
Neurocomputing 86 (2012) 150–157
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

doi:10.1

n Corr

Nanjing

Tel.: þ8

E-m
journal homepage: www.elsevier.com/locate/neucom
Local similarity and diversity preserving discriminant projection for face and
handwriting digits recognition
Qiang Hua a,b,n, Lijie Bai b, Xizhao Wang b, Yuchao Liu b

a Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, PR China
b College of Mathematics and Computer Science, Hebei University, Baoding 071002, PR China
a r t i c l e i n f o

Article history:

Received 13 October 2011

Received in revised form

24 December 2011

Accepted 19 January 2012
Communicated by D. Wang
semi-supervisor information of the data. Thus LSDDP could utilize both the similarity and diversity
Available online 3 March 2012

Keywords:

Dimensionality reduction

Face recognition

Subspace

Diversity

Locality preserving projection
12/$ - see front matter & 2012 Elsevier B.V. A

016/j.neucom.2012.01.031

esponding author at: Department of Compu

University of Aeronautics & Astronautics,

6 3125079638.

ail addresses: huaq@mail.hbu.cn, huaq@nuaa.
a b s t r a c t

In this paper, a novel supervised subspace learning algorithm, named local similarity and diversity

preserving discriminant projection (LSDDP), is presented. LSDDP defines two weighted adjacency

graphs, namely similarity graph and diversity graph. LSDDP constructs the similarity scatter and

diversity scatter with the weights, which are adjustable according to the global supervisor and the local

information of the data simultaneously for dimensionality reduction. After characterizing the similarity

scatter and diversity scatter, a concise feature extraction criterion arised via minimizing the difference

between them and the optimal projection is obtained by performing the eigen-decomposition. Thus our

method successfully addresses the SSS problem without losing any discriminating information. Finally

the proposed model is verified by the face and handwriting digits recognition experiments. The

experimental results on Yale, ORL and CMU-PIE face database and the USPS handwriting digits database

indicate the effectiveness of our method.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of data acquisition technology,
the number of the high-dimensional data is increasing in the
pattern recognition filed. This presents many challenges to the
development of the pattern recognition. The large quantities of
features may even degrade the performance of the classifier and
the curse of high dimensionality limits many practical technolo-
gies. Dimensionality reduction [1–3] as an effective technique to
overcome the curse of dimensionality has been attracting much
attention and is quite desirable not only in the aspect of enhan-
cing the performance of the classifiers but also in terms of data
storage and the computational complexity [4].

Over the past few decades, a large volume of dimensionality
reduction methods have been proposed and most of them have
been successfully applied to many applications such as face
recognition and so on [5,6]. These methods can be roughly
categorized into two classes: supervised and unsupervised. Up
to now, PCA [7] is the most popular unsupervised method. PCA
constructs a low-dimensional representation of the original data
via minimizing the reconstruction error. Since PCA ignores the
label information, it has little to do with the classification task.
Unlike PCA, LDA [8] is one of the most canonical supervised
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methods. LDA can find an optimal projection by maximizing the
ratio of the trace of the between-class scatter to the trace of the
within-class scatter. Due to utilizing the available class informa-
tion, LDA is more effective than PCA in many applications. It is
noteworthy to point out that both PCA and LDA share a common
characteristic, that is, only the global linear Euclidean structure of
data are taken into account and no attention are paid to the local
structure of the data. As a result, once the data points are resided
on a nonlinear manifold, both PCA and LDA fail to explore the
essential structure of the data.

Recently many researches have indicated that nature images
especially the face images possibly reside on a nonlinear low-
dimensional sub-manifold. A lot of researchers are attracted to
straightforwardly find the inherent nonlinear structure of the
data and then many manifold learning algorithms are proposed.
Among them, locally preserving projection (LPP) [9], as a linear
approximation to Laplacian Eigenmap [10,11], is one of most
representative. Unlike PCA and LDA, LPP seeks to preserve the
local information by preserving the neighborhood of the data and
has been successfully applied into many practical applications
such as face recognition and yielded impressive result. Compared
with other manifold learning methods, LPP possesses an obvious
advantage that the map of LPP is explicit and is easy to compute.

Now some improvements to the original LPP have been
developed. To boost the ability of local preserving, which has a
close relation to the recognition ability, Cai et al. proposed an
orthogonal LPP algorithm (OLPP) [12]. In [13], Yang et al. pre-
sented a UDP algorithm. UDP characterizes both the local scatter
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and the non-local scatter, which makes UDP more powerful.
O-LPP [14], a novel subspace learning approach, was proposed
to respond to the SSS problem. Many other techniques are closely
related to or explicitly build on original LPP [15,16]. However
these aforementioned methods lose the sight of the class infor-
mation, which is very important to recognition tasks. To make full
use the available label information many supervised edition of
LPP have been presented. SLPP [17] was developed to improve the
discriminating capability of LPP. LDP [18] incorporates the local
structure and class information. Null space discriminant locality
preserving projection [19] was proposed by Yang et al. to over-
come the SSS problem of DLPP [20]. Based on OLPP, Zhu and Zhu
presented an ODLPP [21] method. Li and Wang developed an
orthogonal discriminant projection (ODP) [22], which is a mod-
ified method for UDP. Gui et al. introduced a novel supervised LPP
algorithm, namely LPDP [23], by adding the criterion of maximum
margin criterion (MMC) into the objective function of LPP. LPDP
could preserve both global discriminant and local structure of
the data. This remarkable property endows LPDP with stronger
recognition ability.

One common limitation of the above mentioned algorithms is
that they only pay attention on the local similarity information
and neglect the diversity information of the sample. However
impairing the diversity information of the sample may arise the
over learning problem. From the perspective of statistic, Gao et al.
introduced the diversity information between two points and
proposed S-LSDP [24], a robust technique for the classification
task, which overcomes the over learning problem successfully.
Unfortunately there are still some limitations existed in S-LSDP.
First, the weighted adjacency diversity graph is constructed
without the guide of the class information. Second, the similarity
matrix defined in S-LSDP makes the neighborhood graph of the
input data disconnected. Some researches show that the manifold
structure of the data also is very important as well as the class
information for the classification task. Finally, in many practical
applications, especially in the face recognition, S-LSDP often
encounters the SSS problem.

In this paper a novel supervised dimensionality reduction
method, namely LSDDP, is proposed to address the shortcomings
of S-LSDP and further boost the discriminating capability of LPP.
In LSDDP, both the weighted adjacency similarity graph and
weighted adjacency diversity graph take the local structure
information and the label information into account, thus LSDDP
can preserve the main manifold structure of the data and has
more powerful discriminating ability. Furthermore, using the two
weighted adjacency graph LSDDP defines two matrixes: namely
similarity scatter matrix and diversity scatter matrix. After
charactering the similarity scatter matrix and the diversity scatter
matrix, a concise feature extraction criterion is raised via mini-
mizing the difference between the similarity scatter and the
diversity scatter. Then the optimal projection is obtained by
solving an eigen-equation, where the SSS problem is successfully
overcome.

The paper is organized as following: in Section 2 we will
simply review S-LSDP. The new technique will be introduced in
Section 3. The experimental results for applying to the face and
handwriting digits recognition will be offered in Section 4.
Followed by, the brief conclusions about this paper are given in
Section 5.
2. Related work on S-LSDP

In order to address the over-fitting problem of SLPP [17], Gao
et al. proposed the S-LSDP method. In S-LSDP two weighted graph
are constructed: weighted adjacency similarity graph and
weighted adjacency diversity graph. The former, constructed
using the class information, measures the similarity of the points
and the latter measures the diversity of the points.

Let X ¼ ½X1,X2, � � � ,XN� denote the sample set and the dimen-
sionality of each element is D. GS¼(V, E, S) and Gd¼(V, E, B),
denote the weighted adjacency similarity graph and weighted
adjacency diversity graph, respectively, where V is the set of
vertices, E is the set of edges connecting the vertices; S is a
weighted matrix with elements characterizing the similarity of
two points and B is a weighted matrix with the elements
characterizing the diversity of two points.

The element of weighted matrix S is defined as following:

Sij ¼
exp

�:Xi�Xj:
2

t

� � if Xi is among k nearest neighbors of Xj

or Xj is among k nearest neighbors of Xi

and ti ¼ tj

0 otherwise

8>>>><
>>>>:

ð1Þ

where ti is the class label of Xi, and tA(0,þN).
The element of weighted matrix B can be calculated as follows:

Bij ¼
exp �b

:Xi�Xj:
2

� � if Xi is among k1 nearest neighbors of Xj

or Xj is among k1 nearest neighbors of Xi

0 otherwise

8><
>:

ð2Þ

where bA(0, þN). Bij measures the contribution of Xi relative to
Xj to the diversity information.

The aim of S-LSDP is to find a discriminative projection that
can preserve the similarity and the diversity information at the
same time. The feature extraction criterion of S-LSDP can be
expressed as follows:

JðWÞ ¼ arg min
WT W ¼ I

WT GLW

WT GNW
ð3Þ

where GL¼XLXT is the weighted similarity scatter matrix,
GN ¼ XLXT denotes the weighted diversity scatter matrix of the
pattern, where L¼D�S and L¼D�B are the Laplacian matrix,
Dii ¼

P
jSij,Dii ¼

P
jBij. W is the transformation matrix, which is

obtained by solving the generalized eigen-equation GLW¼lGNW,
and W subjects to:

WT
i Wj ¼

0 ia j

1 i¼ j
:

(
ð4Þ

3. Local similarity and diversity preserving discriminant
projection

As discussed in the Section 1, the weighted adjacency diversity
graph in S-LSDP is constructed without considering the class
information, which will inevitably makes S-LSDP cannot achieve
satisfactory result. In addition, S-LSDP often suffers from the SSS
problem in practical application. To overcome the problem, PCA is
first introduced to project the original data into a lower dimen-
sional feature space, and then S-LSDP is applied in the PCA feature
subspace. But this may lead to some useful information be thrown
away in the PCA step. In order to address the limitation men-
tioned above and further enhance the recognition ability of
original LPP, LSDDP is put forward in this paper. LSDDP adjusts
the weights of the adjacency similarity graph and the adjacency
diversity graph according to the label information and the local
structure. In LSDDP, instead of generalized eigen-decomposition,
the optimal projection is found by performing eigen-decomposi-
tion. Thus our method will not suffer from the SSS problem.
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The weighted matrix S defined in (1) will distort the neighbor-
hood relationship of the input data, which contradicts to the idea
of LPP. In other words the manifold structure of the data, which is
also very important for classification, is distorted. In order to
better preserve the manifold structure of the data and explore the
available label information of the data, the elements of the
weighted matrix S can be redefined as following [18]:
Sij ¼

expð�:Xi�Xj:
2
=tÞð1þexpð�:Xi�Xj:

2
=tÞÞ

if Xi is among k nearest neighbors of Xj

or Xj is among k nearest neighbors of Xi

and ti ¼ tj

expð�:Xi�Xj:
2
=tÞð1�expð�:Xi�Xj:

2
=tÞÞ

if Xi is among k nearest neighbors of Xj

or Xj is among k nearest neighbors of Xi

and tiatj

0 otherwise

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ
where ti is the class label of Xi, and tA(0, þN). Sij measures the
discriminating similarity between two points. The advantages of
the discriminating similarity [18] can be summarized as follows:

Property 1. When the Euclidean distance is equal; the weight of
the points in homogeneous class is larger than that in hetero-
geneous class. That is to say the points in same labels is much
similar than that in different class. This is favorable for
recognition.

Property 2. The discriminating similarity has the ability of
neighborhood preserving, thus the main geometric structure of
the data set can be largely preserved.

Property 3. The value of the discriminating similarity decreases
toward to 0 with the increase of the Euclidean distance. This
Bij ¼

expð�b=ð:Xi�Xj:
2
ÞÞð1�expð�b=ð:Xi�Xj:

2
ÞÞÞ

if Xi is among k1 nearest neighbors of Xj

or Xj is among k1 nearest neighbors of Xi

and ti ¼ tj

expð�b=ð:Xi�Xj:
2
ÞÞð1þexpð�b=ð:Xi�Xj:

2
ÞÞÞ

if Xi is among k1 nearest neighbors of Xj

or Xj is among k1 nearest neighbors of Xj

and tiatj

0 otherwise

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð8Þ
endows the discriminating similarity with the ability of prevent-
ing noise, i.e. the more distant points from homogeneous class the
less similar to each other.

Let Yi¼WTXi be the image of Xi in the low dimensional space,
where W is the transformation matrix. In order to preserve the
local information of the data, we impose the following objective:

min
X

ij

:Yi�Yj:
2
Sij ð6Þ

Substituting Yi¼WTXi into Eq. (6), then the Eq. (6) can be
rewritten as follows:X

ij

:Yi�Yj:
2
Sij ¼

X
ij

:WT Xi�WT Xj:
2
Sij

¼ 2tr
X

ij

WT XiSijXi
T W�

X
ij

WT XiSijXj
T W

0
@

1
A

¼ 2trðWT XDXT W�WT XSXT WÞ

¼ 2trðWT XðD�SÞXT WÞ

¼ 2trðWT XLXT WÞ
¼ 2trðWT GLWÞ ð7Þ

where D is a diagonal matrix, its elements is the row (or column
since S is symmetric) sum of the S, i.e. Dii ¼

P
jSij, L¼D�S is the

Laplacian matrix. GL¼XLXT is the weighted similarity scatter
matrix.

Generally we assume that two points are close to each other in
space if they are similar to each other. On the contrary, if the two
points are far away from each other, they convey more diversity
information. The goal of minimizing Eq. (7) is to ensure that if two
points are close to each other in original space they are also close
to each other in feature space, i.e. preserve the similarity infor-
mation as much as possible. However, it is apt to over fit the
training data, which will degrade the performance of the algo-
rithm. While preserving the diversity information can efficiently
avoid the over-learning problem. Furthermore, to a point, the
more distinctive information it conveys the more important to
represent its pattern and keeping the representative during the
projection is expected to make algorithm more robust and more
discriminating. For the purpose of making full use the class
information and better preserving the manifold structure of the
data, we give the definition of discriminating diversity in Eq. (8)
where bA(0, þN), and ti is the class label of Xi.
Fig. 1 is the plot of Bij as a function of b=ð:Xi�Xj:

2
Þ, where f1, f2

and f3, respectively, denote the cases that (1) Xi is among k1
neighbors of Xj or Xj is among k1 neighbors of Xi, and they have
same label; (2) Xi is among k1 neighbors of Xj or Xj is among k1
neighbors of Xi, and they have different labels; (3) the other case.

The discriminating diversity integrates both the local structure
and the class information. By contrasting with the element of
weighted matrix defined in Eq. (2), the discriminating diversity
has such advantages as these:

Property 1. From Fig.1 we can clearly see that when the Eucli-
dean distance is equal, the inter-diversity is larger than the intra-
diversity. That means the points with larger weight will be more
possible to be in different class. On the contrary, the points with
small weight may have same labels. This is a good property for
classification task.

Property 2. The discriminating diversity combines local structure
and class information. What is more, the discriminating diversity
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can prevent the local neighborhood relationship from being
forcefully distorted and the main geometric structure of the data
can be largely preserved.

Property 3. Fig. 1 has shown that the inter-class discriminating
diversity weight increases with the increase of the Euclidean
distance. This could make the points in heterogeneous class are
mapped far from each other in the feature space. The character of
the intra-class diversity can prevent the data in homogeneous
class from being mapped too far to each other. Thus the margin
between different classes is larger than that in S-LSDP.This
implies that the discriminating diversity can augment the margin
between different classes. The obvious advantages of discriminat-
ing diversity make the proposed method more suitable to
classification tasks.

Because of these advantages of discriminating diversity, LSDDP
can be expected to have more discriminating power than S-LSDP.

For the purposes of preserving the diversity of the pattern, we
impose the following objective:

max
X

ij

:Yi�Yj:
2
Bij ð9Þ

Maximizing Eq. (9) attempts to ensure that if two points are
far away in original space they are also far way in the feature
space, i.e. preserve the diversity information as much as possible.

Substituting Yi¼WTXi into the Eq. (9), we can see that:X
ij

:Yi�Yj:
2
Bij

¼
X

ij

:WT Xi�WT Xj:
2
Bij

¼ 2tr
X

ij

WT XiBijXi
T W�

X
ij

WT XiBijXj
T W

0
@

1
A

¼ 2trðWT XDXT W�WT XBXT WÞ

¼ 2trðWT XðD�BÞXT WÞ
Fig. 2. Samples of one person fr
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Fig. 1. Plot of Bij as a function of b/d2(Xi, Xj), where d2(Xi, Xj) denotes :Xi�Xj:
2
.

¼ 2trðWT XLXT WÞ

¼ 2trðWT GNWÞ ð10Þ

where D is a diagonal matrix, i.e. Dii ¼
P

jBij. L¼D�B is the
Laplacian matrix. GN ¼ XLXT denotes the weighted diversity
scatter matrix of the pattern.

The proposed method is attempt to learn a linear transforma-
tion that could deal with the similarity and diversity information
simultaneously, that is to say the transformation should minimize
Eq. (7) and maximize Eq. (9) at same the time. In S-LSDP the
objective function is intend on minimizing the ratio of the
similarity scatter matrix to the diversity scatter matrix. However,
a ratio form often makes algorithms suffer from the SSS problem
in many applications, especially in face recognition. In order to
avoid the SSS problem, we change the objective function into a
form of difference between the similarity scatter matrix and the
diversity scatter matrix the in the proposed method, since the
objective function min GN

�1GL and the objective function
min ðGL�GNÞ have the same motivation that it is to minimize GL

and maximize GN at the same time. The objective function of the
proposed method is expressed as following:

J¼ min
WT W ¼ I

ðWT GLW�WT GNWÞ ¼ min
WT W ¼ I

WT
ðGL�GNÞW ð11Þ

Eq. (11) can be solved by Lagrangian multiplier method

@

@W
WT
ðGL�GNÞW�lðWT W�IÞ ¼ 0 ð12Þ

where l is the Lagrangian multiplier. Thus we can get

ðGL�GNÞW ¼ lW ð13Þ

Then we can obtain the optimal transformation matrix W,
which consists of the eigenvectors corresponding to the first d

non-zero smallest eigenvalues of GL�GN.
After obtaining the optimal transformation matrix, we use a

classifier to classify a new sample. For a new sample X* we can
easily obtain its image using the transformation matrix, denoted
by Yn

¼WXn.
To summarize, the classification has four steps as follows:

Step1: For each data point Xi, identify its k nearest neighbors
and k1 nearest neighbors by KNN algorithm, then construct
weighted adjacency similarity graph and weighted adjacency
diversity graph and calculate the weights of the two graphs,
respectively, based on Eqs. (5) and (8).
Step 2: Calculate the weighted similarity scatter matrix and
the weighted diversity scatter matrix GL and GN.
om the Yale face database.

Table 1
Average recognition accurate rate(%) and the corresponding reduced dimensions

(shown in parentheses) for the five methods on Yale face database.

Method PCA LPP LDP SLSDP LSDDP

4 train 68.95 (35) 78.67 (31) 90 (15) 75.90 (11) 93.52 (33)

5 train 69.56 (34) 79.22 (45) 94.56 (38) 80.22 (13) 95.44 (33)

6 train 70.13 (59) 80 (40) 96.13 (56) 83.33 (22) 97.87 (31)
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Step 3: Optimize the objective function in Eq. (11). This can be
done by solving the eigenvalue problem in Eq. (13) and obtain
the optimal transformation matrix W.
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. 3. Performance curves for the five methods on the Yale database. (a) Four
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Fig. 4. Samples of one person fr
Step 4: Map the given query using the transformation matrix
W and then predict its class label using a given classifier.
4. Experimental results

In this section we will carry out a set of experiments to show
the effectiveness of our method for face and handwriting digits
recognition. The Yale, ORL and CMU-PIE face databases and USPS
handwriting digits are applied to evaluate the performance of the
proposed method. In the experiments we also compared LSDDP
with LPP, PCA, LDP and S-LSDP. What deserves mention is that
LPP, LDP, S-LSDP and the proposed method all involve the
parameter selection problem. In this paper the optimal para-
meters for the above mentioned methods are set by exhaustive
search, since theoretically the parameter selection problem
remains unsolved. Finally, in our experiment, the nearest neigh-
bor classifier is employed to perform classification for its simpli-
city. The Euclidean metric is used as our distance measure. All the
experiments were implemented by MATLAB 7.0
4.1. Experiments on Yale database

The Yale face database was sponsored by the Yale Center for
Computer Vision and Control. The face database contains 165
grayscale images of 15 individuals (each person has 11 different
images). The images demonstrate variations in lighting condition
(left-light, center-lighter and right-light), facial expression (nor-
mal, sad, sleepy, surprised and wink), and with/without glasses. In
our experiment, each image was resized to 32�32 pixel to save
time. Fig. 2 shows the images of one person in Yale face database.

In the first experiment we randomly selected p images (p
varying from 4 to 6) from each person as training set and the rest
images were used as testing set. The experiment repeated 10
times. The best average recognition rate and the corresponding
reduced dimension for the five methods are listed in Table 1.
From Table 1 we can see that the maximal recognition rate of all
the method increase with the increasing of the train number.
Fig. 3 shows the average recognition rate curves for the five
methods. Fig. 3 indicates that with the increase of the dimensions,
our method outperformed others, while PCA is always performed
the worst in all case. The main reason may be that our method
can deal with the similarity and diversity information simulta-
neously. Furthermore, the strong structure preserving and dis-
criminating ability make the proposed method more suitable for
the recognition tasks. PCA is an unsupervised method and fail to
explore the intrinsic structure of the data, so it always performed
the worst.
om the ORL face database.

Table 2
Average accurate rate(%) and the corresponding reduced dimensions (shown in

parentheses) for the five methods on ORL face database.

Method PCA LPP LDP SLSDP LSDDP

4 train 67.38 (100) 65.33 (35) 81.46 (46) 77.75 (52) 90.50 (45)

5 train 70.95 (154) 70.45 (57) 85.00 (42) 80.30 (50) 94.25 (29)

6 train 72.00 (59) 76.56 (51) 89.94 (43) 84.31 (40) 96.94 (51)
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Fig. 5. Performance curves for the five methods on the ORL face database. (a) Four

images for training, (b) five images for training, (c) six images for training.

Fig. 6. Sample images of one perso
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4.2. Experiments on ORL database

In this subsection we verify the performance of LSDDP on the
ORL face database. The ORL face database contains 400 face
images of 40 distinct subjects. For some subjects, the images
were taken at different times, varying the lighting, facial expres-
sions (open/closed eyes, smiling/not smiling) and facial details
(glasses/no glasses). All the images were taken against a dark
homogeneous background with the subjects in an upright, frontal
position (with tolerance for some side movement). All the images
were in grayscale and resized to 32�32 pixel to save time. Fig. 4
shows the sample images of one person.

In this experiment we also randomly selected p images (p
varying from 4 to 6) from each person as training set and the rest
images as testing set. The experiment repeated 10 times inde-
pendent. The best average recognition rate and the corresponding
reduced dimension for the five methods are listed in Table 2. The
performance curves for the five methods are shown in Fig. 5. From
Table 2 and Fig. 5 we can see that the supervised methods are
more powerful than unsupervised ones. As discussed above, the
good property of the discriminating similarity and discriminating
diversity make the proposed method more suitable for the
recognition than other methods.
4.3. Experiment on CMU-PIE face database

The CMU-PIE face database includes 68 subjects with 41,368
face images as a whole. We chose the Pose29 subset for our
experiment. The subset contains 1632 grayscale images of 68
individuals (each person has 24 different images). The images
demonstrate variations in lighting condition and facial expres-
sion. All the images were in grayscale and resized to 64�64 pixel
to save time. Fig. 6 shows the sample images of one person.

In the experiment we randomly choose 12 images from each
individual for training and the left 12 images for testing. The best
mean recognition rates for 10 times are listed in Table 3. The
recognition rate of each method over the variation of the dimen-
sions is plotted in Fig. 7. As we can see, in spite of the variation on
the lighting conditions and poses, our algorithm outperforms
other competitors. One possible reason is that LSDDP can capture
the local discriminating diversity and the local structure informa-
tion very well, thus our algorithm does not suffer from the over
fitting and local structure distorted problem. S-LSDP also could
deal with the similarity and diversity information at the same
time, but it fails to preserve the neighborhood relationship of
the data.
n from CMU-PIE face database.

Table 3
Average recognition rata and the corresponding reduced dimensions (shown in

parentheses) for the five methods on CMU-PIE face database.

Method PCA LPP LDP S-LSDP LSDDP

Recognition rate(%) 71.91 83.91 88.69 89.67 92.75
Dimensions 197 159 157 101 91
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Fig. 9. Performance curves for the four methods on the USPS database.

Table 4
Average recognition accurate rate and the corresponding reduced dimensions for

the four methods on USPS database.

Method LPP LDP SLSDP LSDDP

Recognition rate(%) 74.74 80.18 76.16 90.68
Dimensions 28 27 46 24

Table 5
Computational time (repeated 10 echos independent) on Yale and ORL.

Method Yale (s) ORL (s)

4 train 5 train 6 train 4 train 5 train 6 train

PCA 12.00 13.05 13.09 55.31 58.51 57.82

LPP 8.72 12.50 12.74 56.07 58.20 60.14

LDP 9.22 12.85 13.68 58.15 65.14 66.30

S-LSDP 5.93 10.88 13.51 55.41 54.69 58.91

LSDDP 135.88 144.66 161.23 141.44 143.55 145.22

Fig. 8. Sample digital images ‘‘0’’ from USPS handwriting database.
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Fig. 7. Performance curves for the five methods on the CMU-PIE face database.

Q. Hua et al. / Neurocomputing 86 (2012) 150–157156
4.4. Experiment on USPS handwriting digits database

The USPS handwriting digital data include 10 classes from ‘‘0’’
to ‘‘9’’. Each class has 1100 examples. In our experiment, we
random select 100 images from each class. 50 images are used to
training and the left are used to test. Each image is transformed to
a vector with 256 dimensions. Fig. 8 displays a subset of digital
‘‘0’’ from original USPS handwriting digital database.

In this experiment, we directly applied LPP, LDP and S-LSDP to
the data without taking a PCA preprocessing, and compare with
our method. The experiment repeated 10 times. Fig. 9 shows the
best recognition rate curves for the four methods. The best
average recognition rate and the corresponding reduced dimen-
sion for the four methods are listed in Table 4.

From all the figures and tables we can clearly see that the
proposed method is always outperformed than other methods.
This is because our method has more manifold structure preser-
ving power as well as more discriminating power.
Besides the recognition rates, the time complexity is also
important for real applications. We list the computational time
of all the methods obtained from Yale and ORL datasets in Table 5.
From Table 5 we can see that the drawback of LSDDP is much
time consuming than the other method. The no free lunch theorem

tell us there is lack of inherent superiority of any classifier, in
other words, LSDDP sacrificed the computation efficiency for the
superior generalization performance.
5. Conclusion

In this paper, we presented a novel algorithm which is based
on the spectral graph, namely LSDDP, for dimensionality reduc-
tion. Two contributions were made in this paper. (1) Combined
with local structure information, the class information is intro-
duced to redefine the weights of the similarity graph and the
diversity graph, then LSDDP can prevents the main geometric
structure of the data and has more discriminating power. These
merits make our method more robust and suitable for classifica-
tion tasks. (2) Instead of the generalized eigen-decomposition, the
optimized transformation matrix can be computed by solving an
eigen-equation in our method. Thus LSDDP does not suffer from
the SSS problem. The new technique was applied to the Yale, ORL
and CMU-PIE face datasets as well as the USPS handwriting digits
database. The experimental results show that the proposed
method has the distinctly effective generalization performance
in classification. However, our method is much more time-
consuming than other methods, how to improve is our
future work.
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