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a b s t r a c t

The upper integral is a type of non-linear integral with respect to non-additive measures, which

represents the maximum potential of efficiency for a group of features with interaction. The value of

upper integrals can be evaluated through solving a linear programming problem. Considering the upper

integral as a classifier, this paper first investigates its implementation and performance. Fusing multiple

upper integral classifiers together by using a single layer neural network, this paper considers a upper

integral network as a classification system. The learning mechanism of ELM is used to train this single

layer neural network. A comparison of performance between a single upper integral classifier and the

upper integral network is given on a number of benchmark databases.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The classical integral has two significant features: its measure
is additive and its integrand has linear property. During the recent
several decades, various extensions ranging from the non-addi-
tive measures to non-linear integrand have been addressed by
many scholars. The following is three typical cases. In the early
seventies, Sugeno [1] introduced the concept of fuzzy measure
and fuzzy integral, which generalized the usual definition of a
measure by replacing the additivity property with a weaker
condition, i.e. the monotonicity. The Choquet integral, which is
a direct extension of the Lebesgue integral, was presented by
Murofushi and Sugeno [2]. The upper and lower integrals, which
aim to describe and formulate the interaction existing in a group
of features, were given in [3,4] by Wang et al. This paper makes an
attempt to investigate the implementation and performance of
the upper integral as a classifier.

Fusion of multiple classifiers can improve the performance of
classification [5]. Any integral defined on a finite space can be used
as an aggregation tool in information fusion [6]. And it is also used in
non-linear classification, which may be understood as a multi-
regression with categorical objective attribute [7]. Recently, there
have been several attempts to use fuzzy integral as an aggregation
operator in classification problems [8–12,24], and the results were
quite encouraging. In this kinds of methods, a fusion of decisions of
different sensors or classifiers are merged into a final decision by a
non-linear integral with respect to a non-additive measure. A fuzzy
measure expresses the weights of each sensor or each classifier for a
given class, and the weights on each subset of sensors or classifiers
as well. In the non-linear classification, Sugeno integral with respect
ll rights reserved.
to l-measures or possibility measures was used by Keller [10,11],
while Choquet integral with respect to any fuzzy measures was used
by Grabish and Sugeno [8].

In this paper, we will use upper integral with respect to
nonnegative set function in non-linear classification. The motiva-
tion is stated as follows. It is well-known that any indeterminate
integral of a nonnegative function can be identified by a decom-
position [3]. The integration value is the inner product of two
ð2n
�1Þ dimensional vectors: one is the set function and the other

is a decomposition of the integrand. The upper integral is an
extreme decomposition by which the largest integration values
can be obtained [3]. We expect that the multi-attribute classifica-
tion using upper integral have better performances.

From references we can see a number of approaches to
determine the set function, such as [2,6,8,13,15,16,18]. Each
approach has its own advantages and disadvantages and it is
hard to generally say which one is better. It implicitly indicates
that there is still a need to explore new approaches to determine
set functions for non-linear integral. This paper makes a first
attempt to select set functions and to establish an upper integral
network by using ELM.

From the existing references we know that ELMs have the
strong capability of learning and approximation. Form example,
Huang et al. in [26] discussed the universal approximation
property by using incremental constructive feedforward networks
with random hidden nodes. And then, Huang et al. investigated
the convex incremental ELM and the enhanced random search
based incremental ELM in [27,28] respectively. Furthermore, Feng
et al. in [29] addressed the error minimized ELM with growth of
hidden nodes. It is expected that the ELM can provide a better
way to establish upper integral classifier system.

In the following, we briefly present non-additive measures and
fuzzy integrals at first, and then introduce the general background
of classification based on fuzzy integrals. After this, our method
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based on upper integral and possibility theory is presented. Lastly,
some tests on real data are provided.

2. Fuzzy measures and fuzzy integrals

In this section, we will present some basic definitions which are
used in this paper. The definitions of fuzzy measures and integrals
will be presented in the restrictive case of finite spaces since here
we deal with the feature spaces which are usually finite.

2.1. Fuzzy measures

Fuzzy measures have been introduced by Sugeno [1] in the
early seventies.

Definition 2.1. Let X be a non-empty finite set and F be the power
set of X. A fuzzy measure m defined on the measurable space ðX,F Þ is
a set function m : F-½0,1� verifying the following axioms:
(1)
 mð|Þ ¼ 0,mðXÞ ¼ 1

(2)
 A� B) mðAÞrmðBÞ
ðX,F ,mÞ is said to be a fuzzy measure space.
Table 1
The joint efficiencies of a, b and c.

Workers Products per day

{a,b} 14

{a,c} 7

{b,c} 16

{a,b,c} 18
Fuzzy measures include particular cases as probability mea-
sures, possibility and necessity measures, belief measures and
plausibility measures, etc.

2.2. Fuzzy integrals

The notion of fuzzy integral, which is the logical continuation
of the notion of fuzzy measure, has also been introduced by
Sugeno [1]. Another non-linear integral, the so called Choquet
integral, which is the extension of the Lebesgue integral, has been
presented by Murofushi and Sugeno [2]. The upper integral and
the lower integral, which are two extreme specified indetermi-
nate integrals, has been introduced by Wang et al. [4].

Definition 2.2. Let ðX,F ,mÞ be a fuzzy measure space, with
X ¼ fx1,x2, . . . , xng. Let f be a measurable function from X to

[0,1], and without loss of generality, assume that 0r f ðx1Þr
f ðx2Þr � � � f ðxnÞr1, and Ai ¼ fxi,xiþ1, . . . ,xng. The Sugeno integral
and the Choquet integral of fwith respect to the measure m are
defined respectively as

ðSÞ

Z
f dm¼

_n
i ¼ 1

ðf ðxiÞ4mðAiÞÞ

ðCÞ

Z
f dm¼

Xn

i ¼ 1

ðf ðxiÞ�f ðxi�1ÞÞmðAiÞ

where f ðx0Þ ¼ 0. The symbols 4 and 3 denote the minimum and
maximum operators, respectively.

Definition 2.3. X ¼ fx1,x2, . . . ,xng, and we take its power set as F .
In this case, any function defined on X is measurable. The upper
integral and the lower integral of f with respect to the set function
m can be defined as follows

ðUÞ

Z
f dm¼ sup

X2n
�1

j ¼ 1

lj � mðEjÞjf ¼
X2n
�1

j ¼ 1

lj � wðEjÞ
, ljZ0

8<
:

9=
;

ðLÞ

Z
f dm¼ inf

X2n
�1

j ¼ 1

lj � mðEjÞjf ¼
X2n
�1

j ¼ 1

lj � wðEjÞ
, ljZ0

8<
:

9=
;

where some lj may be zero, and wðEjÞ
is the characteristic function

of set Ej,j¼ 1,2, . . . ,2n
�1, Ej are subsets of X arranged in such a
way: the binary expression of j,ðjÞ2 ¼ bðjÞn ,bðjÞn�1, . . . ,bðjÞ1 , is deter-

mined by

bðjÞi ¼
1, xiAEj,

0, xi=2Ej:

(

That is E1 ¼ fx1g,E2 ¼ fx2g,E3 ¼ fx1,x2g,E4 ¼ fx3g,E5 ¼ fx1,x3g,E6 ¼ fx2,x3g,

E7 ¼ fx1,x2,x3g, . . ..

The upper integral is a type of non-linear integral with respect to
non-additive measures, which represents the maximum potential of
efficiency for a group of features with interaction. When a set
function m and an integrand f are given, the calculation of the upper
integral or the lower integral is essentially a linear programming
problem. In this paper, we consider the implementation and perfor-
mance of the upper integral classifier. In the following, we will
present some advantages of upper integral by an classical example.

Example 2.1. [6] There are three workers a, b and c working for
f(a)¼10, f(b)¼15 and f(c)¼7 days, respectively, to manufacture a
kind of products. Their efficiencies of working alone are 5, 6 and
8 products per day, respectively. Their joint efficiencies are not
the simple sum of the corresponding efficiencies given above, but
are listed in Table 1.

Here, inequality mðfa,bgÞ4mðfagÞþmðfbgÞ means that a and b
have good cooperation. Similarly, a and c have bad relationship
and are not suitable for working together.
(1)
 Without a manager, they begin to work from the same day.
During the first f(c) days, all workers work together with
efficiency mðfa,b,cgÞ, and during next f ðaÞ�f ðcÞ days, workers a
and b work together with efficiency mðfa,bgÞ, during the last
f ðbÞ�f ðaÞ days, only b works with efficiency mðfbgÞ. Thus, the
total number of products manufactured by these workers
during these days is the Choquet integral of f with respect to m.

ðCÞ

Z
f dm¼ f ðcÞmðfa,b,cgÞþ½f ðaÞ�f ðcÞ�mðfa,bgÞþ½f ðbÞ�f ðaÞ�mðfbgÞ

¼ 198
(2)
 With a manager, the maximizing total products is 236, which
is in fact the value of the upper integral ðUÞ

R
fdm. The optimal

schedule is: a and b work together for 10 days, b works with c
for 5days, and c works alone for 2 days. The upper integral is
evaluated through solving the following linear programming
problem.
max 5m1þ6m2þ14m3þ8m4þ7m5þ16m6þ18m7

s:t: m1þm3þm5þm7 ¼ 10

m2þm3þm6þm7 ¼ 15

m4þm5þm6þm7 ¼ 7

mjZ0,j¼ 1, . . . ,7

Here, we can see that the value of the upper integral is greater
than the value of Choquet integral. The upper integral represents
the maximum potential of efficiency for a group of features
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with interaction. So, we attempt to characterize the performance
of the classifier based on upper integral.

2.3. Properties of fuzzy integrals

Generally speaking, the fuzzy integrals can be considered as
N-place operators, and we will denote

R
f dm by mða1, . . . ,anÞ with

ai ¼ f ðxiÞ,i¼ 1, . . . ,n. In this subsection, we review some properties
of fuzzy integrals.

Property 2.1. For every m, mða, . . . ,aÞ ¼ a.

Property 2.2. For the particular measure mmin defined by

8BAF ,BaX,mminðBÞ ¼ 0, and mminðXÞ ¼ 1 (resp. mmax defined by

8BAF ,Ba|,mmaxðBÞ ¼ 1, and mmaxð|Þ ¼ 0) reduces to the minimum

operator (resp. maximum).

Property 2.3. Let f,g be two functions on X and m be measure on

ðX,F Þ. Then, f ðxÞrgðxÞ for every xAX ) mðf Þr mðgÞ.

Property 2.4. Let m,n be two measures on ðX,F Þ. Then, mðBÞrnðBÞ
for every BAF ) mðf Þr nðf Þ.

Property 2.5. Using Properties 2.3 and 2.4, we can deduce

n̂

i ¼ 1

ða1, . . . ,anÞr mða1, . . . ,anÞr
_n

i ¼ 1

ða1, . . . ,anÞ

Property 2.6. For every additive measure m, the Choqute integral

reduces to the usual Lebesgue integral, i.e. ðCÞ
R

f dm¼
Pn

i ¼ 1 f ðxiÞ�

mðfxigÞ.

Property 2.7. The Sugeno integral is median

ðSÞ

Z
f dm¼medianðf ðx1Þ, . . . ,f ðxnÞ,mðA2Þ, . . . ,mðAnÞÞ

with Ai ¼ fxi,xiþ1, . . . xng as before.

Property 2.8. For every fuzzy measure, fuzzy integrals are contin-

uous functionals, i.e. for every sequence of functions ffngnAN on X

we have

lim
n-1 mðfnÞ ¼ mðlimn-1fnÞ

Referring to [3,4], we find that the upper integral and lower
integral not only have the Properties 2.3 and 2.4, but also the
following Properties 2.9–2.11.

Property 2.9. For any cA ½0,1Þ,ðUÞ
R

cf dm¼ cðUÞ
R

f dm,ðLÞR
cf dm¼ cðLÞ

R
f dm.

Property 2.10. Let m be a generalized fuzzy measure. For any given

measurable function f : X-ð0,1Þ

ðLÞ

Z
f dmrðCÞ

Z
f dmr ðUÞ

Z
f dm

Property 2.11. ðUÞ
R

f dm¼ 0 if and only if for every set A with

mðAÞ40, there exists xAA such that f(x)¼0, that is

mðfxjf ðxÞ40gÞ ¼ 0.

3. Classification by fuzzy integral

3.1. Possibility theory

In the early fifties, the economist G.L.S. Shackle proposed the
minimum/maximum algebra to describe degrees of potential sur-
prise. In 1978, professor Zadeh first introduced possibility theory as
an extension of his theory of fuzzy sets and fuzzy logic [19]. And then,
Dubois and Prade further contributed to its development [20–22].
Possibility theory is an uncertainty theory devoted to the
handling of incomplete information and it is an alternative to
probability theory. It is similar to probability theory because it is
based on set functions, and differs from probability theory by the
use of a pair of dual set functions (possibility and necessity
measures) instead of only one. Besides, it is not additive and
makes sense on ordinal structures. In Zadeh’s view, possibility
distributions were meant to provide a graded semantics to
natural language statements. However, possibility and necessity
measures can also be the basis of a full-fledged representation of
partial belief that parallels probability [20].

Possibility theory has been applied in many fields, such as
interval analysis, data analysis, database querying, belief revision,
argumentation, case-based reasoning, etc.

In the following, we review the basic notions of possibility
theory including possibility distribution, possibility measure and
necessity measure.

Definition 3.1 (Zadeh [19]). Let X be a variable taking values in the
universe of discourse U, with a generic value of X denoted by m.
Informally, a possibility distribution PX is a fuzzy relation in U,
which acts as an elastic constraint on the values that may be
assumed by X, thus, if pX is the membership function of PX , we have

PossfX ¼ ug ¼ pXðuÞ, uAU

where the left-hand member denotes the possibility that X may take
the value u and pXðuÞ is the grade of membership of u in PX . When
it is used to characterize PX , the function pX : U-½0,1� is referred to
as a possibility distribution function.
�
 pXðuÞ ¼ 0 means that state u is rejected as impossible;

�
 pXðuÞ ¼ 1 means that state u is totally possible (plausible or

unsurprising).

If the universe of discourse U is exhaustive, at least one of its
elements should be the actual, so that at least one state is totally
possible. Distinct values may simultaneously have a degree of
possibility equal to 1.

Example 3.1. Let X be the age of a president. If X is a real-valued
variable and 50rXr70. In this case, the possibility distribution
of X is the uniform distribution defined by

pXðuÞ ¼
1, uA ½50,70�

0, elsewhere

(

Definition 3.2 (Wang and Klir [23]). Let X be a non-empty finite
set and F be the the power set of X. A possibility measure Pos

defined on the measurable space ðX,F Þ is a set function Pos :

F-½0,1� verifying the following axioms:
(1)
 Posð|Þ ¼ 0,PosðXÞ ¼ 1

(2)
 Posð

S
iAiÞ ¼ supiPosðAiÞ for any sequence fAig of sets in F
ðX,F ,PosÞ is said to be a possibility space.The dual set function
Nec, which is defined by

NecðAÞ ¼ 1�PosðAcÞ for any AAF

is called a necessity measure on F . ðX,F ,NecÞ is said to be a
necessity space.

3.2. General background of fuzzy integral classifier

In multi-attribute classification, the fuzzy integral is used as an
aggregation operator, and the fuzzy measure plays the role of
weights of importance on attributes. The learning process of the
classification using fuzzy integral, which is based on possibility
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theory, is briefly described as follows. One can refer to [8,13] for
more details.

Given an unknown sample x, which is ðx1, . . . ,xNÞ, and we want
to determine the most probable class which x belongs to. The
function FðCjÞ, described by the possibility distribution pðCjjxÞ, is
called the discriminant function. So, it is sufficient to search
the maximum of the function FðCjÞ, which can be viewed as the
matching degree of sample x with class Cj. And similarly, the
function fiðCjÞ, described by the possibility distribution pðCjjxiÞ, is
the partial matching degree of x with class Cj with respect to
attribute xi. Then we can obtain the function FðCjÞ by fuzzy integral:

FðCjÞ ¼ mj
ðf1ðCjÞ, � � � ,fNðCjÞÞ

where FðCjÞ represents the certainty degree that x belongs to the
class Cj. The Sugeno integral, Choquet integral and upper integral, as
well as any other fuzzy integrals, can be used here. The fuzzy
measures mj, defined on the set of attributes, represent the weights
of importance of individual attributes. For each class, we use a
different fuzzy measure.

In order to show the rationality of fuzzy integral for multi-
attribute classification problems, Grabisch presented the main
characteristics of fuzzy integral for aggregation. More details on
these aspects can be found in [13,14,16,17].
(1)
 Fuzzy integrals are always located between minimum and
maximum, so they are suitable for multi-attribute classification.
(2)
 Particularly, the usual weighted sum is covered by Choquet
integral. OWA (ordered weighted average) operators are
particular cases of Choquet integral. In addition, weighted
minimum and maximum coincide with Sugeno integral with
respect to a necessity and a possibility measure, respectively.
(3)
 Fuzzy integrals are the only operators that can clearly handle
interaction among elements, because fuzzy measures are defined
not only on the different elements, but also on all subsets of them.
oi

(U)∫fd�1

(U)∫fd�2

(U)∫fd�N

xi

�1

�2
�2

�N�N

�1

Fig. 1. The network based on extreme learning machine.
3.3. Learning process

Possibility theory is an alternative to probability theory, and
differs from probability theory by the use of a pair of dual set
functions (possibility and necessity measures) instead of prob-
ability measure. The following learning process is based on
possibility theory and genetic algorithm. More contents can be
found in Ref. [8].

Consider the learning problem now. As above, we want to
classify an unknown sample x by computing the conditional
possibility pðCjjxÞ for each class and choose the class with the
highest possibility value. Using Cox’s axioms for defining condi-
tional measures, we have

pðCjjxiÞ ¼ pðxijCjÞ8i,j

where the conditional possibility distribution pðxijCjÞ have
described the class Cj with respect to feature xi. So, the assignment
of all pðxijCjÞ should be done in the learning problem, firstly.

Assume that we have lj samples xj1, . . . ,xjlj belonging to class Cj,
and similarly for all classes C1, . . . ,Cm, we denote the total number

of samples by l¼
Pm

j ¼ 1 lj and use indices i,j,k to denote respec-

tively a feature, a class and a sample. The learning process
includes two parts: the learning of mN possibility distribution
pðxijCjÞ and the learning of fuzzy measures mj.

Learning of the possibility distributions: The learning of a given
pðxijCjÞ is as follows. All the samples of class j will be used to
construct a ‘‘possibilistic histogram’’. The construction is the
following: first, we construct a classical histogram with h boxes
p1, . . . ,ph from the samples, here pr ¼ nr=lj, with nr the number of
samples in box r, and search the tightest possibility distribution
p1, . . . ,ph having the same shape as the histogram. Without loss of
generality, assuming that p1Z � � �Zph, this is given by
pr ¼

Ph
s ¼ r ps. Finally the continuous shape of pðxijCjÞ is obtained

by a linear interpolation of the values.
Establishing the upper integral network with ELM: As we know,

the difficult problem of non-linear integral classifiers is the
determination of the set functions defined on the power set of
attributes. In this paper, the extreme learning machine [25–29] is
used to determine the non-additive set function based on least
square error technique. The scheme of upper integral classifier
can be briefly listed as follows. D is a given training data, T is the
testing data and h is the number of boxes.
(1)
 For samples from class j in D, determine frequency histogram
for each attribute. For continuous attribute i, determine h

boxes and the corresponding frequencies pi in class j samples.
For nominal attribute i, regard each value of attribute i as a
box and the corresponding frequencies pi in class j samples.
(2)
 Rearrange the pi, determine the possibility distribution pðxijCjÞ

of each attribute. If the attribute is continuous, the possibility
distribution is obtained by the linear interpolation.
(3)
 Use ELM to learn the weights of an upper integral network.
We will give more details about this learning process.
For l arbitrary distinct sample ðxi,tiÞ, where xi ¼ ðxi1, . . . ,xinÞ

T A
Rn, and ti ¼ ðti1, . . . ,timÞ

T ARm, standard single hidden layer
feedforward networks with N hidden nodes and activation
function g(x) are mathematically modeled as

XN

j ¼ 1

bjg ðUÞ

Z
f ðxiÞdmj

� �
¼ oi

where mj is the set function connecting the ith hidden node
and the input nodes, bj ¼ ðbj1, . . . ,bjmÞ

T is the weight vector
connecting the ith hidden node and the output nodes. This
can be showed in Fig. 1.
It is equivalent to minimizing the cost function

E¼
Xl

i ¼ 1

XN

j ¼ 1

bjg ðUÞ

Z
f ðxiÞdmj

� �
�ti

������
������

where J � J denotes the norm of the vector.
According to extreme learning machine, set functions
mjðj¼ 1, . . . ,NÞ are randomly chosen from any intervals of Rn,
and bjðj¼ 1, . . . ,NÞ are learned to minimize the cost function E.
In this approach, the set functions are randomly generated
and the huge task of learning set functions is avoided.
However, due to the existence of weights bj, the upper
integral with respect to the set function can also show itself
effectively and smoothly.
(4)
 Test the classifier on given data sets, write down the classi-
fication result.
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4. Test on real data

In order to investigate how well upper integral classifier works,
an experimental study is conducted on some UCI machine learning
databases which has been extensively used in testing the perfor-
mance of different kinds of classifiers. Here the data sets are selected
according to the criterion that the product of the number of
attributes and the number of classes is not too large in comparison
with the size of data set for the non-additive set function defined on
the power set of attribute set. The information about data sets used
in our experiments is summarized in Table 2.

In our experiments, 10-fold cross validation is performed on each
data set. The size of training sets is roughly 60 percent of data sets.

First, the possibility histogram is constructed for each attribute
according to the samples of class j. A histogram is a graphical data
analysis technique for summarizing the distributional informa-
tion of a variable. If an attribute is continuous, the attribute is
divided into h boxes (the value of h between 7 and 15 is
appropriate. If the size of samples of class j is not large enough,
the value is lower). p1, . . . ,ph are the frequencies in each box. If
the attribute is nominal, each box is corresponding to an attribute
value. Assuming that p1Z � � �Zph and pr ¼

Ph
s ¼ r ps, then pðxijCjÞ

is obtained by a linear interpolation of the values pr . The linear
interpolation is needed only for continuous attributes.

From Table 3, it can be seen that the upper integral classifier
can work well for both nominal and continuous attributes. A
comparison between the single upper integral classifier and our
proposed upper integral network is conducted. From which, we
can see that, in comparison with the single upper integral
classifier, the upper integral extreme learning machine shows
much better performance. The following table indicates the
experimental results on a number of benchmark databases.

The bottle-neck problem of non-linear integral classifiers is the
determination of set function defined on the power set of attributes. It
is obvious that the computational complexity will exponentially
increase with the change of attribute number. And therefore, the
upper integral classifier is not suitable for classification task with
many attributes. How to replace the set function defined on all
attributes with a simplified non-additive measure is really meaningful
and significant in the non-linear integral application to classification.

5. Conclusions

Motivated by most effectively using the information from each
attribute, this paper proposed the upper integral classifier
Table 2
Data sets used for classification.

Data set Attribute

number

Class The distribution

of classes

Size

Pima 8 2 268/500 768

Sonar 60 2 111/97 208

Thyroid 5 3 150/35/30 215

Car 6 4 1210/384/69/65 1728

Breast 10 2 258/241 699

Table 3
Comparison between single upper integral and ELM upper integral.

Data set Single upper integral ELM upper integral

Pima 76.56/75.43 78.80/78.00

Sonar 96.28/95.26 98.34/96.99

Thyroid 83.38/80.29 88.98/86.91

Car 76.67/72.11 80.08/76.34

Breast 78.33/76.02 80.26/78.18
network. From the definition it is known that the upper integral
plays such a role that how to reasonably arrange the finite
resources can maximize the efficiency. It is to maximize the
possibility of sample belonging to each class. The possibility is
obtained according to the possibility histogram. The upper inte-
gral classifier can work well both on nominal and continuous
attributes from the experimental results on real data set. The
essential difficulty in upper integral classifier design is the
determination of non-additive set functions. Extreme learning
machine technique provides an efficient way to overcome this
difficulty. The results of comparison between the single upper
integral classifier and our proposed upper integral network with
ELM show that the later has much better performance.
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