data set, the MC SG uses
nine times less hidden neurons than the SQRT . Both ad hoc
methods are fast in training time because they employ prese-
lected number of hidden neurons; however, this number is usu-
ally too large. In addition, for data sets consisting of extremely
large number of training samples, both ad hoc methods may se-
lect an unreasonable number of hidden neurons. For example,
the method selects 247 010 hidden neurons for the DAPRA99
DoS data set which is infeasible for training.

One may notice that the testing accuracies of some data sets,
e.g., waveform, ionosphere, and German credit approval, are not
very high. However, our aim of presenting these experimental
results here is not to demonstrate the superiority of our method
for all data sets. Our aim is to present an overall comparison
of the performance of the RBFNNs constructed by our pro-
posed method and that of other popular methods using the same
training and testing data sets.

C. Experiments on a Biased Data Set

With a random splitting of training and testing data sets, the
-union of the training samples usually covers most of the

testing samples with a small value, i.e., the testing samples
are similar to training samples. This would also be the case in
real-world applications of pattern classifier that unseen samples
may not be very dissimilar to the training ones.

In some cases when the training data set is sampled poorly, the
classifier being trained using this data set would perform poorly
for future unseen samples. However, the interesting question is:

Will the MC SG still be working well in such cases? We per-
formed a biased sampling using the thyroid gland data set be-
cause this data set consists of fewer features and thus is easier
for visualization. Training samples are selected if its value in
feature 1 is less than 0.57 such that the training and testing sam-
ples are approximately splitting in half and their distributions
are shown in Fig. 3. Then, we swap the training and testing data
sets to obtain the second run of this experiment. These processes
are repeated for the other four features to obtain ten training
and testing data set pairs. The results shown in Table V are the
average over these ten trials. Fig. 2 shows the distributions of
training and testing samples in a random, unbiased splitting, and
the shaded area in Figs. 2 and 3 is the coverage of the -union.
From Figs. 2 and 3, one may notice that most of the testing sam-
ples are covered by the -union in random splitting while a large
portion of testing samples are located outside the -union in the
biased splitting. From Table V, one may notice that the accu-
racies of the classifiers selected by all methods are lower than
60%; however the MC SG still outperforms other architecture
selection methods. This indicates that the minimization of the
local generalization error helps minimizing the generalization
error even for unseen samples that deviated from the training
samples a lot.

One may notice that the training error in such a biased training
data set is misleading. Thus, CV methods which depend on re-
sampling from the training samples may not provide good esti-
mation of the generalization error. The two sequential learning
methods depend totally on the training error and they perform
worse than the MC SG; however, interestingly, they perform
better than the CV methods. This may be due to the fact that
CV methods make use of only a portion of the biased training

YEUNG et al.: LOCALIZED GENERALIZATION ERROR MODEL AND ITS APPLICATION TO ARCHITECTURE SELECTION FOR RBFNN 1303

Fig. 2. Distributions of the training and testing samples of a random split for the UCI thyroid gland data set and shaded area is the coverage of the Q-union.

Fig. 3. Distributions of the training and testing samples of the biased split for the UCI thyroid gland data set and shaded area is the coverage of the Q-union.

samples while all other methods use all of the training samples;
thus, the training samples used in both CV methods deviate a lot
more than the original training data set from the testing samples.
In real random splitting, this may not be the case. However, it
is difficult to guarantee the quality of the training data set. In
summary, experimental results show that the MC SG method
finds the RBFNN yielding the best testing classification accu-
racy with fewer hidden neurons and uses less training time con-
sistently in all 17 data sets.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new generalization error model
based on the localized generalization error. bounds from
above the generalization error for unseen samples within the

-neighborhoods of the training samples. Moreover, an archi-
tecture selection method, namely MC SG based on the ,
is proposed to find the RBFNN classifier which has the largest
coverage of unseen samples while its is still less than a

preselected threshold. The was shown to be a generaliza-
tion of and the experimental results support our claim.

This paper has demonstrated the use of the MC SG to find the
number of hidden neurons for an RBFNN, while the values of
other parameters were found using existing methods. A possible
extension of our result is to find the values of other RBFNN pa-
rameters, e.g., center positions, width, and connection weights,
via an optimization of because these parameters are also
coefficients of the . However, the tradeoff between the opti-
mality of the solution and time complexity will be an important
consideration.

Another future work could be the derivation of the for
distribution of other than the uniform distribution. One could
ultimately derive the by taking the distribution of as
one of its parameters.

This paper could also serve as a theoretical foundation for fur-
ther applications of the such as feature selection and active
learning. It will also be interesting to investigate the derivation

1304 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

of the ST-SM for other classifiers or using objective functions
other than MSE for classifier training.

ACKNOWLEDGMENT

The authors would like to thank the six reviewers who pro-
vided very helpful comments.

REFERENCES

[1] H. Akaike, “A Bayesian analysis of the minimum AIC procedure,” Ann.
Inst. Statist. Math., pp. 9–14, 1978.

[2] D. Chakraborty and N. R. Pal, “A novel training scheme for multi-
layered perceptrons to realize proper generalization and incremental
learning,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 1–14, Jan. 2003.

[3] V. Cherkassky and F. Mulier, Learning From Data. New York:
Wiley, 1998.

[4] V. Cherkassky, X. Shao, F. M. Mulier, and V. N. Vapnik, “Model com-
plexity control for regression using VC generalization bounds,” IEEE
Trans. Neural Netw., vol. 10, no. 5, pp. 1075–1089, Sep. 1999.

[5] T. Hastie, R. Tibshirani, and J. Friedman, The Element of Statistical
Learning. New York: Springer-Verlag, 2001.

[6] S. Haykin, Neural Networks. Englewood Cliffs, NJ: Prentice-Hall,
1998.

[7] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Statist. Assoc., vol. 58, pp. 13–30, 1963.

[8] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57–67,
Jan. 2005.

[9] L. C. Jain and V. R. Venuri, Eds., Industrial Applications of Neural
Networks. Boca Raton, FL: CRC Press, 1999.

[10] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[11] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned

processing units,” Neural Comput., pp. 281–294, 1989.
[12] W. W. Y. Ng and D. S. Yeung, “Selection of weight quantisation accu-

racy for radial basis function neural network using stochastic sensitivity
measure,” Inst. Electr. Eng. Electron. Lett., pp. 787–789, 2003.

[13] W. W. Y. Ng, D. S. Yeung, X.-Z. Wang, and I. Cloete, “A study of
the difference between partial derivative and stochastic neural network
sensitivity analysis for applications in supervised pattern classifica-
tion problems,” in Proc. Int. Conf. Mach. Learn. Cybern., 2004, pp.
4283–4288.

[14] W. W. Y. Ng, D. S. Yeung, and I. Cloete, “Quantitative study on ef-
fect of center selection to RBFNN classification performance,” in IEEE
Proc. Int. Conf. Syst., Man, Cybern., 2004, pp. 3692–3697.

[15] H. Park, N. Murata, and S.-I. Amari, “Improving generalization per-
formance of natural gradient learning using optimized regularization
by NIC,” Neural Comput., pp. 355–382, 2004.

[16] S. Watanabe, “Algebraic analysis for nonidentifiable learning ma-
chines,” Neural Comput., vol. 13, pp. 899–933, 2001.

[17] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[18] N. B. Karayiannis and M. M. Randolph-Gips, “On the construction and

training of reformulated radial basis function neural networks,” IEEE
Trans. Neural Netw., vol. 14, no. 4, pp. 835–846, Jul. 2003.

[19] S. Geman and E. Bienenstock, “Neural networks and the bias/variance
dilemma,” Neural Comput., vol. 4, pp. 1–58, 1992.

[20] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical
Foundations. Cambridge, U.K.: Cambridge Univ. Press, 1999.

[21] W. W. Y. Ng, R. K. C. Chang, and D. S. Yeung, “Dimensionality
reduction for denial of service detection problems using RBFNN
output sensitivity,” in Proc. Int. Conf. Mach. Learn. Cybern., 2003,
pp. 1293–1298.

[22] Y.-J. Oyang, S.-C. Hwang, Y.-Y. Ou, C.-Y. Chen, and Z.-W. Chen,
“Data classification with radial basis function networks based on a
novel kernel density estimation algorithm,” IEEE Trans. Neural Netw.,
vol. 16, no. 1, pp. 225–236, Jan. 2005.

[23] W. Kaminski and P. Strumillo, “Kernel orthonormalization in radial
basis function neural networks,” IEEE Trans. Neural Netw., vol. 8, no.
5, pp. 1177–1183, Sep. 1997.

[24] J. B. Gomm and D. L. Yu, “Selecting radial basis function network
centers with recursive orthogonal least squares training,” IEEE Trans.
Neural Netw., vol. 11, no. 2, pp. 306–314, Mar. 2000.

[25] H. Leung, N. Dubash, and N. Xie, “Detection of small objects in clutter
using a GA-RBF neural network,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 38, no. 1, pp. 98–118, Jan. 2002.

[26] K. Z. Mao, “RBF neural network center selection based on fisher ratio
class separability measure,” IEEE Trans. Neural Netw., vol. 13, no. 5,
pp. 1211–1217, Sep. 2002.

[27] S. L. Salzberg, “On comparing classifiers: A critique of current re-
search and methods,” Data Mining Knowl. Disc., pp. 317–327, 1997.

[28] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. London, U.K.: Chapman & Hall, 2004.

[29] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A
fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

Daniel S. Yeung (M’89–SM’99–F’04) received the
Ph.D. degree in applied mathematics from Case
Western Reserve University, Cleveland, OH, in 1974.

In the past, he has worked as an Assistant Professor
of Mathematics and Computer Science at Rochester
Institute of Technology, as a Research Scientist in
the General Electric Corporate Research Center, and
as a System Integration Engineer at TRW. He was
the chairman of the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong. He
leads a group of researchers in Hong Kong and China

who are actively engaging in research works on computational intelligence and
data mining. His current research interests include neural network sensitivity
analysis, data mining, Chinese computing, and fuzzy systems.

Dr. Yeung was the President of IEEE Hong Kong Computer Chapter, an
Associate Editor for both the IEEE TRANSACTIONS ON NEURAL NETWORKS

and the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART

B: CYBERNETICS. He has been elected as President Elect for the IEEE Sys-
tems, Man, and Cybernetics Society. He served as a General Co-Chair of the
2002–2007 International Conference on Machine Learning and Cybernetics
held annually in China, and a Keynote Speaker for the same Conference.
His IEEE Fellow citation makes reference to his “contribution in the area of
sensitivity analysis of neural networks and fuzzy expert systems.”

Wing W. Y. Ng (S’01–M’06) received the B.Sc. de-
gree in information technology and the Ph.D. degree
in computer science from the Hong Kong Polytechnic
University, Kowloon, Hong Kong, in 2001 and 2006,
respectively.

In 2006, he joined the Media and Life Science
(MiLeS) Computing Laboratory, Department of
Computer Science and Technology, Shenzhen Grad-
uate School, Harbin Institute of Technology, China,
where he is currently an Assistant Professor. His
major research interests include media computing,

localized generalization error model, feature selection, active learning, and
neural network sensitivity analysis.

Dr. Ng is the Co-Chair of Technical Committee on Computational Intelli-
gence, IEEE Systems, Man and Cybernetics Society. He was also the Founder
and Chairman of Hong Kong Polytechnic University Student Branch Chapter,
IEEE Systems, Man and Cybernetics Society. He served as the Conference Sec-
retary of the 2002–2007 International Conference on Machine Learning and Cy-
bernetics held annually in China.

Defeng Wang (S’03) received the B.Eng. degree
in computer application from Jilin University,
Changchun, China, in 2000, the M.Eng. degree
in computer application from Xidian University,
Shaanxi, China, in 2003, and the Ph.D. degree from
The Hong Kong Polytechnic University, Kowloon,
Hong Kong, in 2006.

His recent research is focused on kernel methods,
large margin learning, and medical image analysis.

YEUNG et al.: LOCALIZED GENERALIZATION ERROR MODEL AND ITS APPLICATION TO ARCHITECTURE SELECTION FOR RBFNN 1305

Eric C. C. Tsang (M’04) received the B.Sc. degree
in computer studies from the City University of Hong
Kong, Hong Kong, in 1990 and the Ph.D. degree in
computing from the Hong Kong Polytechnic Univer-
sity, Kowloon, Hong Kong, in 1996.

He is an Assistant Professor at the Department of
Computing, the Hong Kong Polytechnic University.
His main research interests are in the area of fuzzy
expert systems, fuzzy neural networks, machine
learning, genetic algorithm, rough sets, fuzzy rough
sets, fuzzy support vector machine, and multiple

classifier system.

Xi-Zhao Wang (M’98–SM’02) received the B.Sc.
and M.Sc. degrees in mathematics from Hebei
University, Baoding, China, in 1983 and 1992, re-
spectively, and the Ph.D. degree in computer science
from Harbin Institute of Technology, Harbin, China,
in 1998.

From 1983 to 1998, he worked as a Lecturer,
an Associate Professor, and a Full Professor at
the Department of Mathematics, Hebei University.
From 1998 to 2001, he worked as a Research
Fellow at the Department of Computing, Hong Kong

Polytechnic University, Kowloon, Hong Kong. Since 2001, he has been the
Dean and Professor of the Faculty of Mathematics and Computer Science,
Hebei University. His main research interests include inductive learning with
fuzzy representation, fuzzy measures and integrals, neurofuzzy systems and
genetic algorithms, feature extraction, multiclassifier fusion, and applications
of machine learning. He has published over 60 international journal papers,
completed over 20 funded research projects, and supervised over 30 doctorate
or Masters degrees.

Prof. Xi-Zhao Wang is an Associate Editor of IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, an Associate
Editor of International Journal of Information Sciences, Chair of IEEE Sys-
tems, Man, and Cybernetics Baoding Chapter; Chair of IEEE Systems, Man,
and Cybernetics Technical Committee on Computational Intelligence, and an
Executive Member of Chinese Association of Artificial Intelligence. He is the
General Co-Chair of the 2002, 2003, 2004, 2005, 2006, and 2007 International
Conference on Machine Learning and Cybernetics, cosponsored by IEEE
Systems, Man, and Cybernetics Society.

