
Information Sciences 181 (2011) 4230–4252
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Particle swarm optimization for determining fuzzy measures from data

Xi-Zhao Wang a, Yu-Lin He a, Ling-Cai Dong a, Huan-Yu Zhao b,⇑
a Key Lab of Machine Learning and Computational Intelligence, Department of Mathematics and Computer Science, Hebei University, Baoding 071002, Hebei,
PR China
b Institute of Applied Mathematics, Hebei Academy of Sciences, Shijiazhuang 050000, Hebei, PR China
a r t i c l e i n f o

Article history:
Received 25 December 2009
Received in revised form 21 May 2011
Accepted 1 June 2011
Available online 6 June 2011

Keywords:
Learning
Fuzzy measures
Fuzzy integrals
Particle swarm optimization
0020-0255/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.ins.2011.06.002

⇑ Corresponding author.
E-mail addresses: xizhaowang@ieee.org (X.-Z. W
a b s t r a c t

Fuzzy measures and fuzzy integrals have been successfully used in many real applications.
How to determine fuzzy measures is the most difficult problem in these applications.
Though there have existed some methodologies for solving this problem, such as genetic
algorithms, gradient descent algorithms and neural networks, it is hard to say which one
is more appropriate and more feasible. Each method has its advantages and limitations.
Therefore it is necessary to develop new methods or techniques to learn distinct fuzzy
measures. In this paper, we make the first attempt to design a special particle swarm algo-
rithm to determine a type of general fuzzy measures from data, and demonstrate that the
algorithm is effective and efficient. Furthermore we extend this algorithm to identify and
revise other types of fuzzy measures. To test our algorithms, we compare them with the
basic particle swarm algorithms, gradient descent algorithms and genetic algorithms in lit-
eratures. In addition, for verifying whether our algorithms are robust in noisy-situations, a
number of numerical experiments are conducted. Theoretical analysis and experimental
results show that, for determining fuzzy measures, the particle swarm optimization is fea-
sible and has a better performance than the existing genetic algorithms and gradient des-
cent algorithms.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Fuzzy measures [31,33,36,68] and fuzzy integrals [15,59,64,66,70] have been applied successfully in multi-attributes
decision-making [18,53,54], classification [52,65,69], information fusion [3,5,11,43,49], nonlinear multi-regression [30],
feature selection [19,44] and image processing [24,32,34,35]. The reason of success is from the highly non-additive and
non-linear characteristics of fuzzy measures and fuzzy integrals. Fuzzy measure is the generalization of classical measure
by using non-additivity instead of additivity, which makes fuzzy measure be able to describe the importance of each indi-
vidual information source (attribute or classifier) as well as the interaction [13] among them. Mathematically, fuzzy integral
is a generalization of classical Lebesgue integral. Further more, it is also the generalization of OWA [67] and WOWA [45]. Due
to the non-linearity, fuzzy integral is testified to be a better tool of information fusion.

When fuzzy integrals are applied to solve real problems, values of the corresponding fuzzy measures should be known in
advance. It means that the identification of fuzzy measures is a fundamental task. Given a finite space with cardinality n,
then generally, 2n � 2 coefficients are needed to determine for a fuzzy measure, which has the exponentially computational
complexity. It explicitly shows that the task of determining fuzzy measures is very difficult.
. All rights reserved.

ang), zhaohuanyu@163.com (H.-Y. Zhao).

http://dx.doi.org/10.1016/j.ins.2011.06.002
mailto:xizhaowang@ieee.org
mailto:zhaohuanyu@163.com
http://dx.doi.org/10.1016/j.ins.2011.06.002
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4231
Many methods of determining fuzzy measures from data can be found from references. For example, Grabisch pre-
sented linear programs and quadratic programs [17] to identify fuzzy measures and successfully applied them to classi-
fication. These algorithms have a sparse constraint matrix and much long running-time. Furthermore, Grabisch [16]
introduced a gradient descent algorithm (GD) which considerably decreases the running-time and required memory.
GD was later testified to be suitable for Choquet integral and Sugeno integral [21,45] and more other types of non-linear
integrals. Wang proposed the use of neural networks [46,47] to determine fuzzy measures, which can be regarded as a
variation of classical gradient descent algorithm [1]. Keller proposed a reward-punishment approach [23] which is similar
to the neural network methods. Wang also proposed using the genetic algorithm (GA) to determine fuzzy measures
[14,40,51,56–58,63]. Due to the better robustness, GAs are further used by many researchers [9,10,12,27,28,73]. Refer-
ences show that the design of GAs depends on the type of training data. For example, the algorithm in reference [10]
was designed based on a type of data with partial information. Here we will classify the different training data as
Type-I Data [27,28,61,62], Type-II Data [12,51,56–58,63] and Type-III Data [8–10] (only some notations and no practical
meaning). Type-I and Type-II Data easily obtains, but Type-I Data is difficult to be given by the experts due to the 2n � 2
coefficients, and we must collect large Type-II Data to give sufficient information to determine fuzzy measures. According
to the concept of ‘‘basic information sets’’ [10], the authors present the Type-III Data and emphasize the importance of
data collection. From Type-III Data, we can use much less data to identify fuzzy measure without losing any information.
However, the procedure of collection is hard to be understood and needs much time. So in this paper, we do not discuss
this type. Recently, Mendez-Vazquez [34] presented a new method based on ‘‘Least Absolute Shrink-age and Selection
Operator (LASSO)’’ and ‘‘Expectation-Maximization (EA)’’. This method can keep the monotonicity constraints easily,
and does not need huge storage. But its performance is influenced by ‘‘dissimilarity measure’’. Beliakov converted ‘‘fitting
fuzzy measure’’ to a linear program [2] and designed a package called fmtools to facilitate other researchers. The effi-
ciency of the algorithm was not investigated sufficiently in that work. More recently, Alavi presented a modified gradient
descent algorithm (MGD) [1] and concluded that MGD had better performance than GD [16] and GA [58] through numer-
ical simulations. In this paper, we will concentrate only on using particle swarm optimization technique to determine
fuzzy measures.

Although using soft computing techniques such as GAs and neural networks to determine fuzzy measures is successful to
some extent, there exist many limitations in the application process. For example, the GD and neural network frequently fall
into the local minimum, and GAs are much slower. It is necessary to mine new computational techniques for determining
fuzzy measures. In reference [72], the authors have tried to use a special particle swarm algorithm to determine general set
functions from the given data and find that particle swarm optimization (PSO) is suitable. However, whether PSO can be used
to determine types of fuzzy measures and to revise fuzzy measures has yet to be verified. In this paper, we mainly focus on
this problem. Using PSO to determine various types of fuzzy measures is addressed in this paper. The related theoretical
analysis and experimental demonstrations are given. In addition, a comparison among the MGD and GA and our proposed
PSO methods is conducted.

The rest of the paper is organized as follows: In Section 2, we briefly introduce the basic concepts on fuzzy measures and
fuzzy integrals respectively. In Section 3, we formulate the problems to be solved. In Section 4, we design some special par-
ticle swarm algorithms to determine two special fuzzy measures and to revise fuzzy measures; to test our algorithm. In Sec-
tion 5, we compare our algorithms with the basic particle swarm algorithm (BPSO), MGD and GA in literatures, and conduct a
number of experiments to verify whether our algorithms are robust. In Section 6, we draw some conclusions and propose our
future research.

In this paper, all algorithms are implemented in visual basic 6.0. The CPU of computer is AMD Sempron 2400+.
2. Basic concepts

In this section, we recall some basic concepts and theorems required in this paper.

2.1. Fuzzy measure

Due to the limitation of classical measure, Sugeno, the Japanese scholar, presents set functions called fuzzy measures
which use monotonicity instead of additivity. In practical applications, we often use regular fuzzy measure [55] on finite sets.

Definition 2.1. Let X be a finite set, 2X be the power set of X. If set function l : 2X ? [0,1] satisfies the following
conditions:

(1) l(/) = 0, l(X) = 1.
(2) If E 2 2X, G 2 2X, E � G, then l(E) 6 l(G)
then l is called a regular fuzzy measure defined on 2X.

From definition of the fuzzy measure, we can see that, if we want to determine a general regular fuzzy measure in a space
of n elements, 2n � 2 coefficients are needed to determine. When n is bigger, the determination is more difficult. To decrease
the complexity of general fuzzy measures, several special fuzzy measures [55] are proposed.

4232 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
Definition 2.2. Let X be a finite set and 2X be the power set of X. If a fuzzy measure l : 2X ? [0,1] satisfies the following
conditions:

(1) l(/) = 0, l(X) = 1;
(2) l(A [B) = l(A) + l(B) + k � l(A) � l(B)
8A; B � X; A \ B ¼ /; k 2 ð�1;1Þ
Then l is called a regular k-fuzzy measure defined on 2X.

The condition (2) of Definition 2.2 is called as k-rule. When k = 0,k-rule coincides with additivity of classical measure.
Denoting finite set X = {x1,x2, . . .xn}, the value li = l({xi}) is called measure density.
Theorem 2.1 [55]. The parameter k of a regular k-fuzzy measure is determined by the equation:
Yn

i¼1

ð1þ kliÞ ¼ 1þ k ð1Þ
Theorem 2.2 [55]. Let finite set X = {x1,x2, . . .xn}, k – 0, then
lðEÞ ¼ 1
k

Y
xi2E

ð1þ kliÞ � 1

" #
; 8E � X
If we know the values of k-fuzzy measures on singleton sets, we can use Theorem 2.1 to obtain the values of k and then use The-
orem 2.2 to obtain the values on other sets. It implies that a k-fuzzy measure can be determined by measure densities. In addition,
k-fuzzy measure should satisfy the following bounding conditions [51]:

(1) If there exists some li = 1, then lj = 0 for any j – i.
(2) If li < 1 for all li, then there exist at least two of them being positive.

Now we explain that there is only one solution k for the problem in Theorem 2.1. This result is important later in this
paper.

Theorem 2.3. If we know the measure density li on finite set X = {x1,x2, . . .xn}, then there is only one solution k obtained from (1).
Proof. Let lðXÞ ¼ 1;li ¼ lðfxigÞ ¼ ai; i ¼ 1;2; . . . ;n; f kðkÞ ¼
Qk

i¼1ð1þ ai � kÞ; k ¼ 2; . . . ;n. Without loss of generality, sup-
pose a1 > 0, a2 > 0, we can know "k 2 (�1,1), (1 + ak � k) > 0, k = 1, . . . , n.

From fk(k) = (1 + ak � k)fk�1(k), we know
f 0kðkÞ ¼ ak � fk�1ðkÞ þ ð1þ ak � kÞf 0k�1ðkÞ and f 00k ðkÞ ¼ 2ak � f 0k�1ðkÞ þ ð1þ ak � kÞf 00k�1ðkÞ:
It can easily be proved that "k = 2, . . . , n, "k 2 (�1,1), if f 0k�1ðkÞ > 0 and f 00k�1ðkÞ > 0, then f 0kðkÞ > 0 and f 00k ðkÞ > 0.
From f 02ðkÞ ¼ a1 � ð1þ a2 � kÞ þ a2 � ð1þ a1 � kÞ > 0 and f 002 ðkÞ ¼ 2 � a1 � a2 > 0, we obtain f 00k ðkÞ > 0. This explains that

function fn(k) is concave at (�1,1). The derivation of fn(k) is f 0nð0Þ ¼
Pn

i¼1ai.
Note that limk?1fn(k) =1. We conclude that

(1) If
Pn

i¼1ai < 1, there is only one intersection of the curve fn(k) and the line f(k) = 1 + k in (0,1).
(2) If

Pn
i¼1ai ¼ 1, the line f(k) = 1 + k is the tangent line of fn(k) at k = 0.

(3) If
Pn

i¼1ai > 1, due to f 0nðkÞ > 0 and f(k) = 1 + k 6 0, there is only one intersection of the curve fn(k) and the line f(k) = 1 + k
in (�1,0).
We have thus proved the theorem. h

In evidence combination problems, there are two important fuzzy measures which are called belief measures and plau-
sibility measures. They are all induced by basic probability assignments.

Definition 2.3 [55]. A set function m : 2X ? [0,1] is called a basic probability assignment, if it satisfies the following
conditions:

(1)
P

E�XmðEÞ ¼ 1
(1) m(/) = 0

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4233
Definition 2.4 [55]. If m is a basic probability assignment, a set function Bel : 2X ? [0,1] defined byX

BelðEÞ ¼

F�E

mðFÞ 8E 2 2X
is called a belief measure induced by m.
Definition 2.5 [55]. If m is a basic probability assignment, a set function Pl : 2X ? [0,1] defined by
PlðEÞ ¼
X

F\E–/

mðFÞ 8E 2 2X
is called a plausibility measure induced by m.
Any belief measure is super-additive, while any plausibility measure is sub-additive. Functions Bel and Pl defined by the

same basic probability assignment m are dual in the sense that
BelðEÞ ¼ 1� PlðEcÞ; 8E 2 2X and BelðEÞ 6 PlðEÞ; 8E 2 2X :
From the definitions of belief measure and plausibility measure, we can see that if we want to determine them, we only need
to determine the basic probability assignment which induces them. In addition, if we know belief measure or plausibility
measure, then we can determine its corresponding plausibility measure or belief measure by duality.

2.2. Fuzzy integral

When a classical measure is generalized to fuzzy measure, classical integral with respect to classical measure should be
generalized. The generalized integrals with respect to fuzzy measures are called fuzzy integrals. Several types of fuzzy inte-
grals have been suggested in the literature [45,55]. Two of them are the Sugeno integral and the Choquet integral.

Definition 2.6. Let X be a finite set, 2X be the power set of X, f : X ? [0,1], l be a regular fuzzy measure defined on 2X. Then
the Sugeno integral and the Choquet integral of function f with respect to l are defined respectively by the following
formulae:
ðsÞ
Z

fdl ¼ _n
i¼1ðf ðxiÞ ^ lðAiÞÞ and ðcÞ

Z
fdl ¼

Xn

i¼1

ðf ðxiÞ � f ðxi�1ÞÞ � lðAiÞ
where 0 6 f(x1) 6 f(x2) 6 . . . 6 f(xn) 6 1, Ai = {xi,xi+1, . . .xn}, f(x0) = 0, l(An+1) = 0.
From Definition 2.6, we can see that Sugeno integral is not the generalization of classical Lebesgue integral, while Choquet

integral is. In many real applications, users often like using Choquet integral. However, it does not mean that the Choquet
integral is always superior to the Sugeno integral.

3. Questions description

In this section, we formulate our problems to be solved.

3.1. Determine fuzzy measures from Type-I Data

Supposing that X = {x1,x2, . . . ,xn} is a non-empty set, u is a class constituted by subsets of X, F is a r–algebra constituted by
subsets of X, u � F, in general F = 2X. Considering a given set function m : u ? [0,1], the values of m may be provided by do-
main experts, which are regarded as the Type-I Data. We hope to find a fuzzy measure l on F such that
lðEÞ ¼ mðEÞ 8E 2 u
In reference [62], such a fuzzy measure l is called an extension of m from u to F. If u = F = 2X, then l is called a fitting of m
from u to F. In this paper, this extension and fitting are called revising.

Such a fuzzy measure l may not exist. If it exists (not only one), we should find one; if it does not exist, we should find an
approximate one. Now we can use the least square method to transform the above problem to a constrained optimization
problem. The optimization problem [62] is described as follows:
min e2 ¼
X
E2u
½mðEÞ � lðEÞ�2

 !,
l ð2Þ
Subject to: l is one special type of fuzzy measures to be determined, where l represents the cardinality of u. A result of
e2 = 0 means that a precise solution is found.

4234 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
3.2. Determine fuzzy measure from type-II data

If we regard fuzzy integrals as multi-input single-output systems, we can obtain the Type-II Data through handling these
systems. Suppose that we have several information sources x1, x2, . . . , xn, n P 2 and a given object y. Let X = {x1,x2, . . . ,xn}, we
have the following data with sample size m:
x1 x2 � � � xn y

f11 f12 � � � f1n E1

f21 f22 � � � f2n E2

..

. ..
. ..

. ..
.

fm1 fm2 � � � fmn Em
where fij is the ith value of source xj, Ei is the ith value of object.
We hope to find a fuzzy measure l on measurable space (X,2X), such that Ei ¼

R
f idl; 8i ¼ 1;2; . . . ;m, where function fi

is defined by fi(xj) = fij, j = 1, 2, . . . , n for i = 1, 2, . . . , m.
If such a fuzzy measure l does not exist, we hope to find the optimally approximate solution. This is just the inverse prob-

lem of synthetic evaluation. We can also use the least square method to transform the above problem to a constrained opti-
mization problem. An optimization problem [14] is described as follows:
minl e ¼

ffi
1
m

Xm

i¼1

ðEi �
Z

f idlÞ2
vuut ð3Þ
Subject to: l is one special type of fuzzy measures to be determined
A result of e = 0 also means that a precise solution is found.

4. Using particle swarm optimization to determine fuzzy measures

Inspired by the behavior of bird flocking, Kennedy and Eberhart introduced the particle swarm optimization (PSO) [25] in
1995. They designed a new algorithm to originally simulate simple social systems and then to explain the complex social
behavior. In the further investigation, researchers find that the new algorithm can be used to solve complex optimization
problems.

About particle swarm optimization, there are many issues under research. We classify two aspects: (A) Improving the
original particle swarm algorithm by presenting some special strategies for special problems [4], introducing other method-
ologies into PSO [40], designing some hybrid algorithms based PSO and other soft computing technologies [50]; (B) Using
particle swarm optimization [50] or swarm intelligence [42] to solve some actual problems which are difficult to be solved
by some traditional methods.

Similar to GAs, PSO exploits a population of potential solutions (called particles) to probe the search space. But in PSO,
each particle changes its positions by learning itself and its neighbors in each generation instead of using traditional genetic
operators. It finally can find an optimally approximate solution.

There are two versions of PSO which are called global and local respectively. About the global version, there are many
specific particle swarm algorithms for different optimization problems. In this paper, we consider the algorithm with inertia
weight model [41] which is referred to as the basic particle swarm algorithm (BPSO).

Suppose that the function f(x) which we want to optimize is defined on D dimensions. The steps of BPSO are described as
follows.

Algorithm 1. 1—BPSO

Step 1: Randomly initialize the positions xi = {xij} and velocities vi = {vij} of swarm with the population size N on D dimen-
sions. The variables are denoted by fx�1; x�2; . . . ; x�Dg.

Step 2: Compute the fitness of each particle which is related to f(x), and then update pi = {pij} and g = {gj} according to the
fitness, where pi is the location of the best solution which a particle has achieved so far, g is the location of the best
solution that the whole swarm has achieved so far. If the fitness of g is larger than a given stopping criterion or the
number of iteration is larger than a given threshold, then go to step 5; otherwise, go to step 3.

Step 3: Update the velocities according to the following formula:
v ijðt þ 1Þ ¼ wi � v ijðtÞ þ c1 � randðÞ � ðpijðtÞ � xijðtÞÞ þ c2 � randðÞ � ðgjðtÞ � xijðtÞÞ
where wi is called inertia weight which usually adopts a linear decreasing strategy as follows:
wiðtÞ ¼
ðtmax � tÞ
ðtmaxÞ

� �
� ðwinitial �wfinalÞ þwfinal

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4235
in which t represents tth iteration, tmax denotes a given maximum of iteration number, winitial is the inertia weight at
the beginning, and wfinal is the inertia weight at the end. rand() represents a random number in [0,1], c1 and c2 are
called learning factors, each of which is set to be 2 in general. If the updated velocities vij > vmax, then let vij = vmax; if
vij < �vmax, then vij =
�vmax, where vmax is a constant controlled by users.

Step 4: Update particle positions according to the formula below:
xijðt þ 1Þ ¼ xijðtÞ þ v ijðt þ 1Þ
where t represents tth iteration. If particle positions xij > xjmax and xij < xjmin, then let xij = xjmax and xij = xjmin, respec-
tively, where xjmax is the upper bound of x�j ; xj min is the lower bound of x�j . Go to step 2.

Step 5: Output g and its corresponding fitness.

From the BPSO, we can see the main factors influencing on the performance are inertia weight, learning factor and max-
imum velocity. The function of inertia weight is to balance global exploration and local exploitation. The function of learning
factors is to control the particle ability of learning itself and its neighbors respectively. The maximum velocity serves as a
constraint to control the global exploration ability of particle swarm. In Ref. [39], the authors give the relationship between
inertia weight and maximum velocity. The conclusion is that the inertia weight is the direct factor of influencing on the per-
formance of BPSO; while the maximum velocity is an indirect factor. In general, we can set the maximum velocity and the
value of dynamic range of each variable, and then tune the ability of global exploration and the local exploitation by chang-
ing the inertia weight. However, they point out that selecting the inertia parameter and setting the maximum velocity may
be problem-dependent. So we should adopt different strategies [22,26,29] according to different problems.

Now we discuss using PSO to determine fuzzy measures from data.

4.1. GPSO

In this subsection, we briefly review some existing work on this topic. In [72], the authors designed a special particle
swarm algorithm. In that algorithm, they solved four main questions. Firstly, considering the inertia weight model [39]
and the complex performance mentioned in references [6,25,38,39,41,71], they adopted a nonlinear decreasing strategy of
inertia weight [6]. Secondly, based on the experimental verification of methods [7,14,20] for dealing with the constraints,
they adopted the reorder algorithm in the reference [60] to guarantee the monotonicity of general fuzzy measures. Thirdly,
they adopted the sigmoid function to improve the basic algorithm. And finally, according to the special question of determin-
ing fuzzy measures, they designed a special velocity mutation to increase the diversity of the whole swarm, which can make
the algorithm jump out of the local extremum to great extent. Through experimental analysis and comparisons, they further
demonstrated that the proposed algorithm is effective and efficient. This algorithm was named as GPSO. It used PSO to deter-
mine general fuzzy measures, i.e., to determine a set function without any other constraints except for the monotonicity. The
differences between GPSO and BPSO are that (A) BPSO adopts a linear decreasing strategy while our GPSO adopts a nonlinear
decreasing strategy of inertia weight, and (B) the sigmoid function and velocity mutation are incorporated to the GPSO.

Now we give explanations about some technical concepts in reference [10].

(1) The sigmoid function
The formulation of sigmoid function is
y ¼ 1
1þ eð�xÞ
After we update particle positions, some position values may be larger than 1 or smaller than 0. When this case occurs,
the general method in BPSO is making the position values be 1 or 0, respectively. Unfortunately, this adjustment badly
influences the search of problem space. So in GPSO, the authors adopt this function to transform the updated particle
position values into [0,1] when the position values are larger than 1 or smaller than 0. This can enhance the ability of
searching problem space.

(2) The velocity mutation
The reason of the problem that easily falls into local extremum in BPSO is that every particle velocity value tends to
zero with the number of iteration increasing. So the authors design a special strategy (the velocity mutation) in GPSO.
In details, randomly selecting one particle in every iteration, and then randomly selecting one velocity in this particle,
and then reinitializing the velocity.

(3) The successful rate
To verify the performance of GPSO, the authors set some values (empirical values) as the thresholds. The successful
rate is that how many times can achieve with running the program 100 times.

(4) The process of updating p and g
The values g and p are very important for finding the optimal value in the PSO algorithm. The procedure of BPSO can be
described as following: Firstly, g and p which represent the fuzzy measure actually are all initialized to 0; Then, we

4236 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
find the best fuzzy measure of fitness in the current swarm in accordance with the fitness after each iteration and let p
equal to the best fuzzy measure; Finally, we compare the fitness of p with g’s: if the fitness of p is larger than g’s, let
g = p. This situation indicates that there is a particle whose fitness is better than last iteration in the current swarm;
otherwise, the value of g remains unchanged. All works depicted above have been appended in the modified paper.

4.2. k-PSO

Noting the specificity of k-fuzzy measures, our main ideas for determining them are listed below:

(1) As mentioned in Section 2, if we want to determine k-fuzzy measures, we only need to determine the measure den-
sities. When we know the measure densities, we can solve the equation (1) to obtain k and then get the fuzzy measure
values on other sets by k-rule. So we only initialize each particle that represents a measure density. In addition, regard-
ing the method of solving the Eq. (1), we adopt the Newton method [23], bisection algorithm [48] or GA [28].

(2) Because k-fuzzy measures satisfy the constraints of monotonicity, we do not need to adopt the reorder algorithm to
revise the particles.

(3) In the reference [51], the authors added a step of unbiasing transformation to increase the speed of their GA and
designed a step to verify the bounding conditions of k-fuzzy measures. In our algorithm, we do not need these two
steps. The reasons are as follows: Firstly, the purpose of unbiasing transformation in [51] is to transform the expec-
tation from 1/2 to 1/n and to give a variety to the genes contained in chromosomes in the initial population (but PSO
does not have the concept of gene); Secondly, the purpose of verifying the bounding condition in [51] is to make the
gene value still locate in [0,1] after crossing and mutation, while our algorithm adopts the sigmoid function to make
the particle locate in [0,1]. Therefore, in the process of our experiments, the performance of our algorithm without
these two steps is not weakened.

(4) In reference [47], the algorithm running may lead to negative values of measure densities, so the authors used the
bounding conditions to verify in their algorithm. But in our algorithm, because we adopt sigmoid function to keep
the particle positions in [0,1], we need not to check up the bounding conditions.

Based on GPSO and the above four considerations, we now present the special particle swarm algorithm to determine k-
fuzzy measures. We denote this algorithm by k-PSO.

Algorithm 2. k-PSO
Step 1: Initialize a group of random particles, including two parts. One part is to initialize the particle positions. Each par-
ticle position represents a measure density, denoted by li = {lij}. The other part is to initialize particle velocities.
Each particle velocity represents the changed value of particle position in each iteration, denoted by vi = {vij},
where lij 2 [0,1], vij 2 [�1,1], i = 1, 2, . . . , m, j = 1, 2, . . . , n, m represents the number of particles, n represents the
number of attributes. Then we initialize pbest = 0 and gbest = 0, where pbest is the location of the best solution which
a particle has achieved so far, gbest is the location of the best solution that the whole swarm has achieved so far.

Step 2: Use Newton’s method to obtain the value of k and get the values of k-fuzzy measures on other sets by k-rule. Com-
pute the fitness of each particle, which is defined by 1

1þe, where e is computed by the formula (3), then update pbest
and gbest. If the fitness of gbest is larger than a given stopping criterion or the number of iterations is larger than a
given threshold, then go to step 6; otherwise, go to step 3.

Step 3: Update the particle velocities according to the following formula:
v ijðt þ 1Þ ¼ wi � v ijðtÞ þ c1 � randðÞ � ðpbestijðtÞ � lijðtÞÞ þ c2 � randðÞ � ðgbestjðtÞ � lijðtÞÞ ð4Þ

wi is defined by

wiðtÞ ¼
ðtmax � tÞl

ðtmaxÞl

()
� ðwinitial �wfinalÞ þwfinal ð5Þ

where t represents tth iteration, rand() represents a random number in [0,1], c1 = c2 = 2, tmax denotes a given
maximum of iterations, winitial is the inertia weight at the beginning, wfinal is the inertia weight at the end, and l
represents a given index number. If the updated velocities vij > vmax, then let vij = vmax; if vij < �vmax, then vij = �vmax,
where vmax = 1.
Step 4: Reinitialize vkp such that vkp 2 [�1,1] where vkp represents the pth velocity of the kth particle randomly selected
from the current swarm.

Step 5: Update particle positions according to the following Eq. (6):
lijðt þ 1Þ ¼ lijðtÞ þ v ijðt þ 1Þ ð6Þ

where t represents the tth iteration. If particle positions lij > 1 or lij < 0, then lij ¼ 1
1þeð�lij Þ

. Go to step 2.

Step 6: Output gbest and its corresponding error e.

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4237
The k-PSO has been implemented via VB and has been executed on a number of datasets successfully. Two of them are
shown below.

Example 1 [51]. The dataset Table 1 is selected from [51]. Choquet integral is adopted. After running the program for about
2 s, the results are shown in Table 2 and the convergence rate is shown in Fig. 1.
Example 2 [51]. The dataset Table 3 is selected from [51]. Sugeno integral is adopted. After running the program for about
3 s, the results are shown in Table 4 and the convergence rate is shown in Fig. 2.

4.3. BPPSO

According to the specificity of belief measures, the following considerations are proposed to design our algorithm:

(1) As mentioned in Section 2, if we want to determine belief measures and plausibility measures, we only need to deter-
mine the basic probability assignments. When we know the basic probability assignment, we can use Definitions 2.4
and 2.5 to determine the induced belief measure and plausibility measure. It implies that we only initialize each par-
ticle which represents a basic probability assignment. In addition, if we know the belief measures, we can use the
duality to obtain its corresponding plausibility measures. The reverse case is the same.

(2) Because belief measures and plausibility measures satisfy the constraints of monotonicity, we still do not need to
adopt the reorder algorithm to revise the particles.

(3) According to Definition 2.3, we must make the particles satisfy the conditions of basic probability assignments. In our
algorithm, we use the formulae Sumi ¼

P
jlij and lij ¼

lij

Sumi
i ¼ 1;2; . . . ; m; j ¼ 1;2;3; . . . ;2n � 1, where m represents

the number of particles, n represents the number of attributes.
(4) We add a special step in the algorithm to decrease computational time. The velocities of particles are initialized by the

following formula: v ij 2 �1
ð2n�1Þ ;

1
ð2n�1Þ

h i
; i ¼ 1;2; . . . ; m; j ¼ 1;2; . . . ;2n � 1.

In addition, let vmax = 0.02 in this algorithm.
The reason to add this step is because the condition (1) of Definition 2.3 makes the value of basic probability assignment

much smaller. If the particle velocities are much larger, the particles probably fly over the optimal position in the updating
process. Here we avoid this by decreasing the velocity and vmax = 0.02.

Based on GPSO and the above four considerations, we present the specific particle swarm algorithm to determine belief
measures. We denote this algorithm by BPPSO.

Algorithm 3. BPPSO

Step 1: Initialize a group of random particles, including two parts. One part is to initialize particle positions. Each particle
position represents a basic probability assignment, denoted by mi = {mij}. The other part is to initialize particle veloc-
ities. Each particle velocity represents the changed value of particle position in each iteration, denoted by vi = {vij},

where mij 2 ½0;1�; v ij 2 �1
ð2n�1Þ ;

1
ð2n�1Þ

h i
; i ¼ 1;2; . . . ; m; j ¼ 1;2; . . . ;2n � 1, m represents the number of particles, n rep-

resents the number of attributes. Then we initialize pbest = 0 and gbest = 0, where pbest is the location of the best
solution which a particle has achieved so far, gbest is the location of the best solution that the whole swarm has
achieved so far.
Table 1
Data of example 1.

i fi1 fi2 fi3 fi4 Ei

1 0 0 0.3 1 0.2
2 0.3 0.8 0.5 0.6 0.5
3 0.7 0.9 1 0.7 0.8
4 0.1 0 0.4 0.3 0.15
5 0.5 0.4 0.5 0.6 0.5
6 1 0.3 0.8 0.8 0.7
7 0.3 1 0 1 0.5
8 0.9 0.6 0.5 0.7 0.7
9 0.6 0.8 0.2 0.4 0.5

10 0.4 1 0.5 0 0.4
11 0.8 0.4 1 0.3 0.6
12 1 0.8 0.7 0.5 0.75
13 0.2 0.6 1 0.7 0.5
14 0 0.3 0.2 0.9 0.2

Table 2
Results of example 1.

Set Value k e Number of generation

{x1} 0.29750 0.95702 0.0160273 18
{x2} 0.18364
{x3} 0.13521
{x4} 0.15378

Fig. 1. The convergence rate of example 1.

Table 3
Data of example 2.

i fi1 fi2 fi3 fi4 fi5 Ei

1 0.8 0.3 0.1 0.1 0 0.131623
2 0.2 0.6 1 0.7 0.4 0.506664
3 0.3 0.4 0.2 1 0.1 0.354552
4 0.7 0.3 0.4 0.1 0.9 0.349929
5 1 0.5 0.9 0.9 1 0.893325
6 0.4 0 0.2 0.7 0.9 0.48364
7 0.9 0.8 0.9 1 0.3 0.70570
8 0.5 1 0.4 0.7 0.6 0.557034
9 0.7 0.9 0.8 0.2 0.7 0.412461

Table 4
Results of example 2.

Set Value k e Number of generation

{x1} 0.09004 2.38318 0.000089 31
{x2} 0.03412
{x3} 0.08254
{x4} 0.29626
{x5} 0.10983

4238 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
Step 2: Use consideration (3) earlier proposed in this subsection to handle the particles such that the condition of basic
probability assignments is satisfied. Then use Definition 2.4 to obtain the value of belief measure induced by mi.
Denote the belief measure by Beli = {belij}. Compute the fitness of each particle, which is defined by 1

1þe, where e is
computed by the formula (3), then update pbest and gbest. If the fitness of gbest is larger than a given stopping cri-
terion or the number of iteration is larger than a given threshold, then go to step 6; otherwise, go to step 3.

Fig. 2. The convergence rate of example 2.

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4239
Step 3: Update the particle velocities according to the following formula:
Table 5
Data of

i

1
2
3
4
5
6

v ijðt þ 1Þ ¼ wi � v ijðtÞ þ c1 � randðÞ � ðpbestijðtÞ �mijðtÞÞ þ c2 � randðÞ � ðgbestjðtÞ �mijðtÞÞ
where wi is defined by wiðtÞ ¼ ðtmax�tÞl

ðtmaxÞl

n o
� ðwinitial �wfinalÞ þwfinal and the settings of parameters are the same as k-PSO. Only a

difference is vmax = 0.02.
Step 4: Reinitialize vkp such that vkp 2 �1

ð2n�1Þ ;
1

ð2n�1Þ

h i
, where vkp has the same meaning as the step (4) of Algorithm 2.

Step 5: Update particle positions according the formula below: mij(t + 1) = mij(t) + vij(t + 1), where t represents tth iteration,
and mij is the value of the particle position. If mij > 1 or mij < 0, then mij ¼ 1

1þeð�mij Þ
. Go to step 2.

Step 6: Output gbest and its corresponding error e.
Example 3 [57]. The data is shown in Table 5 and the Choquet integral is adopted. After running the program about 2s, the
results are shown in Table 6 and the convergence rate is shown in Fig. 3.

4.4. FEPSO

From sub Section 3.1, we know that, for solving the optimization problems, we do not need to compute the values of non-
linear integrals. The algorithms are similar to GPSO, k-PSO and BPPSO. The main differences between them are that e is com-
puted by formula (2) instead of (3) and the fitness function uses 1

1þ
ffiffiffiffiffiffi
e2=l
p instead of 1

1þe, where l represents the cardinality of u.

We denote the algorithm by FEPSO. Brief steps of FEPSO are listed below.

Algorithm 4. FEPSO

Step 1: Initialize a group of random particles, including two parts. One part is to initialize particle positions. The represen-
tation of each particle is based on the fuzzy measure to be identified. The other part is to initialize particle velocities.
During the process of iteration, each particle velocity represents the changing value of particle position. Then initial-
ize pbest = 0 and gbest = 0 , where pbest is the location of the best solution which a particle has achieved so far, gbest
is the location of the best solution that the whole swarm has achieved so far.
example 3.

fi1 fi2 fi3 Ei

0.9 0.5 0.1 0.5
0.2 0.3 0.8 0.35
0.4 1 0.6 0.6
0 0.3 0.9 0.23
0.7 0.2 0.4 0.42
0.8 0.7 1 0.8

Table 6
Results of example 3.

SET m Bel e Number of generation

/ 0 0 0.000748 68
{x1} 0.33881 0.33881
{x2} 0.24750 0.24750
{x3} 0.19761 0.19761
{x1,x2} 0.07499 0.66129
{x1,x3} 0.05834 0.59475
{x2,x3} 0.06225 0.50736
X 0.02051 1

Fig. 3. The convergence rate of example 3.

4240 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
Step 2: Compute the fitness of each particle, which is defined by 1
1þ

ffiffiffiffiffiffi
e2=l
p , where e is computed by the formula (2), then update

pbest and gbest. If the fitness of gbest is larger than a given stopping criterion or the number of iteration is larger than
a given threshold, then go to step 6; otherwise, go to step 3.

Step 3: Update the particle velocities according to the formula (4).
Step 4: Conduct the mutation of velocity (Similar to step 4 in sub Sections 4.2 and 4.3).
Step 5: Update particle positions according to the formula (6).
Step 6: Output gbest and its corresponding error e.

We give two examples to illustrate FEPSO.

Example 4 [62]. Suppose that domain experts have specified a set function defined on the power set of X Table 7. It is easy
to check the set function does not satisfy the properties of k-fuzzy measures. The objective of this example is to revise the
values of the set function such that it becomes a k-fuzzy measure. After running the program for about 1s, a regular k-fuzzy
measure with k = �0.760844 is obtained. The error e = 0.019588, while the number of generations is 13. The results are also
shown in Table 7 and the convergence rate is shown in Fig. 4.
Table 7
Data and results of example 4.

Set Value of m Value of l

/ 0 0
{x1} 0.6 0.60875
{x2} 0.5 0.49350
{x3} 0.4 0.37678
{x1,x2} 0.9 0.87368
{x1,x3} 0.8 0.81102
{x2,x3} 0.7 0.72880
X 1 1

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4241
Example 5 [62]. Domain experts first give a number of data Table 8. Each data is considered as a value which a k-fuzzy mea-
sure take on a certain subset of X. That is, experts specify partial values of a k-fuzzy measure. The objective is to extend the
partially specified fuzzy measure to the power set. After running the program about 2s, a regular k-fuzzy measure with
k = 2.390078 is found. The error e = 0.000506, while the number of generation is 26. The results are shown in Table 8 and
the convergence rate is shown in Fig. 5.

From the above discussion, we see that the k-PSO, BPPSO and FEPSO proposed in this paper are based on GPSO. They are
designed to determine k-fuzzy measure, belief or plausible measure and to revise fuzzy measure respectively. The differ-
ences between k-PSO, BPPSO, FEPSO and GPSO are (A) GPSO is a general method and has no specific results, (B) some specific
constraints are introduced in GPSO to form k-PS, BPPSO and FEPSO for determining different types of fuzzy measures, (C) due
to the specific constrains introduced, k-PSO, BPPSO and FEPSO (including the algorithm design and algorithm performance)
have a constructive change respectively comparing with GPSO, and (D) they are not a simple revision/extension of GPSO.

5. Test and analyze the performance of our algorithms

In this section, we compare our algorithms with BPSO, GAs, and MGD respectively. Moreover, we verify whether our algo-
rithms are robust by adding perturbations (noises) to the Type-II Data.

5.1. Comparisons with BPSO

The main differences between our algorithm and BPSO are described as follows:

(1) Our algorithm adopts nonlinear decreasing strategy of inertia weight instead of linear decreasing strategy in BPSO. The
sigmoid function and velocity mutation are used in our algorithm.

(2) The specific structural characteristics of different types of fuzzy measures are incorporated into our algorithm for
identification.

To test the performance of our algorithms, we first compare our algorithm with BPSO with respect to time complexity,
success rate and number of iterations. We use the examples in Section 4. Let winitial = 0.2, wfinal = �0.3, l = 1.1, tmax = 2000
in our algorithms and winitial = 0.9, wfinal = 0.4, tmax = 2000 in BPSO, the population size be 150 and the stopping errors of
examples be 0.016029, 0.001408, 0.000872991, 0.019588, 0.000564 respectively. The five errors are the results in papers
[16,21,22]. We can regard them as empirical errors. In addition, we give examples 10–12, 16–17 for enhancing the compar-
ison. The initial data of examples 10–12 are listed in Tables 20–22. The dataset of example 16 is constructed by the strategy 1
that is introduced in subsection C. For space consideration, we do not give the dataset of example 16. The dataset of example
17 is listed in Table 26. The stopping errors of these examples are 0.000698, 0.001, 0.0001, 0.0001 and 0.000001 and the
parameters settings are same as above. The averaged results of running the program 100 times are shown in Tables
9,10,11,12, 27,28.

From Tables 9,10,11,12,27,28, we see the performances of our algorithms are much better than BPSO about successful rate
and number of iterations. One reason is that adopting the sigmoid function makes our algorithm sufficiently search the prob-
lem space during the learning process. Another reason is that adding velocity mutation increases the diversity of swarm. This
enhances the ability of jumping out of local minimum. In addition, by analyzing our algorithm, we see our algorithms do not
Fig. 4. The convergence rate of example 4.

Table 8
Data and results of example 5.

Set Value of m Value of l

/ 0 0
{x1} 0.090820 0.091203
{x2} 0.034667
{x3} 0.081278
{x4} 0.296424
{x5} 0.108398 0.108686
{x1,x2} 0.133427
{x1,x3} 0.190198
{x1,x4} 0.452242
{x1,x5} 0.223581
{x2,x3} 0.121899 0.122679
{x2,x4} 0.355652
{x2,x5} 0.152359
{x3,x4} 0.435820 0.435285
{x3,x5} 0.211077
{x4,x5} 0.482112
{x1,x2,x3} 0.240624
{x1,x2,x4} 0.524381
{x1,x2,x5} 0.276773
{x1,x3,x4} 0.621373
{x1,x3,x5} 0.348292
{x1,x4,x5} 0.678980 0.678407
{x2,x3,x4} 0.506019
{x2,x3,x5} 0.263234
{x2,x4,x5} 0.556725
{x3,x4,x5} 0.657044
{x1,x2,x3,x4} 0.707525
{x1,x2,x3,x5} 0.411817
{x1,x2,x4,x5} 0.768992 0.769285
{x1,x3,x4,x5} 0.891472
{x2,x3,x4,x5} 0.746152
{x1,x2,x3,x4,x5} 1 1

Fig. 5. The convergence rate of example 5.

4242 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
increase time complexity compared with BPSO. What is more, the results of our experiments prove that the revisions based
on the special fuzzy measures are very reasonable.
5.2. Comparisons with GAs

To compare our algorithms with the GAs [51,57,62], we test the same examples as in Section 5.1. The parameters settings
are same as Section 5.1. For a relatively fair comparison, we use the same computational environment and the same stopping
criterion to test GAs. The averaged results of running the program 100 times are shown in Table 13.

Table 9
Data of example 10.

i fi1 fi2 fi3 fi4 fi5 Ei

1 1 1 0.9 0.7 0.5 0.70229
2 0.3 0.1 1 0.9 0.6 0.61636
3 0.5 0.7 0.3 0.5 0.9 0.505893
4 1 0.5 0.4 0.1 0.5 0.296415
5 0.8 0.6 0.8 0.8 0.7 0.751446
6 0.4 0 0.2 0.7 0.9 0.481258
7 0.9 0.8 0.9 1 0.3 0.744601
8 0.5 1 1 0.5 0.1 0.443916
9 0.7 0.9 0.8 0.2 0.7 0.421968

Table 10
Data of example 11.

i fi1 fi2 fi3 Ei

1 .3824274 .2995678 7.930499E-02 .252605
2 .4745142 .2888865 .111349 .2917283
3 .3783823 .5772824 .2461612 .3825428
4 .239525 .9938543 .7308662 .5542063
5 .2542514 .6840957 .9257212 .5199865
6 .2008448 .8443157 .1794821 .3520296
7 .9084037 .9872181 .4851956 .7842782
8 .1945256 .1451641 2.766943E-02 .1219726
9 .3801534 .3227016 .7606362 .4319926

10 .1812532 .6538228 .7672724 .4433112

Table 11
Data of example 12.

Set Bel

/ 0
{x1} 0.3388
{x2}
{x3}
{x1,x2} 0.6613
{x1,x3}
{x2,x3} 0.5074
X

Table 12
The comparisons of basic algorithms and improved algorithms.

Successful rate (%) Number of iteration

Example 1 BPSO 100 388
k-PSO 100 14

Example 2 BPSO 63 274
k-PSO 100 33

Example 3 BPSO 73 81
BPPSO 100 47

Example 4 BPSO 100 333
FEPSO 100 11

Example 5 BPSO 88 401
FEPSO 100 20

Example 10 BPSO 13 458
k-PSO 100 23

Example 11 BPSO 99 79
BPPSO 100 46

Example 12 BPSO 100 63
FEPSO 100 56

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4243
From Table 13, we see our algorithms have better performance than GAs. For the success rate, our algorithms are very
stable; while GAs have good performance but do not reach 100%, because GAs have the possibility of precocity. On number
of iterations, our algorithms are faster than GAs. It may result from the particle swarm algorithm which has a more adaptive

4244 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
ability itself. Each particle has memory and the updating process is guided by pbest and gbest, which makes the particle
swarm algorithm show a single direction searching mechanism. The factors that influence time complexity are the popula-
tion size N, the number of attributes n, the number of cases m and the number of iterations t. The time complexity between
our algorithms and GAs is mainly determined by number of attributes, and is exponentially increasing with n. From Table 13,
we see this detail. Compared with other examples, the running time about examples 2 and 5 is a little longer. It means the
time-complexity of running the program is fast increasing with the number of attributes. For problems with same number of
attributes, the main factor influencing the time complexity is the population size. Because the difference between them is in
the process of updating the population, we only need to compare the time complexity in updating the population. An anal-
ysis on the complexity of the population shows that the time complexity of our algorithm is O(N) and the GAs are
O(N � log2N). What is more, the convergent speed of our algorithms is faster than GAs. The experimental results testify this
result of time complexity analysis.
5.3. Comparisons with MGD

In this subsection, we compare GPSO with MGD [16] on different training datasets. We adopt two strategies to construct
our Type-II Data. The procedures are described as follows:

Strategy 1:
Table 1
The com

Exam

Exam

Exam

Exam

Exam
(1) Given an original fuzzy measure shown in Table 14.
(2) Construct values of information sources by a generator which creates random numbers independently and uni-

formly distributed in [0,1].
(3) Calculate the fuzzy integrals as output.
Strategy 2:

(1) Given an original fuzzy measure shown in Table 14.
(2) Construct values of information sources by random selection from set {0,0.5,1}.
(3) Calculate the fuzzy integrals as output.
Five experiments are given to illustrate the comparison. Three of them are examples 6–7, 13 following strategy 1 and the
other is example 8, 14 following strategy 2. The size of training data is 20, 100, 200, 81 and 729, respectively. To save apace,
we only list the dataset of example 6 in Table 15. In addition, to verify the stability of MGD, we test 100 datasets constructed
by strategy 1 and regard it as example 15. The Choquet integral is used in this subsection.

Now we test our GPSO and MGD on examples 1, 6, 7, 8, 13, 14, 15. The parameters settings of GPSO are same as in sub-
section V.A. The stopping errors of examples are 0.00875734, 0.0001, 0.000001, 0.0000001, 0.000001, 0.0000001 and
0.0000001 respectively. The experimental results are shown in Tables 16,17,18,19, 23, 24, 25.

Regarding the processing time, we can conclude from Tables 16,17,18,19,23, 24 that MGD is better than our GPSO defi-
nitely. One obvious reason is that the time complexity of MGD is much lower than algorithms based on population including
GA and GPSO. Another reason is, in most cases, the convergent speed of MGD is faster than GPSO. However, we see that the
number of generations of GPSO is smaller than MGD from Table 16 and MGD falls into local minimum from Table 17. Com-
pared with GPSO, the stability of MGD is not better. Table 25 demonstrates this point. This shows the performance of MGD is
severely influenced by the training data. Easy-falling to the local minimum seriously affects the performance of MGD. More-
over, the difference of learning accuracy between MGD and GPSO is very little. Experimental results show that, in compar-
ison with GPSO which uses a random search strategy, MGD finds the optimal fuzzy measure along the direction of gradient
descent and keeps the mean square error minimal. This can be considered as one reason that the MGD gives better solutions
in accuracy and training time. Another reason is that, under the condition MGD dose not fall into the local minimum, MGD
has the smaller iteration-times and lower complexity.
3
parisons of genetic algorithms and improved algorithms.

Successful rate (%) Number of iteration Time (s)

ple 1 GA [18] 97 179 About 20
k-PSO 100 15 About 2

ple 2 GA [18] 96 258 About30
k-PSO 100 30 About 4

ple 3 GA [17] 99 122 About 10
BPPSO 100 45 About1.5

ple 4 GA [13] 96 77 About 8
FEPSO 100 13 About 1

ple 5 GA [13] 97 125 About 30
FEPSO 100 17 About 3

Table 14
The original fuzzy measure of example 6–8.

Original Original

l({x1}) 0.1 l({x2,x3}) 0.4211
l({x2}) 0.2105 l({x2,x4}) 0.8070
l({x3}) 0.2353 l({x3,x4}) 0.8235
l({x4}) 0.6667 l({x1,x2,x3}) 0.5
l({x1,x2}) 0.3 l({x1,x2,x4}) 0.8667
l({x1,x3}) 0.3235 l({x1,x3,x4}) 0.8824
l({x1,x4}) 0.7333 l({x2,x3,x4}) 0.9474

Table 15
Data of example 6.

i fi1 fi2 fi3 fi4 Ei

1 .4320337 .3491741 .1289113 .5241206 .4418743
2 .3384928 .1609553 .4279886 .6268888 .524032
3 .2957675 .2891313 4.346E-02 .7804725 .5846908
4 .3038577 .2025436 .4441691 .7192926 .5907549
5 .3627636 .69793 .4268516 .505666 .5278026
6 3.64E-03 .7752904 .7259288 .6084342 .6367602
7 .9609181 .9034663 .3414009 .762018 .7538807
8 .2345876 .3480371 .2732678 .4975758 .4324786
9 .5590727 .8434235 .2559503 .2839491 .4225496

10 .4655318 .6552047 .5550275 .1211381 .3515279
11 .2655494 .6261235 1.324E-02 .383044 .3769789
12 .2736396 7.069E-02 .6795302 .8530226 .6998073
13 .8637039 .8316599 .9277919 .639396 .7604112
14 .5045838 .6434411 .2268692 .4765849 .4813345
15 .4618585 .7716171 .8423412 .8957479 .8494977
16 .2043695 .6850294 .9774705 .834568 .8168723
17 .5288545 .1804157 .2257321 .6209414 .5032343
18 .1697344 .2577761 .5248094 .7237096 .605919
19 .1270091 .3859521 .1402815 .4707687 .3945077
20 .9941539 .4239982 .4000445 .9407473 .8052169

Table 16
The results of GPSO and MGD on example 1.

MGD GPSO

l({x1}) .307266 .2658922
l({x2}) .1825316 .1626612
l({x3}) .1082779 6.206E�02
l({x4}) 9.865E-02 .094211
l({x1,x2}) .5392901 .5531115
l({x1,x3}) .524068 .5245267
l({x1,x4}) .5351469 .6794262
l({x2,x3}) .448338 .4685422
l({x2,x4}) .3817421 .3868518
l({x3,x4}) .4106263 .4270666
l({x1,x2,x3}) .6674463 .69666
l({x1,x2,x4}) .7761548 .7730081
l({x1,x3,x4}) .6828253 .6912512
l({x2,x3,x4}) .5635936 .596729
Processing time 0.3 s 2 s
e 8.75E�03 8.64E�03
Number of generation 45 13

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4245
5.4. Verification of the robustness of our algorithms

Practically Type-II Data may include some noise. In this subsection we test whether our algorithms are sensitive to the
noise of Type-II Data, in other words, whether they are robust. It is expected that, for a robust algorithm, the error between
actual outputs and expected outputs is not notably increased when data includes bigger noise.

For the purpose of verifying robustness of our algorithm, we adopt two procedures used in references [12,63] to add per-
turbations in given data. The procedures are the following:

Table 17
The results of GPSO and MGD on example 6.

MGD GPSO

l({x1}) .2250576 9.92E-02
l({x2}) .2230763 .210425
l({x3}) .2447411 .2350132
l({x4}) .671806 .6666449
l({x1,x2}) .2860792 .3000486
l({x1,x3}) .4803794 .3227769
l({x1,x4}) .7239075 .7333602
l({x2,x3}) .4497355 .4206176
l({x2,x4}) .8026575 .8070102
l({x3,x4}) .8225247 .8234757
l({x1,x2,x3}) .4845417 .5001692
l({x1,x2,x4}) .8575634 .8667863
l({x1,x3,x4}) .879716 .8825088
l({x2,x3,x4}) .9429958 .947484
Processing time 0.4 s 32 s
e 1.367406E�03 1.000852E�05

Table 18
The results of GPSO and MGD on example 7.

MGD GPSO

l({x1}) .1000003 9.9999E-02
l({x2}) .2105009 .2104997
l({x3}) .2353008 .2352984
l({x4}) .6667019 .6667014
l({x1,x2}) .3000003 .3000033
l({x1,x3}) .3235041 .323504
l({x1,x4}) .7333014 .7332984
l({x2,x3}) .4210998 .4210973
l({x2,x4}) .8069983 .8070008
l({x3,x4}) .8234893 .8235021
l({x1,x2,x3}) .4999995 .5000058
l({x1,x2,x4}) .8666996 .8667004
l({x1,x3,x4}) .8823969 .8823989
l({x2,x3,x4}) .9474015 .9474007
Processing time 0.8 1 min
e 9.319149E�07 9.833265E�07
Number of generation 47 76

Table 19
The results of GA, GD, GPSO and MGD on example 8.

GA [20] GD [10] MGD GPSO

l({x1}) 0.1018 0.1114 0.0998 0.1000014
l({x2}) 0.2118 0.2767 0.2114 0.2105008
l({x3}) 0.2353 0.2743 0.2353 0.2352987
l({x4}) 0.6652 0.6169 0.6674 0.6667012
l({x1,x2}) 0.3056 0.2731 0.3004 0.2999988
l({x1,x3}) 0.3283 0.3083 0.3237 0.3235011
l({x1,x4}) 0.7266 0.6910 0.7333 0.7332995
l({x2,x3}) 0.4220 0.2636 0.4209 0.4211024
l({x2,x4}) 0.7974 0.7444 0.8067 0.8069981
l({x3,x4}) 0.8133 0.6169 0.8232 0.8235011
l({x1,x2,x3}) 0.4999 0.5752 0.5000 0.4999982
l({x1,x2,x4}) 0.8663 0.8924 0.8665 0.8667006
l({x1,x3,x4}) 0.8824 0.9169 0.8823 0.8823968
l({x2,x3,x4}) 0.9540 1.0000 0.9475 0.9474013
Processing time 27 min 1.7 s 0.7 s 45 s
e 3.5e�3 2.6e�3 3.13e�8 9.847529E�07

4246 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
(A) Add random perturbation with diverse strengths into (3) of strategy 1 as output. The random perturbation is gener-
ated by a random variable uniformly distributed in interval [�0.5q,0.5q], where q represents the diverse strengths.

(B) Add Gaussian noise with increasing variance r2 into (3) of strategy 2 as output.

Table 20
The original fuzzy measure and results of GPSO.

Original q = 0 q = 0.001 q = 0.01

T 70 65 67
e 0.000409 0.000434 0.002705
l(/) 0 0 0 0
l({x1}) 0.2 0.199233 0.199067 0.198263
l({x2}) 0.4 0.399636 0.39993 0.401359
l({x3}) 0.1 0.098701 0.099429 0.097345
l({x4}) 0.5 0.500164 0.499956 0.499412
l({x1,x2}) 0.5 0.500581 0.501740 0.500166
l({x1,x3}) 0.4 0.402037 0.401545 0.399139
l({x1,x4}) 0.6 0.599817 0.600127 0.599176
l({x2,x3}) 0.4 0.400466 0.400123 0.401389
l({x2,x4}) 0.7 0.699366 0.700209 0.703093
l({x3,x4}) 0.7 0.700860 0.700761 0.69979
l({x1,x2,x3}) 0.6 0.599452 0.599671 0.600771
l({x1,x2,x4}) 0.8 0.801328 0.799024 0.796924
l({x1,x3,x4}) 0.9 0.899365 0.899677 0.900801
l({x2,x3,x4}) 0.8 0.801246 0.800352 0.797892
l(X) 1 1 1 1

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4247
For space consideration, we do not list the dataset itself. The size of data sets is 100 and 81, respectively. The number of
information sources is 4. Let q be 0, 0.0001 and 0.001 respectively. Let r2 be 0, 0.00096, 0.00125, 0.00625 and 0.0125, respec-
tively. The parameter settings of our algorithms are the same as in Section 5.A. The Choquet integral is still used in this
subsection.

Two original fuzzy measures are first given in Tables 20 and 21 for determining the general fuzzy measure and k-fuzzy
measure respectively. We observe the difference between both fuzzy measures with and without adding random perturba-
tion. The running results of GPSO, k-PSO are also listed in Tables 20 and 21. The running time of the programs ranges from 5 s
to 20 s.

Another original fuzzy measure is given in Table 14. We observe the output error change with the added increasing
Gaussian noise. The running results are listed in Table 22. The running time of GPSO is about 50 s.

From Tables 20–22, we see the values of all these resulting fuzzy measures are all close to the values of original fuzzy
measures and the errors are acceptable. However, when there exits bigger noise, the error is notably increased. In other
words, comparing with the GAs in reference [12,63], our algorithms shown in this paper have a good recoverability but
are less robust. However, our algorithm is more robust than the algorithms in [37,16], which can be seen from Table 22. More
numerical experiments show that, on average, the robustness of our proposed methods is a little weaker than the GAs but
there is no essential difference. The robustness of GAs depends strongly on their mutation probability and crossover mech-
anism, and sometimes the robustness of PSO is a little better than the robustness of GAs. Another mentioned phenomenon is
that GAs has the weak sensitivity to the extreme data (bigger perturbations) and our algorithms are a little sensitive to the
extreme data. One possible reason is that the crossover and mutation operations in GAs effectively resist the impact of ex-
treme data. It implies the robustness of our PSO-algorithms for determining specific types of fuzzy measures may be im-
proved by incorporating the crossover or mutation operation of GAs into our algorithms.

The essential reason hidden behind these results remains to be studied further. Practically, to determine fuzzy measures
or general set functions, if there does not exits extreme data or exits smaller noise, we suggest using particle swarm algo-
rithms; if there exits bigger noise, we suggest using GAs.

5.5. The discussion of parameters of our algorithms

In our algorithms, there are not many parameters that need to be tuned. Only the following several parameters need to be
taken care of: maximum velocity Vmax that controls the particle position (independent variable) in its range; inertia weight
w that balances the global exploration and local exploitation; cognition learning rate C1 and social learning rate C2 that con-
trol the particle ability of learning itself and its neighbors, respectively.

In general, a recommended choice for learning factors is integer 2 as mentioned in [25], since it on average makes the
weights for social and cognition parts to be 1. Under this condition, the particles statistically contract swarm to the current
global best position until another particle takes over from which time all the particles statistically contract to the new global
best position. In our algorithms, we set C1 = 2 and C2 = 2.

As mentioned in Section 4, the inertia weight is the direct factor of influencing on the performance of PSO; while the max-
imum velocity is an indirect factor. In general, we can set the maximum velocity and the value of dynamic range of each
variable, and then tune the ability of global exploration and the local exploitation by changing the inertia weight. In our algo-
rithms, we set Vmax = 1 in GPSO, k-PSO and FEPSO, while set Vmax = 0.02 in BPPSO. The reason for this is because there is a
constraint of the sum of a basic probability assignment values to be 1 for belief and plausible measure, which leads to some

Table 22
The results of four algorithms with Gaussian noise.

r2nAlgorithm Mori and Murofushi Grabisch GPSO GA[22]

0.0 0.0000 1.4E�7 6.1792E�14 5.13779E�5
0.00096 0.00087 0.00083 7.318E�4 0.00012567
0.00125 0.0117 0.0108 9.4088E�4 0.000152595
0.00625 0.0605 0.0530 0.0046 0.000511731
0.01250 0.1211 0.1054 0.0094 0.00100916

Table 23
The results of GPSO and MGD on example 13.

MGD GPSO

l({x1}) .1000001 9.9999E�02
l({x2}) .2105010 .2105011
l({x3}) .2351913 .2353014
l({x4}) .6670005 .6667103
l({x1,x2}) .3000154 .3000005
l({x1,x3}) .3232821 .3235046
l({x1,x4}) .7332942 .7333041
l({x2,x3}) .4211123 .4211023
l({x2,x4}) .8070128 .8070075
l({x3,x4}) .8235020 .8235018
l({x1,x2,x3}) .5000010 .5000102
l({x1,x2,x4}) .8667019 .8666805
l({x1,x3,x4}) .8824023 .8824017
l({x2,x3,x4}) .9473951 .9474011
Processing time 1.7 s 102 s
e 9.287915E�07 9.752643E�07
Number of generation 64 142

Table 24
The results of GPSO and MGD on example 14.

MGD GPSO

l({x1}) 0.0999012 0.1000012
l({x2}) 0.2113978 0.2105013
l({x3}) 0.2354001 0.2353016
l({x4}) 0.6674011 0.6667009
l({x1,x2}) 0.3003967 0.3000008
l({x1,x3}) 0.3237102 0.3234993
l({x1,x4}) 0.7332964 0.7333007
l({x2,x3}) 0.4210000 0.4211006
l({x2,x4}) 0.8066675 0.8070004
l({x3,x4}) 0.8233015 0.8235000
l({x1,x2,x3}) 0.4999979 0.5000005
l({x1,x2,x4}) 0.8664878 0.8667001
l({x1,x3,x4}) 0.8822984 0.8824124
l({x2,x3,x4}) 0.9474013 0.9474117
Processing time 5.4 s 312 s
e 2.9512845E�8 9.9652483E�7
Number of generation 86 138

Table 21
The original fuzzy measure and results of k-PSO.

Original q = 0 q = 0.001 q = 0.01

T 17 22 21
e 8.92e�5 2.85e�4 2.9e�3
k �0.43805 �0.43764 �0.43756 �0.44002
l({x1}) 0.2 0.200025 0.199781 0.200386
l({x2}) 0.4 0.399822 0.399914 0.400478
l({x3}) 0.1 0.099913 0.100189 0.099798
l({x4}) 0.5 0.499979 0.499826 0.500543

4248 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252

Table 25
The results of GPSO and MGD on example 15.

Successful rate (%) Number of iteration

Example 15 MGD 87 68
GPSO 100 139

Table 26
Data of example 17.

Set Value of m

/ 0
{x1} 0.09
{x2}
{x3}
{x4}
{x5} 0.1
{x1,x2}
{x1,x3}
{x1,x4}
{x1,x5}
{x2,x3} 0.122
{x2,x4}
{x2,x5}
{x3,x4} 0.436
{x3,x5}
{x4,x5}
{x1,x2,x3}
{x1,x2,x4}
{x1,x2,x5}
{x1,x3,x4}
{x1,x3,x5}
{x1,x4,x5} 0.679
{x2,x3,x4}
{x2,x3,x5}
{x2,x4,x5}
{x3,x4,x5}
{x1,x2,x3,x4}
{x1,x2,x3,x5}
{x1,x2,x4,x5} 0.769
{x1,x3,x4,x5}
{x2,x3,x4,x5}
{x1,x2,x3,x4,x5} 1

Table 27
The results on example 16.

BPSO GPSO k-PSO BPPSO

successful rate (%) 67 100 100 100
number of iteration 325 74 89 67

Table 28
The results on example 17.

BPSO EFPSO

Successful rate (%) 100 100
Number of iteration 365 13

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4249
smaller measure values, while for general fuzzy measure, k-fuzzy measure and revising fuzzy measure there is not this con-
straint, so smaller Vmax for BPPSO and larger Vmax for GPSO, k-PSO and FEPSO avoid the particles flying over the best posi-
tion and enhancing the ability of global exploration, respectively. In addition, the inertia weight often adopts a linear
decreasing strategy from 0.9 to 0.4 with time. In fact, selecting the inertial weight is related to the adopted strategy and
is problem-dependent. In determining fuzzy measures, considering the inertia weight model and the complex performance,
we adopt a nonlinear strategy. Under the condition, we suggest selecting winitial in [0.1,0.3] and wfinal in [�0.4,�0.2].

Table 29
The brief summarizations to the excellences and disadvantages of GPSO, k-PSO, BPPSO and EFPSO.

The type of fuzzy measure Excellence Disadvantage

GPSO General fuzzy measure based on
the type-II data

(1) Apply sigmoid function to restrict measure values
beyond [0,1] (faster convergent speed)

(2) Reinitialize the velocity of particle randomly in every
iteration (stronger stability)

Not for large scale problem

k-PSO k-fuzzy measure based on the
type-II data

Introduce the special strategy to deal with k-rule (stronger
stability)

Only for k-fuzzy measure

BPPSO Belief and plausible fuzzy
measure based on the type-II data

Make the particles stratify the conditions of basic probability
assignments (stronger stability)

Slower convergent speed and only for
belief and plausible fuzzy measure

EFPSO Extension and fitting of fuzzy
measure based on the Type-I Data

Introduce the special strategy to satisfy the type of fuzzy
measure wanted to determine (faster convergent speed)

Higher time-complexity

4250 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
5.6. The analysis of performance of our algorithms

BPSO is the basic PSO algorithm which firstly is used to solve the problem of determining the fuzzy measure. The exper-
imental results demonstrate it is feasible. Based on the different types of fuzzy measures, we improved BPSO and proposed
four algorithms: GPSO, k-PSO, BPPSO and FEPSO. Now, we briefly summarize their characteristics including the type of fuzzy
measure, excellence and disadvantage as Table 29.
6. Conclusions and future research

The main goals of this paper are to apply the PSO to determine some special types of fuzzy measures from data and to
prove that the determination is feasible and effective. Based on GPSO and the structural characteristics of the special types
of fuzzy measures, we design k-PSO, BPPSO and FEPSO to learn k-fuzzy measures, belief measures and to revise fuzzy mea-
sures respectively. By the analysis and comparison, we verify that the determination is feasible and the designed algorithms
have merits of easy coding, lower time complexity, faster convergent speed and stronger stability than GAs in past studies
[51,57,62]. In addition, compared with MGD, our algorithms are more robust.

Our scheduled further development in this research topic includes two aspects. Firstly, inspired by the paper [12], we try
to design a general particle swarm algorithm with self-adaptive parameters for determining most special types of fuzzy mea-
sures. Secondly, by investigating some fundamental issues of PSO and incorporating some operation mechanism in GAs into
PSO, we try to further improve the robustness of the PSO for fuzzy measure determination.
Acknowledgments

This research is supported by the National Natural Science Foundation of China (60903088, 60903089), by the Natural
Science Foundation of Hebei Province (F2010000323, F2008000635), and by the Key Project Foundation of Applied Funda-
mental Research of Hebei Province (08963522D).
References

[1] S.H. Alavi, J. Jassbi, P.J.A. Serra, R.A. Ribeiro, Defining fuzzy measures: a comparative study with genetic and gradient descent algorithms, Intelligent
Systems at the Service of Mankind, vol. 3, Springer, 2009.

[2] G. Beliakov, Fitting fuzzy measures by linear programming. Programming library fmtools, in: Proceedings of IEEE International Conference on Fuzzy
Systems, 2008, pp. 862–867.

[3] B. Biggio, G. Fumera, F. Roli, Multiple classifier systems for robust classifier design in adversarial environments, International Journal of Machine
Learning and Cybernetics 1 (1–4) (2010) 27–41.

[4] J. Bock, J. Hettenhausen, Discrete particle swarm optimisation for ontology alignment, Information Sciences, in press. doi:10.1016/j.ins.2010.08.013.
[5] G. Büyüközkan, D. Ruan, Choquet integral based aggregation approach to software development risk, Information Sciences 180 (3) (2010) 441–451.
[6] A. Chatterjee, P. Siarry, Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization, Computer & Operations Research 33

(2006) 859–871.
[7] M. Chen, Y. Liu, Q. Luo, A novel hybrid algorithm with marriage of particle swarm optimization and extremal optimization, Optimization Community e-

print, 2007.
[8] T. Chen, Static and dynamic analyzes of importance assessing for evaluation criteria and applications on transportation, Ph.D. dissertation, Inst. Traffic

and Transportation, National Chiao Tung University, Hsinchu, Taiwan, R.O.C, 1998.
[9] T. Chen, J.C. Wang, Identification of k-fuzzy measure using sampling design and genetic algorithms, Fuzzy Sets and Systems 123 (2001) 321–334.

[10] T. Chen, J.C. Wang, G.H. Tzeng, Identification of general fuzzy measures by genetic algorithms based on partial information, IEEE Transactions on
Systems, Man, And Cybernetics 30 (4) (2000) 517–528.

[11] S.B. Cho, J.H. Kim, Combining multiple neural networks by fuzzy integral for robust classification, IEEE Transaction on Systems, Man, and Cybernetics
25 (2) (1995) 380–384.

[12] E.F. Combarro, P. Miranda, Identification of fuzzy measures from sample data with genetic algorithms, Computer & Operations Research 33 (2006)
3046–3066.

[13] S.Y. Daniel, X.Z. Wang, E.C.C. Tsang, Handling interaction in fuzzy production rule reasoning, IEEE Transaction on Systems, Man, and Cybernetics – Part
B: Cybernetics 34 (5) (2004) 1979–1987.

http://dx.doi.org/10.1016/j.ins.2010.08.013

X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252 4251
[14] Y. Dong, J. Tang, Baodong Xu, Dingwei Wang, An application of particle swarm optimization to nonlinear programming, Computers and Mathematics
with Application 49 (2005) 1655–1668.

[15] M. Friedman, M. Ma, A. Kandel, On typical values and fuzzy integrals, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 27 (4)
(1997) 703–705.

[16] M. Grabisch, A new algorithm for identifying fuzzy measures and its application to pattern recognition, in: Processings of FUZZ-IEEE/IFES’95, 1,
Yokohama, Japan, 1995, pp. 145–150.

[17] M. Grabisch, Nicolas J. Nicolas, Classification by fuzzy integral: performance and tests, Fuzzy Sets and Systems 65 (2–3) (1994) 255–271.
[18] M. Grabisch, The application of fuzzy integrals in multicriteria decision making, European Journal of Operational Research 89 (1996) 445–456.
[19] Q.H. Hu, W. Pan, S. An, P.J. Ma, J.M. Wei, An efficient gene selection technique for cancer recognition based on neighborhood mutual information,

International Journal of Machine Learning and Cybernetics 1 (1–4) (2010) 63–74.
[20] X. Hu, R. Eberhart, Solving constrained nonlinear optimization problem with particle swarm optimization, in: Proceedings of the Sixth World Multi-

conference on Systemic, Cybernetics and Informatics, 2002.
[21] K. Ishii, M. Sugeno, A model of human evaluation process using fuzzy measure, International Journal of Man–Machine Studies 22 (1985) 19–38.
[22] C.F. Juang, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Transactions on Systems Man and

Cybernetics – Part B: Cybernetics 34 (2) (2004) 997–1006.
[23] J.M. Keller, J. Osborn, Training the fuzzy integral, International Journal of Approximate Reasoning 15 (1996) 1–24.
[24] J.M. Keller, H. Qiu, H. Tahani, Fuzzy integral and image segmentation, in: Proceedings of NAFIPS’86, New Orleans, 1986, pp. 324–338.
[25] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
[26] R.A. Krohling, S.C.L. Dos, Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, IEEE

Transaction on Systems, Man, and Cybernetics – Part B: Cybernetics 36 (6) (2006) 1407–1416.
[27] K.M. Lee, H. Leekwang, Genetic algorithms for fuzzy measure identification, in: Proceedings of the 3rd Internet Conference on Fuzzy Logic, Neural Nets

and Soft Computing (IIZUKA’94), 1994, pp. 461–463.
[28] K.M. Lee, H. Leekwang, Identification of k-fuzzy measure by genetic algorithms, Fuzzy Sets and Systems 75 (1995) 301–309.
[29] W. Leong, G.G. Yen, PSO-based multiobjective optimization with dynamic population size and adaptive local archives, IEEE Transaction on Systems,

Man, and Cybernetics – Part B: Cybernetics 38 (6) (2008) 1270–1293.
[30] K.S. Leung, M.L. Wong, W. Lam, Z.Y. Wang, K. Xu, Learning nonlinear multiregression networks based on evolutionary computation, IEEE Transaction

on Systems, Man, and Cybernetics – Part B: Cybernetics 32 (5) (2002) 630–644.
[31] H. Liu, Y. Jheng, W. Lin, G. Chen, A novel fuzzy measure and its Choquet integral regression model, in: Proceedings of the Sixth International Conference

on Machine Learning and Cybernetics, Hong Kong, 2007, pp. 1394–1398.
[32] Z.Q. Liu, L.T. Bruton, J.C. Bezdek, J.M. Keller, S. Dance, N.R. Bartley, C. Zhang, Dynamic image sequence analysis using fuzzy measures, IEEE Transaction

on Systems, Man, and Cybernetics – Part B: Cybernetics 31 (4) (2001) 557–572.
[33] A.M. Magdi, W. Xiao, Q-measures: an efficient extension of the Sugeno-measure, IEEE Transactions on Fuzzy Systems 11 (2003) 419–426.
[34] A. Mendez-Vazquez, P. Gader, Maximum A Posteriori EM MCE Logistic LASSO for learning fuzzy measures, in: Proceedings of IEEE International

Conference on Fuzzy Systems, 2008, pp. 2007–2013.
[35] O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno

integral, Information Sciences 179 (13) (2009) 2078–2101.
[36] P. Miranda, M. Grabisch, P-symmetric fuzzy measures, in: Proceedings of the ninth International Conference of Information Processing and

Management of Uncertainty in Knowledge-Based Systems, Annecy, France, 2002, pp. 545–552.
[37] T. Mori, T. Murofushi, An analysis of evaluation model using fuzzy measure and the Choquet integral, in: Proceedings of the 5th Fuzzy Systems

Symposium, Kobe, Japan, June 2–3 1989 (in japanese).
[38] Y. Shi, R.C. Eberhart, Fuzzy adaptive particle swarm optimization, in: Proceedings of Congress on Evolutionary Computation Seoul, Korea, Piscataway,

NJ, IEEE Service Center, 2001, pp. 101–106.
[39] Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, Lecture Notes in Computer Science 1447 (1998) 591–600.
[40] Y. Shi, H.C. Liu, L. Gao, G.H. Zhang, Cellular particle swarm optimization, Information Sciences 181 (20) (2011) 4457–4490.
[41] Y.Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation,

1998, pp. 69–73.
[42] S. Sundar, A. Singh, A swarm intelligence approach to the quadratic minimum spanning tree problem, Information Sciences 180 (17) (2010) 3182–

3191.
[43] H. Tahani, J.M. Keller, Information fusion in computer vision using the fuzzy integral, IEEE Transaction on Systems, Man, and Cybernetics 20 (3) (1990)

733–741.
[44] D.L. Tong, R. Mintram, Genetic algorithm-neural network (GANN): a study of neural network activation functions and depth of genetic algorithm

search applied to feature selection, International Journal of Machine Learning and Cybernetics 1 (1–4) (2010) 75–87.
[45] V. Torra, Y. Narukawa, Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies), Springer, 2007.
[46] J. Wang, Z.Y. Wang, Detecting constructions of nonlinear integral systems from input-output data: an application of neural networks, In: Proceedings

of the NAFIPS’96., Berkeley, 1996, pp. 559–563.
[47] J. Wang, Z.Y. Wang, Using neural networks to determine Sugeno measures by statistics, Neural Networks 10 (1) (1997) 183–195.
[48] J.C. Wang, T.Y. Chen, Bisection algorithms for solving k–fuzzy measures, in: JCIS-2006 Proceedings of Advances in Intelligent Systems Research, October

2006.
[49] L.J. Wang, An improved multiple fuzzy NNC system based on mutual information and fuzzy integral, International Journal of Machine Learning and

Cybernetics 1 (2) (2011) 25–36.
[50] S.M. Wang, J. Watada, A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty,

Information Sciences, in press. doi:10.1016/j.ins.2010.02.014.
[51] W. Wang, Z.Y. Wang, G.J. Klir, Genetic algorithms for determining fuzzy measures from data, Journal of Intelligent and Fuzzy Systems 6 (2) (1998) 171–

183.
[52] X.Z. Wang, S.X. Lu, J.H. Zhai, Fast fuzzy multi-category SVM based on support vector domain description, International Journal of Pattern Recognition

and Artificial Intelligences 22 (1) (2008) 109–120.
[53] X.Z. Wang, J.H. Zhai, S.X. Lu, Induction of multiple fuzzy decision trees based on rough set technique, Information Sciences 178 (16) (2008) 3188–3202.
[54] X.Z. Wang, S.F. Zhang, J.H. Zhai, A nonlinear integral defined on partition and its application to decision trees, Soft Computing 11 (4) (2007) 317–321.
[55] Z.Y. Wang, G.J. Klir, Fuzzy measure theory, Plenum Press (A division of Plenum Publishing Corporation), New York, 1992.
[56] Z.Y. Wang, K.S. Leung, J. Wang, Determining nonnegative monotone set functions based on Sugeno’s integral: an application of genetic algorithms,

Fuzzy Sets and Systems 112 (2000) 155–164.
[57] Z.Y. Wang, K.S. Leung, J. Wang, Genetic algorithms used for determining belief measures and plausibility measures, in: Proceedings of NAFIPS’97,

Syracuse, 1997, pp. 195–198.
[58] Z.Y. Wang, K.S. Leung, J. Wang, Genetic algorithms used for determining non-additive set functions in information fusion, in: Proceedings of IFSA’97,

1999, pp. 518–521.
[59] Z.Y. Wang, K.S. Leung, M.L. Wong, J. Fang, A new type of nonlinear integrals and computational algorithm, Fuzzy Sets and Systems 112 (2000) 223–231.
[60] Z.Y. Wang, K.S. Leung, M.L. Wong, J. Fang, K. Xu, Nonlinear nonnegative multiregressions based on Choquet integrals, International Journal of

Approximate Reasoning 25 (2000) 71–87.

http://dx.doi.org/10.1016/j.ins.2010.02.014

4252 X.-Z. Wang et al. / Information Sciences 181 (2011) 4230–4252
[61] Z.Y. Wang, J. Wang, Using genetic algorithm for extension and fitting of belief measures and plausibility measures, in: Proceedings of NAFIPS’96,
Berkeley, 1996, pp. 348–350.

[62] Z.Y. Wang, J. Wang, Using genetic algorithms for k-fuzzy measure fitting and extension, in: Proceedings of FUZZ/IEEE’96, New Orleans, 1996, pp. 1871–
1874.

[63] Z.Y. Wang, K. Xu, J. Wang, G.J. Klir, Using genetic algorithms to determine nonnegative monotone set functions for information fusion in environments
with random perturbation, International Journal of Intelligence Systems 14 (1999) 949–962.

[64] Z.Y. Wang, K. Xu, P.A. Heng, K.S. Leung, Indeterminate integrals with respect to nonadditive measures, Fuzzy Sets and Systems 138 (2003) 485–495.
[65] K. Xu, Z.Y. Wang, P.A. Heng, K.S. Leung, Classification by nonlinear integral projections, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 187–201.
[66] Z. Xu, Choquet integrals of weighted intuitionistic fuzzy information, Information Sciences 180 (5) (2010) 726–736.
[67] R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Systems, Man, and Cybernetics

18 (1988) 183–190.
[68] R. Yager, Uncertainty representation using fuzzy measures, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 32 (1) (2002) 13–

20.
[69] R. Yang, Z.Y. Wang, P.A. Heng, K.S. Leung, Classification of heterogeneous fuzzy data by Choquet integral with fuzzy-valued integrand, IEEE

Transactions on Fuzzy Systems 15 (5) (2007) 931–942.
[70] O.Y. Yao, R. Mesiar, H. Agahi, An inequality related to Minkowski type for Sugeno integrals, Information Sciences 180 (14) (2010) 2793–2801.
[71] L. Zhang, H. Yu, D. Chen, S. Hu, Analysis and improvement of particle swarm optimization algorithm, Information and Control 33 (5) (2004) 513–517

(in Chinese).
[72] H.Y. Zhao, X.Z. Wang, K. Wei, Using a particle swarm algorithm to determine fuzzy measure from data, Fuzzy Systems and Mathematics 22 (A) (2008)

357–362 (in Chinese).
[73] J. Zhu, X.P. Li, W.M. Shen, Effective genetic algorithm for resource-constrained project scheduling with limited preemptions, International Journal of

Machine Learning and Cybernetics, in press. doi:10.1007/s13042-011-0014-3.

http://dx.doi.org/10.1007/s13042-011-0014-3

	Particle swarm optimization for determining fuzzy measures from data
	1 Introduction
	2 Basic concepts
	2.1 Fuzzy measure
	2.2 Fuzzy integral

	3 Questions description
	3.1 Determine fuzzy measures from Type-I Data
	3.2 Determine fuzzy measure from type-II data

	4 Using particle swarm optimization to determine fuzzy measures
	4.1 GPSO
	4.2 λ-PSO
	4.3 BPPSO
	4.4 FEPSO

	5 Test and analyze the performance of our algorithms
	5.1 Comparisons with BPSO
	5.2 Comparisons with GAs
	5.3 Comparisons with MGD
	5.4 Verification of the robustness of our algorithms
	5.5 The discussion of parameters of our algorithms
	5.6 The analysis of performance of our algorithms

	6 Conclusions and future research
	Acknowledgments
	References

