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Abstract—Sample selection is to select a number of representative samples from a large database such that a learning algorithm can

have a reduced computational cost and an improved learning accuracy. This paper gives a new sample selection mechanism, i.e., the

maximum ambiguity-based sample selection in fuzzy decision tree induction. Compared with the existing sample selection methods,

this mechanism selects the samples based on the principle of maximal classification ambiguity. The major advantage of this

mechanism is that the adjustment of the fuzzy decision tree is minimized when adding selected samples to the training set. This

advantage is confirmed via the theoretical analysis of the leaf-nodes’ frequency in the decision trees. The decision tree generated from

the selected samples usually has a better performance than that from the original database. Furthermore, experimental results show

that generalization ability of the tree based on our selection mechanism is far more superior to that based on random selection

mechanism.

Index Terms—Learning, uncertainty, sample selection, fuzzy decision tree.
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1 INTRODUCTION

THE primary goal of machine learning is to derive general
patterns from a limited amount of data. With the

development of digital technology, more and more data are
produced and stored. But not all these data are useful for
machine learning because they usually contain the follow-
ing three types of data:

. Noise data. Noise could reduce the performance of
the learner. Generally, it contains some wrong data
and outliers.

. Redundant data. Different than the duplicated data,
redundant data are those which could not affect the
performance of the learner.

. Incomplete data. Incomplete data are those in which
there exist one or some missing values. Specially, the
incomplete data are confined to those with missing
labels in this paper.

As we known, training set is very important in the
learning task. The size of the training set directly affects
the performance of the learner. Thus, the research on the
acquisition of a high-quality and compact (i.e., small sized)
training set such as the sample selection is very significant.
Different than a training set randomly drawn from the
original data set as usual, sample selection aims to select a
representative subset from the original data set as training

set on the premise that the performance of the learner
generated from the selected subset will not worse or even
higher than that of the one trained from the original data
set. In the following, we briefly introduce several existing
representative sample selection algorithms.

Generally, sample selection can be roughly classified into
two categories: data condense and active learning. The
former is mainly used to process the first two types of data.
It aims to condense the data set by filtering the noises and
redundant data. Some representative algorithms are Con-
densed Nearest Neighbor rule (CNN) serial [3], [14], [15],
[26], [37], Instance-Based Learning (IBL) serial [2], [34], [38],
and others [6], [8], [39]. The latter is to process the third type
of data, i.e., how to select a few representative instances
from unlabeled set and thus reduce the labeling cost.
Generally, active learning contains three types of queries:
uncertainty-based query [7], [18], [20], [28], [31], [32], [33],
[44], [45], version space-based query [1], [10], [23], [29], and
expect error-based query [5], [9], [24], [27].

In this paper, our study is based on the uncertainty-
based query. Clearly, for a certain active learning algorithm,
there is always a learning algorithm associated with it.
From references, one can see that the associated algorithms
are k-Nearest Neighbor (kNN) and Bayesian model in most
situations. In this paper, we consider the associated
algorithm as the fuzzy decision tree. A new sample
selection mechanism has been initially proposed by Wang
et al. [36] for the fuzzy decision tree induction. Following
the work of Wang et al. [36], this paper makes an attempt to
develop a maximum uncertainty-based sample selection
mechanism and then to apply it to the fuzzy decision tree
learning. Compared with the existing sample selection
methods, this mechanism selects the samples based on the
principle of maximal classification ambiguity. The major
advantage of this mechanism is that the adjustment of the
fuzzy decision tree is minimized when adding the selected
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samples to the training set. This advantage is confirmed via
the theoretical analysis of leaf-nodes’ frequency in decision
trees. The decision tree generated from the selected samples
usually has a better performance than that from the original
database. Furthermore, experimental results show that the
generalization ability of the tree based on our selection
mechanism is far more superior to that based on random
selection mechanism.

The rest of this paper is organized as follows: Section 2
introduces some uncertainties, presents the relationships
between these uncertainties, and gives a brief review on the
various uncertainties in different sample selection meth-
odologies. Section 3 presents our proposed sample selection
method based on maximum ambiguity in fuzzy decision
tree induction and shows the experimental results on some
UCI [46] databases. Section 4 gives a further theoretical
analysis to illustrate the reasonableness of our proposed
sample selection algorithm, i.e., the newly added samples
will minimize the modification of the decision tree. Finally,
we draw the conclusions in Section 5.

2 SOME UNCERTAINTIES

Usually uncertainty includes randomness, fuzziness, rough-
degree, nonspecificity, etc., where the first two types of
uncertainties are considered as the most important. Ran-
domness which is based on the probability distribution was
first measured via Shannon’s entropy [30]. Fuzziness refers
to the unclear boundary between two linguistic terms such
as old and young, which is based on the membership
functions of fuzzy sets first proposed by Zadeh [41] in
1960s. Rough degree is a type of uncertainty based on
partition, which is first given in 1980s by Pawlak [25] in the
study of the knowledge representation based on rough sets.
Nonspecificity is to describe the uncertainty unfolded in the
process of selecting one from two or more than two cases,
which was first proposed by Hartley [16] in 1940s. In
addition, there exist a number of uncertainties which are
different from above mentioned, for example, the U-
uncertainty proposed by Higashi and Klir [17] and the
credit-based uncertainty given by Liu [22]. The study on
relationships among these uncertainties had ever been the
focus in uncertainty area. One example is that, through the
probability distribution of fuzzy systems, Li [21] established
the relationship between randomness and fuzziness. An-
other example is the study on fuzzy rough sets and rough
fuzzy sets [13]. During the recent two decades, the study on
uncertainty with domain knowledge has attracted more and
more scholars both in the uncertainty mathematics and in
machine learning field. Next, we review the different
measures of the three uncertainties: randomness, fuzziness,
and ambiguity and analyze the relationships between them.

We first list a number of denotations.
E ¼ fe1; e2; . . . ; eng is the instance universe of discourse.

Every instance is represented as a vector of which
components are values of the same set of attributes.
C ¼ fC1; C2; . . . ; CLg is the class label set.
B ¼ f�1=e1; �2=e2; . . . ; �n=eng denotes a fuzzy subset,

where �i is the membership degree of element ei belonging
to fuzzy subset B. Usually, we denote B in short as
f�1; �2; . . . ; �ng.

S ¼ fs1; s2; . . . ; sng is a sample set. A sample si ¼ ðei; ciÞ is
a labeled instance, where ci is a vector ci ¼ ðci1; ci2; . . . ; ciLÞ,
each component of which represents the membership degree
of the instance ei belonging to the corresponding class,
respectively. For a sample set with crisp labels, the values of
cijð1 � i � n; 1 � j � LÞ have two alternatives: “1” and “0.”
“1” implies that sample si belongs to classCj, and “0” implies
that sample si does not belong to classCj. But for a sample set
with fuzzy labels, the values of cijð1 � i � n; 1 � j � LÞ can
take any value in the interval [0, 1].

Now, we briefly review three kinds of uncertainties and
their relationships.

2.1 Entropy

Shannon’s entropy is used to measure the impurity of a
crisp set. It is proposed by Shannon [30] in 1948, which can
be defined as follows:

For a crisp set E0 � E, the entropy of E0 can be defined as

EntropyðE0Þ ¼ �
XL
i¼1

pilnpi; ð1Þ

where pi is the proportion of the number of elements that
belong to class Ci to the total number of all the elements in
E0. Sometimes, E0 is represented as ðp1; p2; . . . ; pLÞ, wherePL

i¼1 pi ¼ 1; 0 � pi � 1 for each ið1 � i � LÞ.
Clearly, the entropy gets bigger as the proportion of

every class gets to equivalent. When all the elements in E0

belong to the same class, the entropy is minimal; when the
elements from every class have the same proportion, the
entropy attains its maximum.

2.2 Fuzziness

Fuzziness is a type of cognitive uncertainty. It is caused by
the uncertainty transition area from one linguistic term to
another, where a linguistic term is a value of linguistic
variable. A linguistic variable is a word or a phrase which
could take linguistic values. Such as Temperature is a
linguistic variable, which can take the linguistic term/
values: hot, cool, or middle, etc. Here, hot is a linguistic
term, and cool and mild are linguistic terms, too. Essen-
tially, a linguistic term is a fuzzy set. For a fuzzy set
B ¼ f�1; �2; . . . ; �ng, its fuzziness [12] is defined as

FuzzinessðBÞ ¼ � 1

n

Xn
i¼1

�iln�i þ ð1� �iÞlnð1� �iÞð Þ: ð2Þ

Obviously, the fuzziness of a fuzzy set is minimal when
every element absolutely belongs to the fuzzy set or
absolutely not, i.e., every �i ¼ 1 or �i ¼ 0 for each
ið1 � i � nÞ; the fuzziness attains its maximum when the
membership degrees of all the elements equal 0.5, i.e., �i ¼
0:5 for every i ¼ 1; 2; . . . ; n.

2.3 Ambiguity

Ambiguity is known as the nonspecificity, which is the
other type of cognitive uncertainty. It results from choosing
one from two or more choices. For example, an interesting
film and an expected concert are holding at the same time.
In this situation, it is hard for us to decide which one we
should attend. This uncertainty associated with the situa-
tion is ambiguity. Initially, the concept of ambiguity is
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resulting from Hartley Measure [42] in order to measure the
nonspecificity of a set. Hartley used the following guideline
for a set of classes: the more elements, the bigger ambiguity.
Hartley then applied the logarithm function as the measure.
Higashi and Klir [17] gave an extending measure of
ambiguity to measure the nonspecificity of a fuzzy set.
Below is the definition of ambiguity of a fuzzy set B which
is defined before Section 2.1

AmbiguityðBÞ ¼ 1

n

Xn
i¼1

ð��i � ��iþ1Þlni; ð3Þ

where ��nþ1 ¼ 0 and ð��1; ��2; . . . ; ��nÞ is the normalization of
ð�1; �2; . . . ; �nÞ with 1 ¼ ��1 � ��2 � � � � � ��n � ��nþ1 ¼ 0.

Ambiguity expresses the possible uncertainty of choos-
ing one from many available choices. Obviously, the larger
the set of possible alternatives is, the bigger the ambiguity
is. The ambiguity will attain its maximum when all the �i
are equivalent, that is all the ��i ¼ 1ð1 � i � nÞ but ��nþ1 ¼ 0.
It will be full specificity, i.e., no ambiguity exists, when only
one alternative is possible, i.e., only one �i is equal to 1 but
all others equal to zero.

2.4 Some Relationships among Three Uncertainties

Shannon’s entropy is to measure the uncertainty caused by
randomness; fuzziness is to measure the uncertainty of a
linguistic term, which is usually represented by a fuzzy set;
ambiguity is to measure the nonspecific when choosing one
from many available choices.

Specifically, for a set of samples referred in a classifica-
tion problem, entropy measures the impurity of a crisp set;
fuzziness measures the distinction between the set and its
complement; ambiguity measures the amount of uncer-
tainty associated with the set of possible alternatives.
Clearly, the significance of the three uncertainties is
different. The entropy of the sample set is associated with
the proportions of the number of samples from every class,
which denotes the class impurity of the set. Usually,
entropy is restricted to be used in a crisp set. The fuzziness
of a sample set is associated with the membership degree of
every sample to every class. Fuzziness denotes the sharp-
ness of the border of every fuzzy subset which is formed
according to the partition based on classes. Particularly,
there is no fuzziness for a crisp set. The ambiguity of a
sample set, similar to fuzziness, is associated with the
membership degree of every sample to every class. But
ambiguity describes the uncertainty associated with the
situation resulting from the lack of specificity in describing
the best or the most representative one. It emphasizes the
uncertainty of possibility of choosing one from many
available choices. Next, we discuss the relationships
between the three types of uncertainties in detail.

Entropy and fuzziness. Entropy is defined on a probability
distribution E0, i.e., E0 ¼ ðp1; p2; . . . ; pnÞ where

Pn
i¼1 pi ¼ 1

and 0 � pi � 1 for each ið1 � i � nÞ. Fuzziness is defined on
a possibility distribution B, i.e., a fuzzy set B ¼
ð�1; �2; . . . ; �nÞ where 0 � �i � 1 for each ið1 � i � nÞ. Since
a probability distribution is a possibility distribution, we can
consider the fuzziness of a probability distribution E0. We
now analyze the relationships between entropy and fuzzi-
ness based on a probability distribution E0 ¼ ðp1; p2; . . . ; pnÞ.

As a special case, when E0 is a two-dimensional
probability distribution, i.e., E0 ¼ ðp1; p2Þ, then

EntropyðE0Þ ¼ �p1lnp1 � p2lnp2

¼ �p1lnp1 � ð1� p1Þlnð1� p1Þ
ð4Þ

FuzzinessðE0Þ ¼ 2ð�p1lnp1 � ð1� p1Þlnð1� p1ÞÞ: ð5Þ

Obviously,

FuzzinessðE0Þ ¼ 2EntropyðE0Þ: ð6Þ

Suppose that E0 ¼ ðp1; p2; . . . ; pnÞ is a n-dimensional
probability distribution. The entropy and fuzziness of E0

are defined in (1) and (2), respectively. We now discuss
their monotonic properties and extreme-value points.

Noting that p1 þ p2 þ � � � þ pn ¼ 1, we assume that, with-
out losing generality, p1 is the single variable and
p2; . . . ; pn�1 are n� 2 constants with p2 þ � � � þ pn�1 ¼ c
and pn ¼ 1� c� p1. Then, (1) and (2) degenerate, respec-
tively, to

EntropyðE0Þ ¼ �p1lnp1 � ð1� p1 � cÞlnð1� p1 � cÞ þA
ð7Þ

and

FuzzinessðE0Þ ¼ EntropyðE0Þ � ð1� p1Þlnð1� p1Þ
� ðp1 þ cÞlnðp1 þ cÞ þB;

ð8Þ

where A and B are two constants which are independent on
p1. By solving

d

dp1
EntropyðE0Þ ¼ 0 ð9Þ

and

d

dp1
FuzzinessðE0Þ ¼ 0; ð10Þ

we can obtain that both EntropyðE0Þ and FuzzinessðE0Þ
with respect to the variable p1 attain the maximum at p1 ¼
1�c

2 and monotonically increase when p1 <
1�c

2 and mono-
tonically decrease when p1 >

1�c
2 . It indicates that the

entropy and fuzziness for a probability distribution have
the same monotonic characteristics and extreme-values
points. Furthermore, noting that p2 þ � � � þ pn�1 ¼ c and
the symmetry of variables p1; p2; . . . ; pn, we conclude that
the entropy and fuzziness of a n-dimensional probability
distribution attain their maximum at

p1 ¼ p2 ¼ � � � ¼ pn ¼ 1=n: ð11Þ

Roughly speaking, the fuzziness is an extension of the
entropy.

When n ¼ 3, the entropy and the fuzziness of E0 ¼
ðp1; p2; p3Þ are depicted in Fig. 1, which is the 3D contour
plot of entropy of E0 ¼ ðp1; p2; p3Þ. Correspondingly, Fig. 2
is the 3D contour plot of fuzziness. From Figs. 1 and 2, we
can see that the entropy and fuzziness of E0 ¼ ðp1; p2; p3Þ
have many common features. Both of them are with the
same shape. They attain their maximum when p1 ¼ p2 ¼
0:33 and minimum when p1 ¼ p2 ¼ 0, or p1 ¼ 0; p2 ¼ 1, or
p1 ¼ 1; p2 ¼ 0.
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Fuzziness and ambiguity. Both of the fuzziness and
ambiguity are defined on a fuzzy set. For a general
possibility distribution B ¼ ð�1; �2; . . . ; �nÞ, of which the
fuzziness is defined as (2), we derive by solving

@

@�1
FuzzinessðBÞ

¼ @

@�2
FuzzinessðBÞ

¼ � � �

¼ @

@�n
FuzzinessðBÞ

ð12Þ

that FuzzinessðBÞ attains its maximum at

�1 ¼ �2 ¼ � � � ¼ �n ¼ 0:5: ð13Þ

It is easy to check that FuzzinessðBÞ attains its minimum
(zero) only at �i ¼ 0 or �i ¼ 1 for each ið1 � i � nÞ. The
monotonic feature of the FuzzinessðBÞ is simple, that is,
FuzzinessðBÞ monotonically increases in ð0; 0:5Þ and mono-
tonically decreases in ð0:5; 1Þ for each �ið1 � i � nÞ.

The ambiguity of B ¼ ð�1; �2; . . . ; �nÞ is defined as (3).
According to [17], AmbiguityðBÞ is a function with mono-
tonicity, continuity, and symmetry. Its maximum is
attainted at �1 ¼ �2 ¼ � � � ¼ �n and its minimum is attained
at the case only one �jð1 � j � nÞ is not zero.

Combining the above analysis of FuzzinessðBÞ and
AmbiguityðBÞ, we can think of that the essential difference
between the two uncertainties exists.

When n ¼ 2, the fuzziness and ambiguity of B ¼ ð�1; �2Þ
can degenerate, respectively, to

FuzzinessðBÞ ¼ ��1ln�1 � ð1� �1Þlnð1� �1Þ
� �2ln�2 � ð1� �2Þlnð1� �2Þ

ð14Þ

and

AmbiguityðBÞ ¼
ð�1=�2Þ � ln2; if 0 � �1 < �2;
ln2; if �1 ¼ �2;
ð�2=�1Þ � ln2; others:

8<
: ð15Þ

The pictures of FuzzinessðBÞ in (14) and AmbiguityðBÞ
in (15) are depicted in Fig. 3.

From Fig. 3a, we can see that the plot of fuzziness of
B ¼ ð�1; �2Þ is plane symmetric and the symmetrical planes
are �1 ¼ 0:5 and �2 ¼ 0:5, respectively. Fuzziness of B ¼
ð�1; �2Þ attains its maximum at (0.5, 0.5) and attains its
minimum at four endpoints (0,0), (0,1), (1,0), and (1,1).

In Fig. 3b, the surface above the plane z ¼ 0 is the
ambiguity of B ¼ ð�1; �2Þ. The lines in the plane z ¼ 0 are
the contours of the ambiguity of B ¼ ð�1; �2Þ. From the

contours, we can see that the points with the same values of
�1=�2 are with the same ambiguity. The more the contour
approaches the line �1 ¼ �2, the more of the ambiguity is.

2.5 Some Sample Selection Methods Associating
with Uncertainties

From references, one can find a number of sample selection
mechanisms which are based on simplified or revised
uncertainties. Here, we give a brief list of some representa-
tive sample selection methods which adopt these uncer-
tainties as their key techniques.

The first sample selection method based on uncertainty
is proposed by Angluin [4] in 1988, which queries an
instance in the area of uncertainty. The area of uncertainty
in [4] is defined as

UAS ¼ fsj9Hi;Hj 2 V S & HiðsÞ 6¼ HjðsÞ; i 6¼ j; s 2 Sg;
ð16Þ

where H denotes a hypothesis, VS ¼ fH1; H2; . . . ; Hmg
denotes the version space, which is a collection of
hypotheses that are consistent with the training set; s is a
sample in training set S. This method aims to learn a
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concept by gradually reducing the size of uncertainty area
using the queried samples. Compared with original concept
learning algorithms, it avoids to querying those instances
that are in the determined area. It just queries those
instances in the uncertainty area, by which some hypoth-
eses that are not consistent with the queries will be
removed. Finally, a concept is learned. Therefore, the query
mechanism accelerates the learning rate because it avoids to
query the useless instances.

And then, Seung et al. [29] in 1992 developed the Query
By Committee (QBC) algorithm, which is to query the
instances according to the principle of maximal disagree-
ment of the committee. QBC is based on such an
observation that an instance with maximal disagreement
is the most difficult one to classify. Disagreement is
considered as a kind of uncertainty in QBC, which is
defined as

V Enþ1 ¼ �
jV1j
jV j log2

jV1j
jV j �

jV2j
jV j log2

jV2j
jV j ; ð17Þ

where VEnþ1 denotes the voting entropy which is to
measure the disagreement by using current committee for
the (n+1)th instance denoted by e;
jXj is the cardinality of a set X;
V the current version space defined on the training set

Sn;
V1 and V2 are the version spaces defined on the next

training set Snþ1 ¼ Sn [ feg after the (n+1)th sample is
added to the training set Sn under the assumption that the
newly added instance e belongs to the first class and
second, respectively.

Furthermore, Lewis et al. [20], [19] in 1994 proposed the
uncertainty sampling. Different from QBC which is a voting
mechanism based on many classifiers, uncertainty sampling
mechanism just builds only one classifier which could
predict the label of an instance and could provide a
measurement of how certainty the prediction is. It selects
the instance which is speculated to be probably misclassi-
fied because the label of the instance is unknown before
asking experts. The uncertainty is associated with the
posterior probability via Bayesian rule.

3 OUR PROPOSED MAXIMUM-AMBIGUITY-BASED

SAMPLE SELECTION (MABSS) IN FUZZY

DECISION TREE INDUCTION

3.1 Some Terminologies

Fuzzy decision tree is an extension of crisp decision tree to
uncertainty environments. Similar to a crisp decision tree, a
fuzzy decision tree is a directed acyclic graph, in which each
edge connects two nodes from parent node to child node.
The node which has no parent nodes is called the root,
while the nodes which have no child nodes are called
leaves. Different from crisp decision tree, each node in
fuzzy decision tree represents a fuzzy subset. The root is the
universal of discourse. All the child nodes generated from
the same parent node constitute a fuzzy partition.

Consider a certain node R which is a fuzzy set defined
on the sample space S. Let C ¼ fC1; C2; . . . ; CLg be the class

label set. It means that Ci is a fuzzy set defined on S for each
ið1 � i � LÞ.
Definition 1. The relative frequency of R to every class is

defined as

pi ¼
jCi
T
Rj

jRj ¼
Pn

j¼1 minfCiðejÞ; RðejÞgPn
k¼1 RðekÞ

;

i ¼ 1; 2; . . . ; L;

ð18Þ

where S ¼ ðe1; e2; . . . ; enÞ. In references, pi is considered as
the degree of the implication R) Ci.

Definition 2. If R is a leaf-node, the classification ambiguity of
R is defined as

AmbiguityðRÞ ¼
XL
i¼1

ðp�i � p�iþ1Þlni; ð19Þ

where ðp1; p2; . . . ; pLÞ is the relative frequency vector of R;
ðp�1; p�2; . . . ; p�LÞ is the normalization of ðp1; p2; . . . ; pLÞ with
1 ¼ p�1 � � � � � p�i � p�iþ1 � � � � � p�Lþ1 ¼ 0ð1 � i � LÞ.

Definition 3. If R is a nonleaf node having m child nodes
R1; R2; . . . ; Rm, which are generated according to its corre-
sponding values V1; V2; . . . ; Vm of the expanding attribute F ,
i.e., Ri ¼ R

T
Vi; i ¼ 1; 2; . . . ;m. We define the weighted

average ambiguity

AmbiguityðRÞ ¼
Xm
i¼1

wi �AmbiguityðRiÞ

¼
Xm
i¼1

jRij
jRj � AmbiguityðRiÞ

ð20Þ

as the classification ambiguity of the nonleaf node R.

In this study, we define the ambiguity of a fuzzy decision
as the averaged classification ambiguity of the root, which
could be calculated recursively from the leaf nodes to the
root according to (19)-(20).

In crisp decision tree, when an unseen new instance is
matching to the decision tree, the matching output of the
decision tree is an exact class because only one rule matches
the instance. While a new instance is matching to a fuzzy
decision tree, the matching output is not a certain class label
but a vector, each element of which represents the member-
ship degree of the instance belonging to the corresponding
class, respectively.

Definition 4. Let T be a fuzzy decision tree trained well, s be a
new instance of which the class information is unknown.
Matching the instance to the fuzzy decision tree T , we obtain a
fuzzy set � ¼ ð�1; �2; . . . ; �LÞ, in which each component
represents the membership degree of s belonging to the
corresponding class. Then, the estimated ambiguity of s is
defined as

EAðsÞ ¼ Ambiguityð�Þ; ð21Þ

where Ambiguityð�Þ is given in (3).

3.2 Analysis on Samples with Maximal Ambiguity

Usually, sample selection aims to find those informative
samples and add them to the training set to improve the
performance of the current learner. Many existing sample
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selection algorithms are to select the misclassified samples,
which are based on the idea that those misclassified
samples are more helpful than those samples which are
correctly classified regarding the improvement of the
learning accuracy of the learner.

This idea can be extended to the uncertainty environ-
ment. The probably misclassified samples are usually in the
vicinity of the decision boundary, which are difficult to
classify by using the current learner. Thus, in our study, we
think of that the samples which are with more classification
ambiguity can provide more information to the learner.

To analyze intuitively the characteristics of the samples
with maximal ambiguity, we take a simple demonstration
of classification problem.

Consider a binary classification problem. Suppose that
an instance is a point on the x-axis and its class label is
determined by the function defined as

fðxÞ ¼ e�ðx�1Þ2 � e�ðxþ1Þ2 : ð22Þ

If fðxÞ � 0, the point will be classified to the first class with
membership degree C1ðxÞ which is evaluated by

C1ðxÞ ¼
e�ðx�1Þ2

e�ðxþ1Þ2 þ e�ðx�1Þ2
: ð23Þ

If fðxÞ < 0, the point will be classified to the second class
with membership degree C2ðxÞ which is evaluated by

C2ðxÞ ¼
e�ðxþ1Þ2

e�ðxþ1Þ2 þ e�ðx�1Þ2
: ð24Þ

Fig. 4 gives the intuitive model of the binary classifica-
tion problem.

The Fig. 4a gives the points distribution and correspond-
ing classification function; Fig. 4b shows the membership
degree of the points to every class. Clearly, we can get that
x ¼ 0 is the decision boundary of the classification problem.
When x > 0, the membership degree of the point to the first
class is bigger than that to the second class; thus, it will be

classified to C1; when x < 0, the membership degree of the
point to the first class is smaller than that to the second
class; thus, it will be classified to C2.

According to the membership degree function provided
by (23) and (24), we get the ambiguity shown in Fig. 5.

It is clear to see that the points near the boundary x ¼ 0
are with more ambiguity than those which are far away
from x ¼ 0. Usually, it is considered that the boundary
points is easier to be misclassified by the learner than those
far away from the boundary. And thus the boundary points
are considered to be able to provide more information for
current learner. Therefore, the sample with maximal
classification ambiguity should be informative.

3.3 Our Proposed Algorithm

In this section, we will describe our proposed sample
selection algorithm—maximum-ambiguity-based sample
selection in fuzzy decision tree induction. The basic outline
of this sample selection algorithm is described in Fig. 6.

First, we randomly select a certain number of instances
from original data set and submit them to experts for
labeling. The labeled set is considered as the initial training
set. Then, we build a fuzzy decision tree using the training
set and predict the unlabeled instances using the currently
built decision tree. According to the prediction results
(Estimated Ambiguity), we select one or some instances for
annotation by domain experts. Finally, we add the selected
instance(s) to the training set. The procedure will repeat
several times until the number of the selected samples is up
to the predefined threshold.

Next, we will give the detailed description of our
proposed sample selection algorithm.

Step 1: Data partitions. Each data set is divided into three
parts: training set, instance pool (short for pool), and testing
set. Training set is used to build a classifier/learner which is
used to select next instance; instance pool is a set of
unlabeled instances which provide candidate instances for
the learner to select; testing set is used to test the
performance of the current classifier. In our experiments,
we choose one from the fivefolds as testing set, one fold of
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Fig. 4. A simple model of two binary classification problem.
(a) Classification function. (b) Membership degrees.

Fig. 5. Ambiguity of the points.

Fig. 6. Framework of our proposed sample selection algorithm.



the remaining as the training set, and the others as the
instance pool.

Step 2: Training a fuzzy decision tree by Min-A [40]. In
our experiments, each attribute is discretized into two
values by Kohonet’s feature maps algorithm [40], and then
each attribute is fuzzified into two linguistic terms by
Triangular fuzzification method [40]. The final data set is the
0.45-strong set of the fuzzified data sets, which means that
the cut level is 0.45. In the growing of the decision tree, the
truth level threshold is set as 0.85, which means that a leaf-
node is produced when the classification accuracy of a node
is bigger than or equal to 0.85.

Step 3: Estimating the memberships of each instance in
the pool to each class by using the newly built fuzzy
decision tree and getting its classification ambiguity.

Step 4: Selecting the instance with the maximum
classification ambiguity to label. Then, moving it to the
training set from the pool.

Step 5: If the selected samples are less than the predefined
size, then select next instance following the steps Step 2-4;
otherwise, train a decision tree using the labeled samples
and test the tree using testing set.

3.4 Some Notes

Many sample selection algorithms such as IBL, CNN, and
their extensions could not handle the problem because their
selection mechanisms are associated with the class labels of
the samples to be selected. Their selection results are
directly depended on the class labels of the samples. Thus,
these algorithms could just condense the data set but could
not reduce labeling cost.

Different from these algorithms, pool-based active learn-
ing method not have to know the class label of the instance
before it is added to the training set, i.e., during the selection
procedure, there is no need to label all the instances in the
selection pool. Thus, the experts just need to label the
selected samples when they are added to the training set,
which is just a small part of the whole samples in the data set.

The main advantage of sample selection is that experts
only need to label a part of samples (not all samples) and
the labeling is usually cost. If labeling all samples is easy
without cost, this advantage will vanish.

Compared with random selection mechanism, our
proposed sample selection algorithm selects the samples
with maximal classification ambiguity. It avoids labeling
useless samples such as those which can be correctly
classified without doubt. The samples with maximal

classification ambiguity are usually in the neighborhood
of the decision boundary and are considered that they could
provide more information and make a more exact decision
boundary. Thus, our proposed method could get a more
representative and smaller training set than random
selection method. The experimental results on databases
give a convincing evidence.

Compared with the existing work [44], [45], there are the
following main similarity and difference between them and
our work: 1) Regarding class distribution information,
Maytal et al. [44], [45] used the class probability estimation
while our work used the possibility distribution. The
difference between probability and possibility is given in
Section 2.4, paragraph 3; 2) Regarding the sample selection
mechanism, Maytal et al. [44], [45] are based on variance of
probability estimation while our work is based on the
ambiguity; 3) Both belong to a general methodology:
uncertainty sampling [20].

3.5 Experimental Results

Generally, with respect to our proposed approach, there is
no essential difference between the fuzzy and crisp label
data sets, since the uncertainty comes from an estimated
probability or possibility distribution, does not come from
the original class labels. Thus, we conduct our following
experiments on some UCI [46] benchmark databases with
crisp labels, which is a degenerate case of our setting.

We experimentally compare three selection methodolo-
gies: Maximum Ambiguity-Based Sample Selection (i.e., our
selection method), uncertainty sampling [20] and random
selection method in terms of the following five aspects:

1. the number of leaf nodes;
2. the number of nodes;
3. average depth of the tree;
4. classification accuracy on pool (called pool accu-

racy); and
5. classification accuracy on the testing set (called

testing accuracy).

We adopt the Acceptance/Rejection Sampling (short for
A/R or AR) [43] to select samples randomly, which is the idea
of roulette. The algorithm description is shown in Table 1.

The experiments are conducted on the some selected
benchmark UCI databases with continuous attributes
(http//archive.ics.uci.edu/ml/). The features of these
databases are summarized in Table 2. The following is the
analysis on experimental results.
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A/R Sampling (Random Selection Method)



First, we explore the change tendencies of the perfor-

mances of the trees as more and more selected samples are

added to the training set, and compare the trees trained

from the same number of samples selected by using

different selection methods. When all samples in the pool

are added to the training set, the trained tree is called a pool

tree. The information of pool trees on selected databases is

listed in Table 3.
As an example, we then analyze the experimental results

on Glass, which is a database containing multiclass with

unbalance distribution. In the experiments on Glass, we

select 120 samples iteratively using our proposed method

(MABSS) and the random selection, respectively. The

average experimental results are depicted in Fig. 7.
In Fig. 7, the horizontal axis is the number of selected

samples, and the vertical axis is the corresponding

measurements. The red curves are the experimental results

using our method, and the black curves are the results of

random selection method. The green lines are the values of

the pool trees.
Fig. 7a shows the testing accuracies of the trees trained

from samples selected by MABSS and random selection

methods. Clearly, we can see from Fig. 1a that, the testing

accuracy of the random selection method is increasing all

the time as more and more samples are added into the

training set. This fact coincides with the idea that more

training samples, and higher prediction ability. But the red

curves ascend gradually initially, then descend and finally

converge to the testing accuracy of pool tree. The reason

why the testing accuracy of our method increases at early

stage and decreases at late stage is that

1. the instances to be selected are usually insuffi-
ciently many;

2. more representative instances exist in the pool at
early stage;
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Features of Some UCI Databases

TABLE 3
Information of Pool Trees



3. our method effectively selects the representative and
removes the similar samples;

4. little sample exists at late stage and therefore
samples selected by our method (MABSS) may be
with little representativeness, which lead to a little
decrease of testing accuracy.

Generally, if the selected samples to be selected are
sufficiently many, at the early stage of selection, the
averaged performance gradually increases with the sample
added, but when the exact true model is approximately
found, the new added samples will not significantly
influence the performance. This phenomenon indicates that
the selected samples using MABSS could indeed select
representative samples.

From another point of view, to get a predefined testing
accuracy, the selected samples by using our method are less
than using random selection method. For example, to get to
the level of the testing accuracy (samples in the pool as
training set, about 171 samples), we just need to select
around 10 samples (25 percent samples as training set,
about 53 samples) by using our selection method, while
about 90 samples will be selected (62 percent samples as
training set, about 133 samples) when using random
selection methodology.

Similar to Fig. 7a, in Fig. 7b, when more and more
samples are selected to add to the training set, the pool
accuracies of the trees increase gradually and finally arrive
in the training accuracy of the pool tree.

Figs. 7c and 7d describe the average depth of the tree and
the number of nodes/leaf nodes, respectively. From Figs. 7c
and 7d, we can see that the sizes of the trees become larger
when more and more samples are added into the training
set and the size of the tree trained by the samples selected
by using our method is a little larger than by using random
selection method.

Then, we write down the testing accuracies when the
selected numbers are 30, 40, 50, 60, 70, 80, 100, 120,
respectively. They are shown in Table 4.

Based on Table 4, the significant level and confidence
interval are applied in the analysis. It is found that the range
abilities are less than 0.005. To verify the differences between

the two methods, the statistical significance testing is used.
We get the conclusion that the testing accuracies of our
method are 3.5-4.3 percent higher than random selection
when the number of selected samples is between 30 and 80.

We further analyze the experimental results on a larger
database. Fig. 8 intuitively illustrates the experimental
results on Spambase.

It is the same with Fig. 7, in Fig. 8, the horizontal axis is
the number of selected samples, and the vertical axis is the
corresponding measurements. The red curves are the
experimental results using our method, and the black
curves are the results of random selection method. The
green lines are the corresponding values of the pool trees.
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TABLE 4
Statistical Information of Testing Accuracies on Glass

Fig. 7. Change tendencies of the trees as more samples are added to training set using MABSS and random selection method on Glass.



From Fig. 8, we can see that the testing accuracies of the
trees trained from samples selected by MABSS and random
selection methods are gradually increase when more and
more samples are added into the training set. Different from
Fig. 7a, the red curves in Fig. 8a are always increase during
the whole process and there is no descent stage. This fact is
coincide with our assumption that our method could
effectively select the representative samples if there exist
sufficient instances and sufficient representative instances to
be selected. One reason that both of the two curves of the two
testing accuracies are below the testing accuracy of the pool
tree is that the training set of the two trees are far less than
the training set of the pool tree. (The proportion is about
580:3680.) Another reason is that the model for Spambase is
the most complex among the data sets, so more training
samples are required to estimate that more complex model.

Finally, we compare the testing accuracies and the sizes
of the trees trained from samples selected by using the three

methods when the number of selected samples is 60, and
the statistical results are shown in Table 5 and Fig. 9.

Table 5 shows a comparative result about the testing
accuracy. On all databases in Table 5, our method has a
better testing accuracy than the other two methods, but is
not always better than the pool tree. The reason is again
explained as that our method can indeed select the
representative samples if the instances in the pool are
sufficient and the pool tree has a much bigger training set.

From Figs. 9a and 9b, we can see that, the size of the tree
built by the samples selected by our method is a little larger
than random selection in terms of the number of leaf nodes
and the average depth of the tree, which means that the
learned knowledge is more complete. The trees built on the
samples selected by our method have less leaf nodes than
pool trees especially when the pool trees are large such as on
Yeast. Moreover, Fig. 7 shows that, after a peak, the testing
accuracy on the small database decreases with the increasing
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Fig. 8. Experimental results on Spambase.

TABLE 5
Testing Accuracy of Three Sample Selection Methods



of number of samples and so does the depth of the tree. It
implicitly indicates that the tree is not large enough.

4 FURTHER THEORETICAL ANALYSIS ON OUR

PROPOSED MAXIMUM-AMBIGUITY-BASED

SAMPLE SELECTION IN FUZZY DECISION TREE

INDUCTION

For simplicity, we suppose that the problem is two-class

case with conditional attributes A1; A2; . . . ; Am (shown in

Table 6). Each attribute Aið1 � i � mÞ takes two values: Ai1

and Ai2. The decision attribute C also takes two values: C1

and C2. The sample space is denoted as SN ¼ f1; 2; . . . ; Ng.
Each vector ðaðiÞ11 ; a

ðiÞ
12 ; a

ðiÞ
21 ; a

ðiÞ
22 ; . . . ; a

ðiÞ
m1; a

ðiÞ
m2; c

ðiÞ
1 ; c

ðiÞ
2 Þ is a sam-

ple for each ið1 � i � NÞ. Each a
ðkÞ
ij or c

ðkÞ
j is a real number in

the interval [0, 1] for all ið1 � i � mÞ; jð1 � j � 2Þ; kð1 �
k � NÞ. A11; A12; A21; A22; . . . ; Am1; Am2; C1; C2 are fuzzy

subsets defined on SN . For example, A11 ¼ ðað1Þ11 ; a
ð2Þ
11 ; . . . ;

a
ðNÞ
11 Þ and C1 ¼ ðcð1Þ1 ; c

ð2Þ
1 ; . . . ; c

ðNÞ
1 Þ.

4.1 Decision Boundary of Leaf Nodes

For simplicity, we consider the case shown in Fig. 10. R1

and R2 are two leaf nodes expanding from root according to

expanded attribute Aið1 � i � mÞ. It means that R1 and R2

are two fuzzy subsets defined on SN , i.e., R1 ¼ fað1Þi1 ;
a
ð2Þ
i1 ; . . . ; a

ðNÞ
i1 g, R2 ¼ fað1Þi2 ; a

ð2Þ
i2 ; . . . ; a

ðNÞ
i2 g.

Let pij ¼ jRi

T
Cjj=jRij be the confidence degree of Ri )

Cj where the symbol) means the operation of implication.
It is noted that p11 > p12 and p21 < p22, respectively,

imply that R1 can be labeled as C1 with confidence p11 and
R2 can be labeled as C2 with confidence p22.

If a new instance x (numbered N+1) is given to match the
decision tree, the membership degrees of the instance
belonging toR1 andR2 will beAi1ðxÞ andAi2ðxÞ, respectively.

According to the matching rules,
if Ai1ðxÞ � p11 > Ai2ðxÞ � p22, then x is classified to C1 with

confidence p11;
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Fig. 9. The average tree size on Databases of UCI. (a) Average number
of leaf nodes. (b) Average depth.

TABLE 6
Sample Space

Fig. 10. A simple model of fuzzy decision tree.



if Ai1ðxÞ � p11 < Ai2ðxÞ � p22, then x is classified to C2 with
confidence p22;

if Ai1ðxÞ � p11 ¼ Ai2ðxÞ � p22, we separately handle it.
Noting that Ai1ðxÞ þAi2ðxÞ ¼ 1 and then the inequation

Ai1ðxÞ � p11 > Ai2ðxÞ � p22 is equivalent to Ai1ðxÞ > p22=
ðp11 þ p22Þ, which implies that the instance x will be
classified to C1 when Ai1ðxÞ > p22=ðp11 þ p22Þ.

Similarly, the inequation Ai1ðxÞ � p11 < Ai2ðxÞ � p22 is
equivalent to Ai1ðxÞ < p22=ðp11 þ p22Þ, which implies that
the instance x will be classified to C2 when Ai1ðxÞ < p22=
ðp11 þ p22Þ.

Noting that the value p22=ðp11 þ p22Þ plays a role of
threshold, we define

BN ¼ p22

p11 þ p22
ð25Þ

as the decision boundary of two leaf nodes R1 and R2 in the
fuzzy decision tree.

4.2 The Changes of the Fuzzy Decision Tree when
Adding a Sample to the Training Set

When a new sample is added to the training set and the tree is
retrained, the fuzzy sets denoting leaf nodes will change, and
so do the relative frequencies of the leaf nodes. Therefore, the
classification ambiguities of the leaf nodes will change, and
so does the ambiguity of the fuzzy decision tree.

We now focus on the analysis of the changes of the fuzzy
decision tree when adding a new sample to the training set.

When a new sample x ¼ ðA11ðxÞ; A12ðxÞ; A21ðxÞ; . . . ;

Am1ðxÞ; Am2ðxÞ; cðNþ1Þ
1 ; c

ðNþ1Þ
2 Þ is added to the current train-

ing set SN , the new decision tree will be again built from the

new training set SNþ1.

Suppose that R01 and R02 are two fuzzy subsets represent-

ing the left and right leaf node of the new fuzzy decision

tree, respectively. Then,R01 ¼ ðR1; Ai1ðxÞÞ,R02 ¼ ðR2; Ai2ðxÞÞ,
C01 ¼ ðC1; c

ðNþ1Þ
1 Þ, C02 ¼ ðC2; c

ðNþ1Þ
2 Þ.

Therefore,

p011 ¼
���R1; Ai1ðxÞ

�T �
C1; c

ðNþ1Þ
1

���
j
�
R1; Ai1ðxÞ

�
j

¼
��R1

T
C1

��þ �Ai1ðxÞ
V
c
ðNþ1Þ
1

�
jðR1; Ai1ðxÞÞj

¼ jR1

T
C1j

jR1j
� jR1j
jR1j þAi1ðxÞ

þminfAi1ðxÞ; cðNþ1Þ
1 g

jR1j þAi1ðxÞ

¼ p11 �
jR1j

jR1j þAi1ðxÞ
þ
min

�
Ai1ðxÞ; cðNþ1Þ

1

�
jR1j þAi1ðxÞ

:

ð26Þ

Similarly,

p012 ¼ p12 �
jR1j

jR1j þAi1ðxÞ
þ
min

�
Ai1ðxÞ; cðNþ1Þ

2

�
jR1j þAi1ðxÞ

ð27Þ

p021 ¼ p21 �
jR2j

jR2j þAi2ðxÞ
þ
min

�
Ai2ðxÞ; cðNþ1Þ

1

�
jR2j þAi2ðxÞ

ð28Þ

p022 ¼ p22 �
jR2j

jR2j þAi2ðxÞ
þ
min

�
Ai2ðxÞ; cðNþ1Þ

2

�
jR2j þAi2ðxÞ

: ð29Þ

If the sample x belongs to C1, then c
ðNþ1Þ
1 ¼ 1; c

ðNþ1Þ
2 ¼ 0,

and (14)-(17) can be simplified as

p011 ¼ p11 �
jR1j

jR1j þAi1ðxÞ
þ Ai1ðxÞ
jR1j þAi1ðxÞ

ð30Þ

p012 ¼ p12 �
jR1j

jR1j þAi1ðxÞ
ð31Þ

p021 ¼ p21 �
jR2j

jR2j þAi2ðxÞ
þ Ai2ðxÞ
jR2j þAi2ðxÞ

ð32Þ

p022 ¼ p22 �
jR2j

jR2j þAi2ðxÞ
: ð33Þ

Equations (30)-(33) give the relationship between classi-
fication frequencies in leaf nodes before and after adding a
new sample to the training set under the assumption that
the sample x belongs to C1. Similarly, we can consider the
case of x belonging to C2. Here, we do not discuss it further.

4.3 Changes of Classification Ambiguity of Leaf
Nodes

To analyze the changes of classification ambiguities of the
leaf nodes, we first consider the relationships between
relative frequencies and classification ambiguities of the
leaf nodes.

Consider a leaf node R including L classes. Let p1;
p2; . . . ; pL be the relative frequencies of the leaf node and
p1 > p2 > � � � > pL. Suppose that the left leaf node changes
from R1 to R01 and the right leaf node changes from R2 to
R02. Then, we have the following two theorems.

Theorem 1. AmbiguityðRÞ will decrease when p1 increases and
all the others remain unchanged; AmbiguityðRÞ will increase
when any pið1 < i � LÞ increases and all the others remain
unchanged.

Proof.

AmbiguityðRÞ ¼
XL
i¼1

ðpi � piþ1Þlni

¼ p1

p1
� p2

p1

� �
ln1þ p2

p1
� p3

p1

� �
ln2

þ � � � þ pL
p1
� pLþ1

p1

� �
lnL

¼ ln1þ p2=p1ðln2� ln1Þ þ p3=p1ðln3� ln2Þ

þ � � � þ pL=p1 lnL� lnðL� 1Þð Þ

@AmbiguityðRÞ
@p1

¼ � p2

p2
1

ðln2� ln1Þ � p3

p2
1

ðln3� ln2Þ

� � � � � pL
p2

1

ðlnL� lnðL� 1ÞÞ < 0

@AmbiguityðRÞ
@pi

¼ 1

p1
ðlni� lnði� 1ÞÞ > 0 ð2 � i � LÞ:

ut
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Theorem 2. AmbiguityðRÞ will not change when p1; p2; . . . ; pL
change in the same proportions.

From (30)-(31), we can see that the computation of

changes of p11 and p12 can be divided into two steps: first,

p11 and p12 multiply the same factor jR1j
jR1jþAi1ðxÞ , and then add

Ai1ðxÞ
jR1jþAi1ðxÞ to p11. In this case, the classification ambiguity of

the left leaf node of the fuzzy decision tree will decrease.
Similarly, from (32)-(33), the computation of changes of

p21 and p22 can also be divided into two steps: first, p21 and

p22 multiply the same proportion jR2j
jR2jþAi2ðxÞ , and then add

Ai2ðxÞ
jR2jþAi2ðxÞ to p21. Therefore, the classification ambiguity of

the right leaf node of the fuzzy decision tree will increase

under the assumption p021 < p022.
Clearly, when adding a new sample that belongs to C1 to

the training set SN , compared with the original fuzzy

decision tree trained from SN , the classification ambiguity

of the left node of the new fuzzy decision tree trained from

SNþ1 will decrease, while the classification ambiguity of the

right node of the new fuzzy decision tree will increase

under the assumption that p021 < p022.

4.4 Change Rate of the Classification Ambiguities
of Leaf Nodes

According to Theorems 1 and 2, when the relative

frequencies of a leaf-node multiply the same proportions,

the classification ambiguity of the leaf node will not change.

When one of the relative frequencies increases and the

others remain unchanged, the classification ambiguity will

decrease or increase.
Therefore, in order to analyze the change rate of the

classification ambiguity for a leaf node, we just need to

analyze the ratio of the relative frequencies of the leaf node.
We first pay attention to p11=p12.
When adding a sample belonging C1 to the training set,

p11 and p12 will multiply the same factor, and then add
Ai1ðxÞ

jR1jþAi1ðxÞ to p11.

For simplicity, we denote that y ¼ Ai1ðxÞ; a ¼ jR1j and

fðyÞ ¼ y
aþy . Clearly, a � y; y 2 ½0; 1�. Therefore,

df

dy
¼ y

ðaþ yÞ2
� 0; ðy 2 ½0; 1�; a � yÞ ð34Þ

df

dy

� �0
¼ a� y
ðaþ yÞ3

� 0; ðy 2 ½0; 1�; a � yÞ; ð35Þ

it is easy to check that f is an increasing concave function.

When Ai1ðxÞ is changing from 0 to 1, fðAi1ðxÞÞ always

increases and the increase-rate increases. These imply that

when adding a sample that belongs to C1 in the training set,

p11=p12 always increases and the increase-rate also increases

as the attribute value Ai1ðxÞ is changing from 0 to 1.
Similarly, we consider p21=p22.
As we known, when adding a sample belonging to C1 to

the training set, p21 and p22 will multiply the same

proportion, and then add Ai2ðxÞ
jR2jþAi2ðxÞ to p21.

Noting that Ai1ðxÞ þAi2ðxÞ ¼ 1, we denote that y ¼
Ai1ðxÞ; b ¼ jR2j and gðyÞ ¼ 1�y

bþ1�y . Clearly, y 2 ½0; 1�. We have

dg

dy
¼ �b
ðbþ 1� yÞ2

� 0; ðy 2 ½0; 1�Þ ð36Þ

dg

dy

� �0
¼ �2b

ðbþ 1� yÞ3
� 0; ðy 2 ½0; 1�Þ: ð37Þ

Clearly, g is a decreasing concave function. When Ai1ðxÞ
is changing from 0 to 1, gðAi1ðxÞÞ always decreases and the
decrease-rate decreases. These imply that when adding a

sample that belongs to C1 in the training set, p21=p22 always

decreases on the assumption that p22 is bigger than p21. And

the decrease-rate decreases as the attribute value Ai1ðxÞ is

changing from 0 to 1.
According to the analyses above, when adding a sample

belonging to C1 in the training set based on the simplified

model shown in Fig. 8, p11=p12 will always increase and the

increase-rate also increases with the change of Ai1ðxÞ from 0

to 1; p21=p22 will decrease and the decrease-rate also

decreases with the change of Ai1ðxÞ from 0 to 1. Therefore,

the classification ambiguity of the left leaf node will

decrease and the decrease-rate will decrease from max-

imum to 0, while the classification ambiguity of the right

leaf node will increase and the increase-rate will increase

from 0 to maximum. Similarly, when adding a sample

belonging to C2 to the training set, the classification

ambiguity of the left leaf node will increase and the

classification ambiguity of the right leaf node will decrease.

But both of their change rates will accelerate.

4.5 The Ambiguity’s Change of the Fuzzy Decision
Tree

According to Definition 3, the classification ambiguity of the

root is associated with the classification ambiguities of all

the leaf nodes. The changes of the classification ambiguities

of all the leaf nodes will result in the change of the

classification ambiguity of the root, i.e., the ambiguity of the

whole decision tree.
Following the analyses above, when adding a sample to

the training set, the classification ambiguity of one leaf node

will increase and its increase rate also increases, while the

classification ambiguity of its sibling leaf node decreases

and the decrease rate decreases. Therefore, there exists a

point denoted by �ð� 2 ½0; 1�Þ, at which the increase rate of

the left leaf node equals to the decrease rate of the right leaf

node when Ai1ðxÞ is changing from 0 to 1.
Therefore, we can derive the following conclusions:

1. When Ai1ðxÞ is in the interval ½0; �Þ, because the
increase rate of the classification ambiguity of the
right leaf node is bigger than the decrease rate of
the classification ambiguity of the left leaf node, the
ambiguity of the decision tree increases and the
increase rate becomes slower as Ai1ðxÞ approaches
to �;

2. When Ai1ðxÞ is in the interval ð�; 1�, because the
decrease rate of one leaf node is bigger than the
increase rate of the other node arising from the same
parent, the ambiguity of the decision tree decreases
and the decrease rate becomes faster as Ai1ðxÞ is
away from �;
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3. When Ai1ðxÞ equals to �, no matter the ambiguity of
the fuzzy decision tree increases or decreases, the
change rate of the decision tree’s ambiguity is
smallest.

4.6 Summary

Sample selection method based on maximal classification
ambiguity in fuzzy decision tree is to select the instance
with maximal evaluated ambiguity, i.e., the instance is the
one which satisfies C1ðxÞ 	 C2ðxÞ. According to the match-
ing to the fuzzy decision tree for an instance, the instance
with maximal evaluated ambiguity is closest to the decision
boundary of the decision tree, i.e., the instance whose Ai1ðxÞ
approaches BN as possible where BN is decision boundary
defined in Section 4.1. We now analyze the relations
between the selected instance(s) and the ambiguity of the
fuzzy decision tree on the assumption that � ¼ BN .

According to the results in Section 4.1 that when Ai1ðxÞ is
greater than BN , it will be classified to C1; when Ai1ðxÞ is
smaller than BN , it will be classified to C2. Combining the
results in Section 4.2, we can see that when adding an
instance that is classified correctly using the current fuzzy
decision tree to the training set, compared with the old
decision tree, the ambiguity of the newly built the decision
tree will decrease. On the contrary, when adding an
instance that is misclassified, the ambiguity will increase.
When adding an instance with maximal ambiguity, no
matter it is classified correctly or incorrectly and no matter
the ambiguity of the decision tree increases or decreases, the
change of the decision tree is smallest.

Selecting samples to incrementally generate a decision
tree is similar to an action in our real life. The channel of a
TV is adjusted by a button. If we want to improve the TV
picture by turning the button, but it is uncertain that which
direction is correct. In this case, a very slight turning is the
safest choice. Induction of incremental decision tree with
sample selection can be regarded as adjusting the decision
tree through adding instances. Selecting an instance with
the maximal evaluated ambiguity can minimize the adjust-
ment of the decision tree.

5 CONCLUSIONS

This paper proposes a sample selection method based on
the maximal classification ambiguity in fuzzy decision tree
induction and gives an analysis on the significance of the
sample selection methodology. It selects the instance with
maximal evaluation ambiguity when the instance is match-
ing to the fuzzy decision tree. The selected instance can
minimize the adjustment of the generated fuzzy decision
tree and finally build a fuzzy decision tree with high
performance gradually. Our numerical experiments give a
sufficient evidence and support to the corresponding
theoretical inference.

The following conclusions can be drawn in our study:

1. The sample selection method we proposed in this
study is based on the principle of the maximal
classification ambiguity to select the samples with
maximal evaluated ambiguity in fuzzy decision
tree induction;

2. Usually the instance selected by using our proposed
method is in the vicinity of the decision boundary.

The basic idea is similar to CNN, IBL, etc., which
only store those misclassified instances. The in-
stances in the vicinity of the decision boundary are
regarded as the instances that are likely to be
misclassified using the current fuzzy decision tree;

3. The ambiguity of the decision tree will change when
an instance is added to the training set. When
adding an instance that is correctly classified using
the current decision tree, the ambiguity of the fuzzy
decision tree will decrease. While adding an instance
that is incorrectly classified, the ambiguity of the
fuzzy decision tree will increase. However, when
adding an instance with the maximal evaluated
ambiguity, which may be classified correctly or
incorrectly by using the current decision tree, no
matter the ambiguity of the fuzzy decision tree
increases or decreases, the adjustment of the
decision tree is minimal.
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