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Cut selection based on heuristic information is one of the most fundamental issues in the
induction of decision trees with continuous valued attributes. This paper connects the
selection of optimal cuts with a class of heuristic information functions together. It statis-
tically shows that both training and testing accuracies in decision tree learning are depen-
dent strongly on the selection of heuristics. A clear relationship between the second-order
derivative of heuristic information function and locations of optimal cuts is mathematically
derived and further is confirmed experimentally. Incorporating this relationship into a pro-
cess of building decision trees, we can significantly reduce the number of detected cuts and
furthermore improve the generalization of the decision tree.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Decision tree learning [1–4] is one of the most widely used and practical methods for inductive inference, which is con-
sidered as an approach to approximating discrete-valued target functions. Classical decision tree learning algorithms includ-
ing Concept Learning System (CLS), ID3 [5,6], C4.5 [7,8] and classification and regression trees (CART) [9,10], etc. are typically
constructed top-down and their building process is recursive. How to choose extended attributes for growing the tree is
most crucial issue in building decision trees.

The attributes used to describe samples can be continuous or discrete. Usually the discrete attributes are non-ordered
nominal values [11]. In the process of building a decision tree, discrete-valued attributes partition the space of examples
by their nominal values, while continuous-valued attributes usually partition the space of examples by cut points, in short,
cuts. How to choose optimal cuts based on heuristic information functions is one of the most fundamental issues of con-
structing decision trees with continuous-valued attributes. It is well known that the number of detected cuts largely deter-
mines the efficiency of a decision tree generation algorithm. Usually for a decision tree generation algorithm, all candidate
cuts need to be detected and then the optimal one is selected. Although most decision tree algorithms are able to handle
continuous-valued attributes well, the large range of cut detection seriously limits the efficiency of the algorithms
[12,13]. To overcome the defect of evaluating all cuts, Fayyad and Irani in [12] presented a method that generates decision
trees using the information entropy minimization heuristic via discretizing continuous-valued attributes and proved that
optimal cuts are always boundaries. To some extent, Fayyad’s method narrows the detection range down to boundary points
and furthermore improves the efficiency of cut selection. Wang and Hong in [14] extended Fayyad’s method to the
generation of decision trees with interval-valued attributes and proved that the points of minimum information entropy
of partitioning are always unstable cuts. Furthermore, Yen and Chu in [15] proposed relaxation of instance boundaries
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(RIB) based on Fayyad’s method in order to eliminate situations where a single isolated instance is located amidst samples of
another class. RIB further narrowed the detection range of cuts.

For most algorithms of building decision trees with continuous-valued attributes, their heuristic information functions
are based on information entropy. This paper makes an attempt to investigate whether other heuristic information functions
have the similar properties. Several kinds of heuristic information functions are discussed and a generalized form of heuristic
information functions is proposed. Whether the generalized heuristic information function has the property that the optimal
cuts are always located in boundaries is studied. A clear relationship between the second-order derivative of heuristic infor-
mation function and locations of optimal cuts is established. An investigation to this relationship leads to a significant reduc-
tion of number of detected cuts and further an improvement of generalization for a decision tree.

The rest of this paper is organized as follows. In Section 2 we present the process of selecting optimal cuts. Section 3 intro-
duces several typical heuristic information functions. In Section 4 we establish a relationship between heuristic information
functions and optimal cut selection. Section 5 concludes this paper.

2. Optimal cut selection

Cut selection is a key step of generating decision trees with continuous-valued attributes. Cut point is a threshold value T.
For a continuous-valued attribute A, all instances with A 6 T are assigned to a sub-interval while all instances with A > T are
assigned to the other one. In this way, a continuous-valued attribute is discretized by using a cut to split its range into two
intervals. A typical process of optimal cut selection includes four steps: sorting, getting cuts, evaluating cuts and splitting
node [16].

(1) Sorting: All individual values of a continuous attribute are sorted in either descending or ascending order.
(2) Getting cuts: Generally, the midpoint between two adjacent samples in the sorted sequence is evaluated as a potential

cut point. Assuming that all samples have distinct values v1, v2, . . . , vN, there are N � 1 candidate cuts to be evaluated.
(3) Evaluating cuts: Evaluating N � 1 candidate cuts based on a certain evaluation function for determining which cut is

the optimal one. One can find numerous evaluation functions in the literature such as information gain, Gini-index and
classification error.

(4) Splitting node: Splitting the range of continuous values into two intervals according to the optimal cut.

Repeating above operations for each node that has the continuous-valued attributes until a stopping criterion is met. The
optimal cut selection is the main workload of generating a decision tree. Usually detecting all candidate cuts for a continuous
attribute is time-consuming (although the decision tree generation algorithm has the computational complexity much less
than other types of learning algorithms). The number of candidate cuts (we must evaluate) directly determines the efficiency
of a decision tree learning algorithm.

3. Heuristic information functions

At each node to be extended, the extended attribute we choose is most beneficial for classifying samples. The selected
heuristic information function plays an essential role in the process of extending a node. From literatures one can find many
heuristic information functions and most of them are impurity-based functions [6–10]. Here, we review some of the most
representative ones.

3.1. Information entropy

Quinlan proposed the ID3 decision tree algorithm in 1986 using information gain [5] and later the C4.5 algorithm in 1993
using gain ratio [7]. Each of the two heuristic functions is based on the information entropy. The information entropy, which
measures the impurity of instances in a node with respect to the classes, is defined as
EntropyðSÞ ¼ �
Xk

i¼1

pðCijSÞlog2pðCijSÞ; ð1Þ
where S is a data set (i.e., a node) to be extended, k is the number of classes and p(Ci|S) is the probability of an example
belonging to class Ci in the data set S. When all examples in S belong to the same class, the entropy is zero. When the prob-
abilities of an example belonging to different classes are identical, the entropy reaches its maximum log2k.

3.2. Gini-index

One alternative measure that has been used successfully in generating decision trees is the Gini-index which was pro-
posed by Breiman in CART [9] and employed in the following function:
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GiniðSÞ ¼ 1�
Xk

i¼1

p2ðCijSÞ ¼
Xk

i¼1

pðCijSÞð1� pðCijSÞÞ: ð2Þ
The formula of Gini-index is quite similar to entropy. That is, Gini-index is zero if all examples in S belong to the same
class and Gini-index reaches its maximum 1 � 1/k if all probabilities of an example belonging to different classes are
equivalent.

3.3. Classification error

Classification error is also a kind of impurity-based measure. It is defined as follows:
Classification ErrorðSÞ ¼ 1�maxfpðCijSÞg: ð3Þ
This measure is similar to the two above-mentioned ones. It gets its minimum zero when all examples belong to the same
class and gets its maximum 1 � 1/k when data set S contains the same number of examples for each class.

3.4. Ambiguity

Yuan and Shaw [17] used ambiguity as the attribute selection criteria for fuzzy decision tree. Let p = (p(x)|x 2 X) denote a
normalized possibility distribution on X = {x1, x2, . . . , xn}, the ambiguity measure is defined as
AmbiguityðYÞ ¼
Xn

i¼1

ðp�i � p�iþ1Þ ln i;
where Y is a fuzzy variable and p� ¼ fp�1;p�2; . . . ;p�ng is the permutation of the possibility distribution p = {p(x1), p(x2), -
. . . , p(xn)}, sorted so that p�i P p�iþ1 for all i = 1, 2, . . . , n, and p�iþ1 ¼ 0. The ambiguity denoting a type of impurity can be
re-written as
AmbiguityðYÞ ¼
Xn

i¼1

ðp�i � p�iþ1Þ ln i; ð4Þ
where p� ¼ fp�1; p�2; . . . ; p�ng is a sorting of probability distribution p = {p(x1), p(x2), . . . , p(xn)}, pi ¼
pðCijSÞ

maxfpðCijSÞg
, p�i P p�iþ1 for

all i = 1, 2, . . . , n, and p�iþ1 ¼ 0.

3.5. Generalized heuristic information function

Given a data set S with positive and negative examples of a target concept which is represented as a Boolean function. As
we show below, each of these impurity measures of S relative to this Boolean classification can be calculated as
EntropyðSÞ ¼ �pðþjSÞlog2pðþjSÞ � ð1� pðþjSÞÞlog2ð1� pðþjSÞÞ
GiniðSÞ ¼ 1� p2ðþjSÞ � ð1� pðþjSÞÞ2 ¼ 2pðþjSÞð1� pðþjSÞÞ

Classification ErrorðSÞ ¼
pðþjSÞ 0:5 6 pðþjSÞ 6 1
1� pðþjSÞ 0 6 pðþjSÞ 6 0:5

�

AmbiguityðSÞ ¼

pðþjSÞ
1� pðþjSÞ ln 2 0 6 pðþjSÞ 6 0:5

1� pðþjSÞ
pðþjSÞ ln 2 0:5 6 pðþjSÞ 6 1

8>><
>>:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

;

where p(+|S) is the proportion of positive examples in S. Fig. 1 shows the forms of the four heuristic information functions to
a Boolean classification, where p(+|S) varies between 0 and 1.

Observing the specific forms of the four heuristic information functions, we can find their similarities and differences as
follows.

Their differences mainly reflect in two aspects:

(1) These functions have different derivability at point p(+|S) = 0.5: ambiguity and classification errors are derivable,
entropy and Gini-index are non-derivable.

(2) The second-order derivatives of these functions are different in the derivable intervals: The second-order derivatives
of entropy and Gini-index are less than zero, classification error’s second-order derivative is equal to zero and ambi-
guity’s second-order derivative is greater than zero.

Their similarities mainly reflect in another two aspects:
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Fig. 1. Four heuristic information functions relative to a Boolean classification.
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(1) These functions are symmetrical about point p(+|S) = 0.5, monotonically increasing in the left interval [0,0.5], and
monotonically decreasing in the right interval [0.5,1]. They get their maximum at point p(+|S) = 0.5 and their mini-
mum at points p(+|S) = 0 and p(+|S) = 1.

(2) These functions have the second-order derivatives in their derivable intervals (0,0.5) and (0.5,1).

Through summarizing these similarities and differences, we extract a general form of these functions as follows:
FðxÞ ¼
f ðxÞ 0 6 x 6 1

2

f ð1� xÞ 1
2 6 x 6 1

(
;

where x is the proportion of positive examples in S. f(x) is such a function defined in [0,1] with the properties: f(0) = 0, f(x) is
continuous and monotonically increasing in interval [0,0.5], and its second-order derivative exists in interval (0,0.5). It is
worth noting that the function f defined above can be regarded as a general form of the 4 measures given in Section 3.

F(x) is called the generalized heuristic information function which includes many existing heuristics such as the fre-
quently used Entropy and Gini index as special cases. It is very practically useful for building decision trees to find a uniform
(generalized) function summarizing diverse heuristics. The discussion about the generalized function is expected to make
clear the impact of different heuristics on size of the generated decision tree. It is also to expected reveal some new key fea-
tures of relations between the generalization capability and the size of a decision tree.
4. Relationship between generalized heuristic information function and optimal cut selection

For each node to be extended during the tree growing, we would like to select the attribute having the optimal cut as the
extended attribute. Assume that S is the set of samples, representing the considered node, A is a candidate continuous-valued
attribute, and T is a candidate cut of attribute A. When we use F(x) as the heuristic function for decision tree generation, the
cuts can be measured by using the following equation
GSðTÞ ¼
jS1j
jSj FðpðþjS1ÞÞ þ

jS2j
jSj FðpðþjS2ÞÞ; ð5Þ
where set S is partitioned into the subsets S1 and S2 by cut T, |�| denotes the size of a data set, p(+|S1) and p(+|S2) are the pro-
portions of positive examples in the two subsets (p1 and p2 for short).

For example, when F(x) is the information entropy, GS(T) denotes the class information entropy of the partition induced by
T:
GSðTÞ ¼
jS1j
jSj EntropyðS1Þ þ

jS2j
jSj EntropyðS2Þ:
Most decision tree generation algorithms select the extended attribute with the highest information gain. Maximizing
information gain is equivalent to minimizing the average class entropy. We will select the optimal cut with the smallest
average class entropy for continuous-valued attributes based on the generalized information function. Fayyad and Irani
[12,13] proved that the cuts with minimum average class entropy are always boundaries. This result can narrow the range
of the optimal cuts detection from all candidate cuts to boundary cute only, and therefore, improve the computational
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efficiency of cut selection significantly. The key issue to be solved in this study is whether the optimal cuts based on general-
ized heuristic information function are also boundaries, that is, whether GS(T) gets its minimum at boundaries. We have the
following proposition.

Proposition 4.1. Suppose that GS(x) gets its minimum at x = T, then we have the following conclusions regarding the generalized
heuristic information function and its optimal cuts

00
(1) If f ðxÞ < 0, then T must be a boundary point.
(2) If f 00ðxÞ ¼ 0, then T can be a boundary point.
(3) If f 00ðxÞ > 0, then T must be a boundary or a point satisfying p1 = p2.
Proof. Let S be a samples set belonging to node to be extended and A be a continuous-valued attribute regarding S. Sort the
samples in S by increasing value of attribute A. Assume that cut T occurs within a sequence of n examples of the same class,
where n P 2. Without loss of generality, we assume this class being positive. Let T1 and T2 be the boundary points of n exam-
ples, and S1 and S2 be the subsets of S divided by T. There are nc examples that have values greater than T1 and less than T,
where 0 6 nc 6 n. Fig. 2 describes this situation. h

The problem of judging the position of an optimal cut is converted to a problem of testing whether GS(T) gets its minimum
at T1 or T2. If GS(T) gets its minimum at T1 or T2, then the optimal cut is a boundary; otherwise the optimal cut is not a bound-
ary. Next, our main task is to obtain the position where GS(T) gets its minimum according to the values of f 00ðxÞ.

Let there be N+ positive examples in S, nl examples in S with A-values less than T1 where nl+ examples are positive, and nr
examples in S with A-values greater than T1 where nr examples are positive. Noting that 0 6 nl+ 6 nl, 0 6 nr+

6 nr, and nl++-
n + nr+ = N+, p1 and p2 are the proportions of positive examples in S1 and S2 respectively, we have:
p2 ¼
Nþ � jS1jp1

jSj � jS1j
:

GS(T) can be written as a expression of p1:
GSðTÞ ¼
jS1j
jSj Fðp1Þ þ

jS2j
jSj Fðp2Þ ¼

jS1j
jSj Fðp1Þ þ

jS2j
jSj F

Nþ � jS1jp1

jSj � jS1j

� �
: ð6Þ
While cut T moves from T1 to T2, p1 increases and p2 decreases monotonically. Because we cannot make sure the deriv-
ability on point 0.5, the change-intervals of p1 can be divided into three kinds: the intervals are included within (0,0.5); the
intervals include point 0.5 and the intervals are included within (0.5,1). The change-intervals of p2 have the similar three
cases.

Combining the change-intervals of p1 and p2, we can obtain the following 9 cases:

(1) The change-intervals of both p1 and p2 are contained within (0,0.5).
(2) p1’s change-interval is contained within (0,0.5), p2’s change-interval is contained within (0.5,1).
(3) p1’s change-interval is contained within (0.5,1), p2’s change-interval is contained within (0,0.5).
(4) The change-intervals of both p1 and p2 are contained within (0.5,1).
(5) The change-intervals of both p1 and p2 contain point 0.5.
(6) p1’s change-interval contains point 0.5, p2’s change-interval is contained within (0,0.5).
(7) p1’s change-interval contains point 0.5, p2’s change-interval is contained within (0.5,1).
(8) p1’s change-interval is contained within (0,0.5), p2’s change-interval contains point 0.5.
(9) p1’s change-interval is contained within (0.5,1), p2’s change-interval contains point 0.5.

Below we discuss each of the 9 cases respectively.

(1) The change-intervals of both p1 and p2 are included within (0,0.5).

In this case, we can rewrite the above expression as
GSðTÞ ¼
jS1j
jSj f ðp1Þ þ

jSj � jS1j
jSj f

Nþ � jS1jp1

jSj � jS1j

� �
: ð7Þ
Candidate cut point

T

n

1 2T
nc

T

Fig. 2. A candidate cut T.
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Taking the first derivative of GS(T) with respect to p1, we have
dðGSðTÞÞ
dp1

¼ jS1j
jSj f 0ðp1Þ þ

jSj � jS1j
jSj f 0

Nþ � jS1jp1

jSj � jS1j

� �
�jS1j
jSj � jS1j

¼ jS1j
jSj f 0ðp1Þ �

jS1j
jSj f 0

Nþ � jS1jp1

jSj � jS1j

� �
¼ jS1j
jSj ðf

0ðp1Þ � f 0ðp2ÞÞ: ð8Þ
We now discuss the minimum value of GS(T) according to different values of the second-order derivative,
a. If f 00ðxÞ < 0, then f0(x) is monotonically decreasing with respect to x. If p1 < p2, we have dðGSðTÞÞ

dp1
¼ jS1 j
jSj ðf 0ðp1Þ � f 0ðp2ÞÞ > 0;

if p1 > p2, we have dðGSðTÞÞ
dp1

¼ jS1 j
jSj ðf 0ðp1Þ � f 0ðp2ÞÞ < 0. It then results in the following assertions:

(A1) If p1 is permanently less than p2, then GS(T) is monotonically increasing and gets its minimum at boundary point
nc = 0.

(A2) If p1 is permanently greater than p2, then GS(T) is monotonically decreasing and gets its minimum at boundary
point nc = n.

(A3) If p1 is less than p2 earlier and less than p2 later, then GS(T) is monotonically increasing earlier and decreasing
later, and then, gets its minimum at boundary points nc = 0 or nc = n.
(A1)–(A3) imply that, no matter what relationship between p1 and p2, GS(T) gets its minimum value at boundaries.

b. If f 00ðxÞ ¼ 0, then f0(x) is a constant, dðGSðTÞÞ

dp1
¼ 0 for all nc = 0, 1, . . . , n. And therefore, no matter they are boundaries,

GS(T) is a constant.
c. If f 00ðxÞ > 0, then f0(x) is monotonically increasing with respect to x. We have dðGSðTÞÞ

dp1
¼ jS1 j
jSj ðf 0ðp1Þ � f 0ðp2ÞÞ < 0 if p1 < p2

and dðGSðTÞÞ
dp1

¼ jS1 j
jSj ðf 0ðp1Þ � f 0ðp2ÞÞ > 0 if p1 > p2, which imply that GS(T) is monotonically decreasing and gets its mini-

mum at boundary point nc = n when p1 is permanently less than p2; GS(T) is monotonically increasing and gets its
minimum at boundary point nc = 0 when p1 is permanently greater than p2; and GS(T) is monotonically decreasing
earlier and increasing later, and gets its minimum at the point satisfying p1 = p2 when p1 is grater than p2 earlier
and less than p2 later. And therefore, we can see that GS(T) gets its minimum value at boundaries or the points sat-
isfying p1 = p2.

(2) p1’s change-interval is included within (0,0.5) and p2’s change-interval is included within (0.5,1).

In this case, we can rewrite expression (6) as
GSðTÞ ¼
jS1j
jSj f ðp1Þ þ

jSj � jS1j
jSj f 1� Nþ � jS1jp1

jSj � jS1j

� �
: ð9Þ
Taking the first derivative of GS(T) with respect to p1, we have
dðGSðTÞÞ
dp1

¼ jS1j
jSj f 0ðp1Þ þ

jSj � jS1j
jSj f 0 1� Nþ � jS1jp1

jSj � jS1j

� �
jS1j

jSj � jS1j
¼ jS1j
jSj f 0ðp1Þ þ

jS1j
jSj f 0 1� Nþ � jS1jp1

jSj � jS1j

� �

¼ jS1j
jSj ðf

0ðp1Þ þ f 0ð1� p2ÞÞ > 0; ð10Þ
dðGSðTÞÞ
dp1

> 0, for all nc = 0, 1, . . . , n, implies that GS(T) is monotonically decreasing and gets its maximum at boundary point
nc = 0.

(3) p1’s change-interval is included within (0.5,1) and p2’s change-interval is included within (0,0.5).
Similarly to the case (2), it is easy to verify case (3).

(4) The change-intervals of both p1 and p2 are included within (0.5,1).

In this case, we can rewrite expression (6) as
GSðTÞ ¼
jS1j
jSj f ð1� p1Þ þ

jSj � jS1j
jSj f 1� Nþ � jS1jp1

jSj � jS1j

� �
: ð11Þ
Taking the first derivative of GS(T) with respect to p1, we have:
dðGSðTÞÞ
dp1

¼ � jS1j
jSj f 0ð1� p1Þ þ

jSj � jS1j
jSj f 0 1� Nþ � jS1jp1

jSj � jS1j

� �
jS1j

jSj � jS1j
¼ � jS1j

jSj f 0ð1� p1Þ þ
jS1j
jSj f 0 1� Nþ � jS1jp1

jSj � jS1j

� �

¼ � jS1j
jSj ðf

0ð1� p1Þ � f 0ð1� p2ÞÞ ¼
jS1j
jSj ðf

0ðp1Þ � f 0ðp2ÞÞ:
Noting that the expression above is the same to (8), we can obtain the same conclusion.

(5) The change-intervals of both p1 and p2 include point 0.5.

This combination is the most complex one. By dividing each of these change-intervals into two subintervals, the partition
can be illustrated in Table 1. p1 increases and p2 decreases along with nc changes from 0 to n, so p1 changes from values less



Table 1
The change-intervals partition of p1 and p2.

Subintervals p1 p2

State 1 (0,0.5) (0,0.5)
State 2 (0,0.5) (0.5,1)
State 3 (0.5,1) (0,0.5)
State 4 (0.5,1) (0.5,1)
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than 0.5 to values greater than 0.5 and p2 changes from values greater than 0.5 to values less than 0.5. The change varies from
state2 to state3 through the middle process state (1) or state (4).

The monotonicity of p1 and p2 in these subintervals are listed in Table 2 which has been discussed in the first four com-
binations. Noting that GS(T) is continuous in its domain and the monotonicity of p1 and p2 in state 1 is same as in state 4, we
can get the position of GS(T)’s minimum:

(1) If f 00ðxÞ < 0, GS(x) gets its minimum value at one of the boundary points.
(2) If f 00ðxÞ ¼ 0, GS(x) can gets its minimum value at more than one boundary point.
(3) If f 00ðxÞ > 0, GS(x) gets its minimum value at a boundary point or the point with p1 = p2.

The other cases can be verified similarly to cases (1)–(5). We now end the proof.1

The optimal cuts of information entropy and Gini-index are always on boundaries, while ambiguity gets its optimal cuts
at boundaries or some special points. If the classification error function attains its minimum at non-boundaries, then it can
attain the same minimum at boundaries. For a given heuristic information function, we can determine the positions of the
optimal cuts according to the values of second-order derivatives. For example, if we use sin(x) as a heuristic information
function, the optimal cuts are always boundaries because the second-order derivative of sin(x) in [0,1] is less than zero.

When the second-order derivative of the heuristic information function is greater than zero, optimal cut point may be a
non-boundary point with p1 = p2.
1 Not
analytic
see Ref.
pðþjSÞ ¼
p1jS1j þ p2jS2j

jSj ¼ p1
jS1j þ jS2j
jSj ¼ p1: ð12Þ
Noting that
p1 ¼
nlþ þ nc

nlþ nc
; ð13Þ
we have
nc ¼
pðþjSÞnl� nlþ

1� pðþjSÞ
: ð14Þ
If nc (the number of the points between T1 and T) satisfies 0 < nc < n, then there exits a non-boundary point such that GS(T)
reaches its minimum.
5. Numerical experiments

5.1. Experimental setting

Nine data sets are selected from UCI machine learning repository [19], which has been extensively used in testing the
performance of diversified kinds of classifiers, LIBSVM available at http://www.csie.ntu.edu.tw/cjlin/libsvm and ELENA data-
set available via anonymous ftp: ftp.dice.ucl.ac.be in the directory pub/neural/ELENA/databases. The sizes of data sets are
from 683 to 19,020. The information about 9 data sets is summarized in Table 3.

5.2. Experimental objectives

It is to verify whether a decision tree learning system depends on its selection of heuristic function. The selected heuristic
functions are required to meet the conditions given in Section 4. We selected 4 generalized heuristic information functions
for our comparison. They are
e. For particular engineering issue of building a binary decision tree in which the second-order derivative of the heuristic function is difficult to
ally evaluate, an approach to numerically estimating the second-order is necessary. For more details to numerical computation of derivative, one can
[18].

http://www.csie.ntu.edu.tw/cjlin/libsvm


Table 2
The monotonicity of p1 and p2 in these subintervals.

Subintervals f00 (x) < 0 f00(x) = 0 f00(x) > 0

State 1 Increase Convex Decrease Constant Increase Convex Decrease
State 2 Increasing Increasing Increasing
State 3 Decreasing Decreasing Decreasing
State 4 Increase Convex Decrease Constant Increase Convex Decrease

Table 3
Data sets used in our experiments.

Data set # Of cases # Of classes # Of attributes

Pima 768 2 9
Breast cancer 683 2 10
Credit 690 2 10
Abalone 4177 29 8
Clouds 5000 2 2
SVMguide1 7089 2 4
Waveform 5000 3 21
Waveform + noise 5000 3 40
MAGIC04 19,020 2 10
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(1) f1(x) = �x log2 x � (1 � x) log2 (1 � x). This special case is corresponding to the classical entropy heuristic information
function.

(2) f2(x) = x(1 � x). This special case is corresponding to the Gini index, another classical heuristic information function.

(3) f3ðxÞ ¼
x 0:5 < x 6 1
1� x 0 6 x 6 0:5

�
. This case corresponds to the classical min–max heuristic.

(4) f4(x) = sin (px). This is a case different from several classical heuristics.

Usually the used heuristic functions are smooth (such as entropy and Gini index) with expressions of elementary func-
tions. Their second-order derivative is easy to evaluate. But for particular engineering problems in which the function is not
smooth, a numerical method for computing the second-order derivative is necessary [18]. It is easy to directly evaluate the
second-order derivatives of these 4 generalized heuristic information functions as follows: f 001 ðxÞ ¼ 1

In2� 1
xð1�xÞ, f 002 ðxÞ ¼ �2,

f 003 ðxÞ ¼ 0 and f 004 ðxÞ ¼ �p2 sinðpxÞ.
A reason for selecting the 4 heuristics is to verify that (1) our proposed generalized heuristic information function can

include many specific forms and (2) the frequently used classical heuristics, entropy and Gini index, can be considered as
two special cases of our generalized function.

Sure, there are other forms of heuristics to be selected. Here we only would like to show such a statement that any func-
tion satisfying conditions of our generalized function (given in Section 3.5) can be selected as a heuristic for which the non-
boundary cuts are not necessary to be evaluated during building the decision tree. (It is worth noting that there exit many
heuristics for which all cuts (boundary and non-boundary) must be evaluated during building the decision tree.)
5.3. Experimental steps

The ten-fold cross-validation is performed for each data set. With the change of generalized heuristic information func-
tions, we observe (1) the training accuracy, (2) the testing accuracy, and (3) the ratio of boundary-cuts to all cuts. The exper-
iments repeat 5 times and the averaged values are recorded for each heuristic information function. The experimental
records are summarized in Table 4 where the symbol NB represents Non-Boundary.
Table 4
Experimental results. The bold values indicates the best classification accuracy among 4 heuristics.

Data sets Training accuracy (f1/f2/f3/f4) Testing accuracy (f1/f2/f3/f4) Ratio of NB cuts (%)

Pima (0.7897/0.7991/0.7923/0.8163) (0.7525/0.7636/0.7656/0.7893) 67.87
Breast cancer (0.9542/0.9467/0.9502/0.9488) (0.9213/0.9147/0.9322/0.9298) 78.23
Credit (0.8636/0.8507/0.8644/0.8596) (0.8029/0.8164/0.8211/0.8194) 75.56
Abalone (0.6381/0.6504/0.6448/0.6391) (0.6139/0.6014/0.6122/0.6087) 62.31
Clouds (0.8774/0.8559/0.8354/0.8506) (0.8697/0.8468/0.8432/0.8379) 70.81
SVMguide1 (0.7283/0.7455/0.7345/0.7301) (0.7025/0.6765/0.6904/0.7117) 69.75
Waveform (0.8485/0.8662/0.8421/0.8460) (0.8348/0.8579/0.8334/0.8398) 72.66
Waveform + noise (0.8406/0.8317/0.8385/0.8396) (0.8259/0.8146/0.8164/0.8245) 73.59
MAGIC04 (0.7804/0.7826/0.7773/0.7801) (0.7598/0.7461/0.7497/0.7588) 71.67



H.-Y. Ji et al. / Computers and Electrical Engineering 40 (2014) 1429–1438 1437
5.4. Experimental analysis

It is easy to view from Table 4 that the learning accuracy including training and testing is strongly dependent on the selec-
tion of generalized heuristic functions. For example, the heuristics 1 and 2 have the similar advantages regarding data sets
Clouds and Waveform respectively. And the heuristic 4 has the advantages more than the other 3 heuristics with respect to
the data set Pima. It is sure that the performance of learning is also dependent on the specific characteristic of the individual
datasets, and it is interesting to give a specifically detailed analysis on relationship between individual datasets and their
suitable heuristics.

Here, we select the Pima datasets for the analysis, on which the heuristic 4 obtains the better classification accuracy. Pima
India diabetes data has 8 numerical attributes, and contains 768 cases related to the diagnosis of diabetes (268 positive and
500 negative). The local structure of Pima shows very nonlinear property. It is observed that there exist many cases that two
samples are very near but their classes are different. It results in a boundary cut phenomenon. That is, a sample near bound-
ary cuts usually has the statistical testing error more than a sample far from boundary cuts. Since the heuristic function with
smooth second-order derivatives can bring more boundary cuts to some extent and then be adaptive to the highly nonlinear
boundary, the bell shaped heuristics (such as heuristic 4) are suitable more than other type of heuristics for Pima dataset.

It is noted that robustness of a decision tree depends on he selection of heuristic information functions. Specifically we
find that the decision trees generated based on heuristics 2, 3 and 4 respectively for Pima India diabetes data are more robust
than the one based on heuristic 1. It can be seen that the testing accuracies obtained by decision trees with heuristics 2, 3 and
4 are all higher than the testing accuracy of decision tree with heuristic 1, which is the mostly-used heuristic in decision tree
induction [5,7]. It is acknowledged that there are many noise data in Pima India diabetes dataset [20] but the heuristics 2, 3
and 4 enhance rather than degrade the classification performance of decision tree on Pima India diabetes dataset. This indi-
cates that the heuristics 2, 3 and 4 are more insensitive to the noise data than heuristic 1.

We employ Wilcoxon signed-ranks test [21] to examine whether the difference among the 4 heuristics is significant. Wil-
coxon signed-ranks test is safe and robust non-parametric test for statistical comparison of two classification methods [22].
In our experiment, 10-fold cross validation is repeated 5 times. There are 5 � 10 differences, and Wilcoxon signed-ranks test
is distributed approximately normally. For a confidence level of 0.05 and regarding 6 pairs of heuristics, the tests give a result
that the five differences are significant and one is not. It shows from the viewpoint of statistics that the learning accuracy is
really dependent on the selection of heuristics.

From the last column of Table 4 one cane see that the ratio of non-boundary cuts to all cuts is 0.7138 in average. It implies
that, during the decision tree generation, around 71.38% computational load (which refers to the times of detecting candi-
date cuts) can be saved. The analysis on the second-order derivatives of generalized heuristic information functions really
can really help reduce the computational complexity of generating a decision tree.

Although the decision tree learning system depends on the selection of heuristics, generally it is hard to say which kind of
heuristic functions can significantly outperform other heuristics in decision tree learning from data with numerical attri-
butes. It strongly depends on the local features of data. Our experiments confirm this conclusion.
6. Conclusions and future works

In this paper, we reviewed the process of decision tree induction with continuous valued attributes and several classical
heuristic information functions. The expanded attribute for splitting a node to two sub-nodes is associated with a best cut.
For classification problems in which the decision tree learning is based on finding best cuts, we have presented a generalized
heuristic information function covering those existing frequently used heuristic information functions. We mathematically
obtained a relationship between the second-order derivative of heuristic information functions and locations of optimal cuts,
and further confirmed it experimentally. The relationship clearly indicates that the non-boundary cuts are not necessary to
be detected when the generalized heuristic function meets some conditions related to the second-order derivatives. We sta-
tistically showed that the learning accuracy (including training and testing) is dependent strongly on the selection of heu-
ristics. Considering the impact of this relationship on building a decision tree, we can significantly reduce the number of
detected cuts, which indicates a big reduction of computational complexity for using cuts to generate a binary tree with con-
tinuous attributes. Furthermore, we experimentally showed that the generalization capability of the decision tree can be im-
proved by incorporating this relationship into the process of decision tree generation, and the magnitude of improvement is
generally dependent on the local characteristics of a specific data set.

Our future works regarding this topic will include how to categorize the generalized heuristic information functions such
that a sub-category of heuristics can have better performance than other sub-categories with respect to a specified group of
classification problems with continuous valued attributes.
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