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a b s t r a c t

In this work, we propose an optimization model to tune feature weights for improving performance of
clustering via a minimization of uncertainty (fuzziness and non-specificity) of its similarity matrix
among objects. To solve the proposed model efficiently, we propose an evolutionary search approach by
integrating multiple strategies from both differential evolution and dynamic differential evolution. Then,
the proposed method is applied to both weighted fuzzy c-means and weighted similarity-matrix-based
transitive closure clustering. Experiments on 11 benchmarking databases show that the proposed
method outperforms clustering methods without feature weighting and the feature weighting method
based on gradient descent in terms of clustering performance evaluation indices and robustness.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cluster analysis is one of the important processes in many fields
such as pattern recognition, data mining and image processing.
Similarity-based clustering finds clusters of objects in a database by
their pairwise similarities. In many cases, there is no clear cut of
similarity and dissimilarity for two objects. Therefore, fuzzy cluster-
ing plays important role in cluster analysis [1,2]. Feature weighting
and selection techniques are widely used in cluster analysis and
unsupervised learning. According to the relationship between
feature selection process and construction of learning model,
feature selection techniques can be divided into three categories:
filter, wrapper and embedded methods [3–5]. In contrast to select-
ing a subset of features, feature weighting methods assign a real-
valued weight to each feature according its importance [2,6–12]. A
proper assignment of feature weights could significantly improve
the quality of clustering [11–12]. So, we propose a new optimization
method of feature weighting for similarity-based clustering in
this work.

In [2], Yeung et al. proposed a method to improve the perfor-
mance of similarity-based clustering by feature weight learning.

In their work, the traditional Euclidean distance used in similarity
calculation was replaced by a weighted Euclidean distance. The
weight is determined via a minimization of the fuzziness of the
similarity matrix using the Gradient Descent (GD) technique.
Later, the proposed feature weight learning scheme was applied
to improve the clustering quality of fuzzy c-means clustering
(FCM) [6]. Several other GD-based feature weighting methods
are proposed in [7,12,13]. However, there exist some disadvan-
tages of GD-based optimization algorithms. Firstly, for objective
functions, it may converge to a local minimum with a great
possibility. Secondly, the learning efficiency of GD is relatively
low. Thirdly, the determination of parameters (e.g. learning rate
and momentum) is difficult and significantly affects the final
solution and the convergence efficiency [14].

The determination of feature weights can be formulated as an
optimization problem in a bounded real space. The Differential
Evolution (DE) has been proposed by Storn and Price in 1995 [15]
and is extended to global optimization over continuous spaces in
[16,17]. The DE is a population-based stochastic search approach
which converges to the global optimal with a high probability.
It requires few parameter tuning, is robust, easy to use and very
suitable to parallel computation [17]. The DE attracts a lot of
interests in applications and researches because it is suitable
for optimization problems which are noisy, change over time
and even discontinuous [18]. The jDE [19], the Opposition-based
DE (ODE) [20], the SaDE [21], the DE with Global and Local
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Neighborhoods (DEGLN) [22] and the JADE [23] are instances of DE
variants with either adaptive parameters tuning or more efficient
evolutionary strategies. A variant of DE called Multi-differential-
strategy cooperating Evolution DE (MEDE) was proposed in our
previous work [24]. During each loop of the MEDE, a DE strategy is
sequentially selected from a pool of preselected DE strategy
candidates with repetition to perform evolution operation using
current target vector. This process will be executed iteratively until
termination conditions are satisfied. However, the MEDE has not
fully considered characteristics and bias of different DE strategies.
The MEDE could be further improved by selecting DE strategies
according to different phases of the DE and tuning parameters
adaptively. This paper proposes a new DE-based feature weight
learning scheme for similarity-based clustering.

In Section 2, we summarize feature weight learning schemes
for similarity-based clustering. Classical DE and Dynamic DE
algorithms are introduced in Section 3. The new multiple differ-
ential evolution strategies based feature weighting method is
proposed in Section 4. We present and discuss experimental
results in Section 5. Section 6 provides conclusion and discussion
on future works.

2. Feature weight learning for similarity-based clustering

In this section, the similarity-based clustering with weighted
features will be introduced briefly. Let X¼{x1,x2,…,xN} be the set of
N objects for clustering and each object xi ¼ xi1; xi2;…; xiMð ÞARM .
The objective of similarity-based clustering is to group these
objects into several clusters based on a similarity matrix SN�N

which is composed of pairwise similarity measure of all objects
ðxp; xqÞ:

sqp ¼ δðxp; xqÞ ð1Þ

In [2], the weighted similarity measure is defined as follows:

δðwÞðxp; xqÞ ¼
1

1þβdðwÞ
pq

ð2Þ

where β is a positive parameter determined by solving the following
equation:

2
NðN�1Þ ∑q4p

δð1Þpq ¼ 0:5 ð3Þ

and dðwÞ
pq denotes the weighted Euclidean distance defined as follows:

dðwÞ
pq ¼ dðwÞ

pq ðxp; xqÞ ¼ ∑
M

j ¼ 1
w2

j ðxpj�xqjÞ2
 !1=2

ð4Þ

where N, w¼ ðw1;w2;…;wMÞ and wi denote the number of objects
and the weight vector of features and the importance degree
(weight) of the ith feature, respectively. Let δð1Þpq in Eq. (3) be
the similarity between object p and object q with all wi¼1. The
computation of β in this way will uniformly distribute all similarity
values around 0.5 since no additional information is avaliable for
estimating these similarity degrees [2].

As shown in Eq. (2), similarity values among objects are greatly
affected by feature weights which need to be determined before
clustering. Owing to the existence of uncertainty in the judgment
of two objects to be similar or disimilar, the similarity matrix is a
fuzzy matrix. A larger fuzziness of the similarity matrix leads to a
more difficulty in determining crisp clustering result. So, Yeung
et al. proposes a feature weight learning scheme to reduce
fuzziness of similarity by assigning different weights to features.

The scheme minimizes the following fuzziness evaluation function
[12]:

EðwÞ ¼ 2
NðN�1Þ ∑qop

1
2
ðδðwÞ

pq ð1�δð1Þpq Þþδð1Þpq ð1�δðwÞ
pq ÞÞ ð5Þ

According to (5), the fuzziness of features reaches its maximum
when all weighted similarity degrees are equal to 0.5 and its minimum
when all weights are equal to either 0 or 1. A larger E(w) value
indicates a larger fuzziness. The maximum fuzziness leads to the most
ambiguous clustering while the minimum fuzziness leads to unam-
biguous clustering. The fuzzy evaluation function EðwÞ is constructed
based on a simple function: f ðx; yÞ ¼ xð1�yÞþyð1�xÞ, 0rx; yr1,
and its partial derivative ∂f =∂x¼ 1�2y has the following properties

∂f
∂x

40 if yo0:5;
∂f
∂x

o0 if y40:5:

By minimizing Eq. (5), all δðwÞ
pq will approach to 0 (if δð1Þpq o0:5) or 1

(if δð1Þpq o0:5). Clustering with feature weights determined by mini-
mizing Eq. (5) will generally yield a better decision on similar and
dissimilar among objects and result in better clustering results in
compare with clustering without feature weighting [2]. Moreover,
similarity among objects in different clusters will decrease and the
average similarity among objects in the same cluster will increase.

Once weights for features are determined, clustering could be
performed using off-the-shelf clustering algorithms such as the
clustering based on similarity matrix's transitive closure (SMTC-C)
[25], fuzzy c-means (FCM) [26,27] and its variants, etc.

However, the GD-based optimization techniques used in [2,6]
may be trapped by local minima and could result in a poor clustering
results. Therefore, we propose a DE-based feature weight learning
method to enhance its performance.

3. Differential evolution and dynamic differential evolution

3.1. Differential evolution

Let f ðxÞ : RM-R (LBrxrUB) be a real-valued function to be
minimized, in which LB¼ ðxmin

1 ;⋯; xmin
M Þ and UB¼ ðxmax

1 ;⋯; xmax
M Þ

denote the lower bound vector and the upper bound vector,
respectively. The DE aims to minimize the multi-dimensional
real-valued function by iteratively executing a series of evolutional
operations over a set of candidate solutions (population).

In the DE, several parameters need to be pre-determined:
maximal number of iterations MI, population size NP, differential
scale weight F , and crossover probability CR. Then NP candidate
solutions are randomly created using the following function to
form the initial population P.

xijð0Þ ¼ xmin
j þrandð0;1Þðxmax

j �xmin
j Þ ð6Þ

for j¼ 1;2;⋯;M, where M, xið0Þ and randð0;1Þ denote the number
of features of an object, the ith individual solution at the genera-
tion G¼ 0 and a real value generated from a uniform distribution
within the range [0, 1].

Then, the following evolutionary operations are iteratively
executed over the population.

(1) Mutation: mutation is applied to create a vector vi;G with respect
to each individual xi;G at the generation G. Some frequently used
mutation strategies are listed as follows:

1. DE/rand/1:

vi;G ¼ xp1 ;GþFðxp2 ;G�xp3 ;GÞ ð7aÞ

2. DE/rand/2:

vi;G ¼ xp1 ;GþFðxp2 ;G�xp3 ;GÞþFðxp4 ;G�xp5 ;GÞ ð7bÞ
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3. DE/best/1:

vi;G ¼ xbest;GþFðxp1 ;G�xp2 ;GÞ ð7cÞ

4. DE/best/2:

vi;G ¼ xbest;GþFðxp1 ;G�xp2 ;GÞþFðxp3 ;G�xp4 ;GÞ ð7dÞ

5. DE/rand-to-best/1:

vi;G ¼ xi;GþFðxbest;G�xi;GÞþFðxp1 ;G�xp2 ;GÞ ð7eÞ

In Eqs. (7a)–(7e), p1; p2; p3 and p4 are four mutually distinct
integers randomly selected from 1;2;…; i�1; iþ1;…;NP

� �
. Mean-

while, xbest;G is the individual yielding the minimal fitness value at
generation G.(2)Crossover: after the mutation step, crossover is
applied to generate a trial vector ti;G based on the pair of target
vector xi;G and the mutation vector vi;G. There are mainly two types
of crossover strategies, i.e., binomial crossover (bin) and exponen-
tial crossover (exp). A basic binomial crossover operation is as
follows:

tji;G ¼
vji;G; if ðrandj½0;1ÞoCRÞ or j¼ jrand

xji;G; otherwise

8<
: ð8Þ

where jrand is an integer randomly selected from ½1;M�. The
condition j¼ jrand is introduced to ensure that the trial vector will
differ from its corresponding target vector by at least one
feature value.(3)Selection: for each newly generated trial vector,
elements of it exceeding the corresponding upper or lower bounds
will be randomly re-initialized into the pre-specified range. Then
selection operation will be used to select individuals which will
survive in the next generation from the transitional population.
That is

xi;Gþ1 ¼
ti;G; if f ðti;GÞo f ðxi;GÞ
xi;G; otherwise

(
ð9Þ

In the DE, these three kinds of operations will be repeated until
the maximum number of iterations is reached, or any predefined
termination condition is satisfied. The individual yielding the
minimum fitness value in the last generation will be returned as
the final solution. A pseudocode of the DE is given in Fig. 1.

3.2. Dynamic differential evolution

In traditional DE, the population remains unchanged until it
is replaced by a new population. This may reduce the rate of
convergence of the DE [28]. So, the Dynamic DE (DDE) is proposed
in [29] to dynamically update all individuals at the current
generation when a new individual has been selected into the next
generation. If the fitness value of the newly selected individual is
smaller than that of the current optimal individual, the optimal
individual xbest;G will also be updated. Trial vectors of DDE are
always generated using the newly updated population. The DDE
variants of the five mutation strategies given in Eqs. (7a), (7b), (7c),
(7d) and (7e) are named as DDE/rand/1, DDE/rand/2, DDE/best/1,
DDE/best/2, and DDE/rand-to-best/1, respectively.

Generally speaking, compared with DEs, the DDEs are search
algorithms with more greedy bias, better local search capability
and faster convergence speed. Conversely, DEs usually have better
exploration capability. So, there is a tradeoff between selecting DE
and DDE for optimization. This is the major motivation of this
work to combine them to make use of advantages from both DE
and DDE.

4. Feature weight learning based on an improved
differential evolution

4.1. New self-adaptive multievolutionary strategy with hybrid
differential evolution

DEs with different differential evolution strategies (DESs) yields
better optimization results for some specific types of optimization
problems. According to the well-known Occam's Razor Principle,
there is no DE with a specific DES always outperforms DEs with
other strategies. So it is necessary and significant to propose DEs
with multiple DESs.

As an improvement to the multiple DES method (MEDE) in our
previous work [24], we propose a new multiple DES method with
hybrid DE (MEHDE). The good search ability and high efficiency of
the MEHDE are guaranteed mainly by the following techniques:

1) Compared with the MEDE, more effective DESs are integrated
into the MEHDE to enhance its search capability in terms of
both accuracy and convergence ratio. Based on experiences and
analysis in lots of previous published works, e.g. [28–32], we
chose ten variants of DES as candidate of the evolutionary
strategies pool in the MEHDE. Among these strategies, some
are more efficient in exploration (e.g., rand/2/bin) for diversity
of the population while others perform better in local search
and yield faster convergence (e.g., best/1/bin).

2) DE and DDE are both used in MEHDE to provide better global
and local searches. The DE-based DESs of the MEHDE will
explore an adequate large portion of the solution space and
then DDE-based DESs of the MEHDE will perform local search
to speed up the convergence of optimization.

3) To guarantee the computational efficiency of the MEHDE, only
one DES is executed in each turn for the current individual to
create a trial vector, crossover and selection operation. Then the
next adjacent DES will be executed for the next individual. This
process will be executed in iteration until a stopping criterion is
satisfied. The MEHDE improves search performance signifi-
cantly while uses similar computational cost of traditional DE
or DDE algorithms.

In addition, it is shown that DE based on binomial crossover
generally outperforms exponential crossover [28]. So, binomial
crossover operation is used in the MEHDE. Table 1 lists ten variants

For optimization problem: Mf x R R , LB x UB

Set parameters: population size NP, maximal iteration number MI, 
crossover probability CR, and differential scaling factor F

Initialize a population with NP individuals, G=0;

Repeat
For i=1:NP

Generate a new trial vector i Gt base on the mutation and 
crossover operations
If i G i Gf t f x , i G i Gx t

Else  i G i Gx x
Endif

Endfor
G:=G+1

Until stopping condition is satisfied

Return Gx Gf x

Fig. 1. The pseudocode of a basic differential evolution.
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of DE/DDE in the candidate DES pool of the MEHDE. These
strategies will be sequentially selected. In MEHDE, three termina-
tion conditions are adopted to judge whether the algorithm should
be terminated. They are (1) the number of iterations G reaches a
predefined maximum value MI; (2) the objective function value is
smaller than a given threshold δ and (3) the algorithm converges
on a value. The pseudocode of the MEHDE is given in Fig. 2.

4.2. Feature weight learning based on MEHDE

In this subsection, the proposed feature weight learning
method based on the improved differential evolution MEHDE will
be introduced. As introduced in Section 2, by minimizing the
fuzziness degree EðwÞ of the similarity matrix among objects, the
uncertainty (fuzziness and nonspecificity) of similarity-based
clustering will be reduced. It yields a better clustering partition
with higher intra-class similarity and lower inter-class similarity.
Meanwhile, the nonspecificity for obtaining a crisp partition will
also be decreased. So, in our proposed feature weight learning
method, the fuzzy degree of similarity matrix will be selected as
the objective function to be minimized. Then, the feature weight
learning problem can be written as

min EðwÞ s:t: wARM ; lwrwruw ð10Þ

where w, M, lw and uw denote the feature weight vector to be
optimized, the number of features, the lower bound and the upper
bound of feature weights, respectively. According to Eqs. (1)–(5),
the optimization problem (10) can be rewritten as

min ∑
qop

1
1þβdðwÞ

pq
1� 1

1þβdð1Þpq

� �
þ 1

1þβdð1Þpq
1� 1

1þβdðwÞ
pq

� �� �

s:t: wARM ; lwrwruw ð11Þ

where dð1Þpq , d
ðwÞ
pq and β denote the Euclidean distance, the weighted

Euclidean distance and a positive constant for calculating the
similarity between two objects. The coefficient 1=NðN�1Þ is
ignored because it is a constant and the solution of (11) does not
dependent on it.

For a given dataset, the constant β and the Euclidean distance
between objects xp and xq (dð1Þqp ) are fixed. Moreover, the values of
feature weights indicate the relative importance degree of fea-
tures. Our experiments show that, for most datasets, optimal
values of feature weights are always close to zero, especially in
cases that feature values are normalized to [0, 1]. Based on this
observation, w is selected from a closed interval near zero [lw, uw]
to enhance the search efficiency of the MEHDE.

The feature weight learning problem becomes a minimization
problem of an M-dimensional real-valued function as (11). Result-
ing weights could be used in weighted similarity-based clustering
to enhance cluster partitioning capability. In most cases, the
objective function, i.e. the fuzziness degree function (5), is usually
multimodal and generally has multiple local minima. GD-based
search methods usually have many disadvantages such as trapped
by local minima, strong dependency to the learning rate and
solution initialization, and low search efficiency, etc. Therefore, the
proposed MEHDE is used to solve the optimization problem (11).
By combining the feature weight optimization model in (11) and
the DE-based MEHDE, a better performance of weighted similarity-
based clustering is expected.

5. Experimental results and discussion

5.1. Experimental setting

The clustering performance of the proposed MEHDE-FWL will
be compared with GD-based feature weight learning (GD-FWL)
method and clustering without feature weighting. In order to
evaluate the performance of the proposed MHEDE-based feature
weight learning algorithm (MHEDE-FWL), 11 benchmarking data-
sets are used: Rice Taste Data from [38] and 10 datasets from the
UCI machine learning data repository [39]. Class labels of those
datasets are disregarded and clustering is performed instead of

Table 1
Differential Evolution strategies of the MEHDE.

DE-based DESs DDE-based DESs

DE/rand/1/bin DDE/rand/1/bin
DE/rand/2/bin DDE/rand/2/bin
DE/best/1/bin DDE/best/1/bin
DE/best/2/bin DDE/best/2/bin
DE/rand-to-best/1/bin DDE/rand-to-best/1/bin

For optimization problem: Mf x R R , LB x UB

Set the control parameters: population size NP, maximal iteration 
number MI, differential scaling factor F, and crossover probability CR

Let G=0, IV=0
Initialize population pop(G) according to (6); 
Let G x pop G

x f x optimal individual until G-th generation

and Gx x optimal individual until now

Repeat

pop_old = pop(G)
For i=1:NP

IV , IV = IV IV
Generate a new trial vector i Gt by the IV-th differential 
evolution strategy from the candidate DES pool (DE-based 
DESs are based on pop_old(G) and Gx , while DDE-based 

DESs are based on pop(G) and x )
{DE/rand/1/bin,

DE/rand/2/bin,
DE/best/1/bin,
DE/best/2/bin,
DE/rand-to-best/1/bin,
DDE/rand/1/bin
DDE/rand/2/bin,
DDE/best/1/bin,
DDE/best/2/bin,
DDE/rand-to-best/1/bin}

If i G i Gf t f x , then i G i Gx t , i G i Gx t ;

If i Gf x f t then i Gx t ; 

Endif
Else i G i Gx x Endif

Endfor
G=G+1;
Update G x pop G

x f x

Until stopping condition is satisfied

Return Gx Gf x

Fig. 2. The pseudocode of our proposed MEHDE.
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classification for these datasets. A summary of these datasets is
given in Table 2.

All data is normalized into [0, 1] to avoid counterproductive
influence from feature with an extremely large range. In our
experiments, lw¼ 0 and uw¼ 10. Meanwhile, the constant β is
determined for each dataset by solving Eq. (3). For the MEHDE-
FWL, the differential scale factor F and crossover probability CR are
selected within intervals [0.3, 0.9] and [0.1, 1], respectively, based
on experiences and recommendations from [28,30–32]. For each
dataset, values of F and CR are selected by a trial-and-error
method. Tables 3 and 4 show parameters used by the MEHDE-
FWL for experiments.

For the GD-FWL, we set the maximum number of iterations to be
6000 and the learning rate ηA ½0:1;5�. In iteration of GD, the learning
rate will be dynamically updated by a Fibonacci search as in [2].

Two clustering algorithms are used in experiments: similarity
matrix's transitive closure clustering (SMTC-C) [25] and fuzzy

c-means clustering (FCM) [26,27]. They are directly applied as
the baseline method: clustering without feature weighting. Their
weighted versions will be referred as weighted SMTC-C (WSMTC-C)
and weighted FCM (WFCM).

5.2. Comparison between MEHDE-FWL and GD-FWL based on FCM

The WFCM with weights optimized by GD-FWL is proposed in
[6]. Four clustering evaluation indices are used for evaluating the
performance of fuzzy clustering [6]. In this subsection, we use the
same set of indices to compare clustering results of classical FCM,
WFCM with GD-FWL and WFCM with MEHDE-FWL.

Table 5 shows the four indices for evaluating clustering results.
The partition coefficient Vpc [33] and the partition entropy Vpe [34]
are based on the fuzzy partition of sample set, while the Fukuyama–
Sugeno function Vf s [35] and the Xie–Beni function Vxb [36] are
based on the geometric sample structure. Empirical studies in [37]
show that a good interpretation of partitions over samples may be
obtained by maximizing Vpc or minimizing Vpe. Meanwhile, a good
clustering should yield compact clusters while far separated among
different clusters which usually minimize Vf s and Vxb [6,36].

To illustrate the validity of the optimization model for feature
weight learning, the clustering result of the Iris dataset by WFCM
with MEHDE-FWL is shown in Fig. 3. The feature weight vector
determined by the MEHDE-FWL is [0.0001, 0.0005, 3.5292,
0.0011]. The 1st and 2nd features are not shown in Fig. 3 because
they yield very small feature weights. This result is consistent with
results of other works, so the proposed method is able to weight
features according to their significance.

Table 6 shows experimental results of the three clustering
methods on 11 datasets. Results of clustering with feature weight-
ing by both MEHDE-FWL and GD-FWL being shown in Table 6 are
average over 20 repeated runs. Their standard deviation values are
shown in brackets after their average values. The WFCM with
MEHDE-FWL yields the best performance almost in all indices of
all experiments. The WFCM without feature weighting perform
the worst in most cases. Table 6 also shows that results yielded by
the proposed method is more robust (smaller standard deviations)
than the other two methods in comparisons.

Moreover, the proposed method yields larger improvement for
complex datasets. This further verifies that the DE-based optimi-
zation algorithms yield better search capabilities than that of GD-
based methods, especially for complex or multimodal problems.
Meanwhile, experimental results show that all the four indices
cannot be optimized simultaneously. So, optimal values in the
largest number of indices could be a good choice for finding the
optimal number of clusters.

5.3. Comparisons based on SMTC clustering

In this subsection, we will use the SMTC-C [25] as the cluster-
ing technique to compare clustering without feature weighting,
with MEHDE-FWL and with GD-FWL. In the SMTC-C, clustering is
performed by thresholding a transitive closure TCðSÞ ¼ ðtijÞN�N of

Table 2
A summary of selected datasets in our experiments.

Datasets # Instance # Feature

Rice taste data 105 5
Iris 150 4
Servo 167 4
Thyroid gland 215 5
BUPA 345 6
MPG 398 8
Boston housing 506 13
Pima 768 8
Image segmentation 2310 19
Libras movement 360 90
Gas sensor (batch1) 445 128

Table 3
Parameters of MEHDE-FWL.

Population size NP 10 n # feature
Maximal iteration number MI 1000
w 0rwr10

Table 4
Values of CR and F for each dataset.

Datasets CR F

Rice taste data 0.8 0.6
Iris 1.0 0.4
Servo 0.4 0.4
Thyroid gland 1.0 0.4
BUPA 1.0 0.4
MPG 0.4 0.4
Boston housing 0.6 0.4
Pima 0.8 0.4
Image segmentation 0.8 0.4
Libras movement 0.6 0.8
Gas sensor (batch 1) 0.6 1.0

Table 5
A brief summary of the four selected clustering evaluation indices for FCM.

Evaluation index Functional description Optimal partition

Partition coefficient VpcðUÞ ¼ ð∑n
j ¼ 1∑

c
i ¼ 1u

2
ijÞ=n maxðVpcÞ

Partition entropy VpeðUÞ ¼ �1
n½∑n

j ¼ 1∑
c
i ¼ 1 uij log uij

� �� minðVpeÞ
Fukuyama–Sugeno function Vf sðU; v1 ; L; vc;XÞ ¼∑n

j ¼ 1∑
c
i ¼ 1u

2
ijðjjXj�vijj2�jjvi�vjj2Þ minðVf sÞ

Xie–Beni function VxbðU; v1 ; L; vc ;XÞ ¼
∑n

j ¼ 1∑
c
i ¼ 1u

2
ij‖Xj �vi‖2

n minia k jjvi �vk jj2f gð Þ
minðVxbÞ
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similarity matrix SN�N . Objects xi and xj are categorized into the
same cluster if tijZα where α is a given threshold.

We adopt the same setting as in Section 5.2, but with
another set of evaluation indices. Detailed descriptions of
these indices could be found in [2] and we provide a brief
description here

(1) Fuzziness of the similarity matrix. Smaller fuzziness leads to
more crisp clustering decision.

(2) Intra-class similarity. It is computed by the average similarity of
all pairs of objects belonging to the same cluster. Larger intra-
class similarity shows a better clustering.

(3) Inter-class similarity. It is computed by the average similarity
of all pairs of objects belonging to different clusters. Smaller
inter-class similarity is preferred for good clustering.

(4) Ratio of intra-class to inter-class similarities. This provides an
overall evaluation of intra- and inter- class similarities. Larger
ratio value indicates a better clustering result.

(5) Nonspecificity. This index evaluates the difficulty of selecting a
partition from a clustering graph. A smaller nonspecificity
value indicates a more crisp clustering.

After feature weights being fixed, clustering graph will be
computed using the SMTC-C with different threshold values. Based
on the computed clustering graph, aforementioned indices are
computed to evaluate the clustering results. Similar to Section 5.2,
average and standard deviations of indices for SMTC-C with both
GD-FWL and MEHDE-FWL are computed over 20 independent runs.

Experimental results are shown in Table 7. Again, the SMTC-C
with MEHDE-FWL outperforms other methods and the SMTC-C
without feature weighting performs the worst, in most cases.
In comparison to the SMTC-C with GD-FWL, the SMTC-C with
MEHDE-FWL yields significantly improvements in the fuzziness,
the nonspecificity and the ratio of intra-class to inter-class simila-
rities for all datasets in experiments.

Fig. 3. Clustering of IRIS by FCM based on feature weights vector [0.0001, 0.0005,
3.5292, 0.0011].

Table 6
Experimental results of FCM, WFCM with GD-FWL and WFCM with MEHDE.

Data sets Methods Vpc Vpe Vfs Vxb

Iris FCM 0.86 0.25 �17.59 0.08
WFCM-GD 0.93 (0.000) 0.14 (0.001) �19.85 (0.130) 0.08 (0.000)
WFCM-MEHDE 0.93 (0.000) 0.13 (0.000) �20.01 (0.000) 0.08 (0.000)

Pima FCM 0.57 0.62 68.72 1.17
WFCM-GD 0.60 (0.050) 0.59 (0.050) 67.72 (6.960) 1.57 (1.390)
WFCM-MEHDE 0.81 (0.004) 0.31 (0.007) 64.19 (0.320) 0.62 (0.004)

Rice FCM 0.75 0.41 0.09 0.19
WFCM-GD 0.77 (0.027) 0.38 (0.041) 0.21 (0.317) 0.19 (0.013)
WFCM-MEHDE 0.82 (0.000) 0.30 (0.005) �0.14 (0.035) 0.20 (0.009)

Servo FCM 0.62 0.56 26.41 0.50
WFCM-GD 0.68 (0.107) 0.48 (0.144) 25.54 (7.577) 0.69 (0.232)
WFCM-MEHDE 0.99 (0.035) 0.03 (0.082) 10.21 (1.026) 2.10 (0.095)

Thyroid FCM 0.7 0.47 8.34 0.56
WFCM-GD 0.82 (0.019) 0.32 (0.055) 1.43 (3.800) 0.25 (0.124)
WFCM-MEHDE 0.87 (0.022) 0.24 (0.053) 1.73 (3.172) 0.25 (0.092)

Bupa FCM 0.6 0.58 16.81 0.93
WFCM-GD 0.64 (0.055) 0.54 (0.067) 16.00 (1.881) 0.84 (0.277)
WFCM-MEHDE 0.77 (0.004) 0.38 (0.005) 13.21 (0.042) 0.47 (0.000)

MPG FCM 0.73 0.43 2.53 0.19
WFCM-GD 0.83 (0.135) 0.28 (0.210) �50.59 (80.10) 0.31 (0.151)
WFCM-MEHDE 0.96 (0.008) 0.09 (0.019) �103.21 (41.38) 0.46 (0.011)

Boston FCM 0.74 0.42 33.46 0.23
WFCM-GD 0.73 (0.030) 0.40 (0.390) 47.72 (17.409) 0.25 (0.019)
WFCM-MEHDE 0.97 (0.009) 0.09 (0.179) -54.24 (1.229) 0.33 (0.004)

Image FCM 0.40 1.25 �464 0.58
WFCM-GD 0.39 (0.016) 1.27 (0.029) �417.88 (25.016) 0.90 (0.133)
WFCM-MEHDE 0.64 (0.014) 0.75 (0.027) �787 (18.213) 0.65 (0.043)

Libras FCM 0.07 2.71 103.61 2.74Eþ08
WFCM-GD 0.07 (0.125) 2.70 (0.024) 103.61 (12.500) 4.59Eþ07 (1.02Eþ07)
WFCM-MEHDE 0.07 (0.012) 2.69 (0.0001) 101.52 (3.176) 2.42Eþ05 (1.03Eþ04)

Gas FCM 0.41 1.52 �703.20 0.36
WFCM-GD 0.42 (0.086) 1.50 (0.180) �717.05 (121.70) 0.34 (0.073)
WFCM-MEHDE 0.42 (0.001) 1.49 (0.012) �726.15 (27.61) 0.39 (0.002)
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Overall, experimental results show that the proposed MEHDE
algorithm yields a better optimization capability and more robust
output in comparison to GD-based approaches. Moreover, cluster-
ing with feature weights computed by the proposed MEHDE based
method outperforms the clustering with GD-based feature weight
learning method.

5.4. Efficiency analysis of GD, DE, DDE and MEHDE based
search techniques

The efficiencies of GD-based methods strongly depend on both
initialization and learning rate. GD could converge very slowly or
even diverge if improper choice is made for either initialization or
learning rate. In contrast, DE-based methods demonstrate strong
search abilities and relatively robust performances [15–24,41].

On the other hand, compared with DEs and DDEs, the proposed
MEHDE usually yields a better search ability and robust perfor-
mance without additional computational cost. These are achieved
mainly by two improvements: (1) integration of multiple variants
of DESs which are efficient either in local or global searches;
(2) adopting of a sequential selection method for candidate DESs,
so only one DES is used to update the current individual in
population. So, the computational complexity of the MEHDE is
basically identical to that of DE/rand/1/bin. Owing to the fact that
mutation and crossover operations are performed at the compo-
nent level for each DE vector, the amount of fundamental opera-
tions in DE/rand/1/bin is proportional to the total number of loops

conducted in the algorithm [40]. Meanwhile, in each generation of
DE, a loop over NP is conducted which contains of a loop over
M(the dimensionality of the vector to be optimized). Thus, the
computational complexity of MEHDE is ΟðNP UMUGnÞ. Further-
more, in our method the runtime complexity of evaluating the
fitness function, i.e. the fuzziness degree of the similarity matrix, is
ΟðN2Þ. So, the computational complexity of the MEHDE-based
feature weight learning is ΟðNP UMUGn UN

2Þ.
The trial-and-error based tuning of the scaling factor F and the

crossover probability CR in the proposed method will cost con-
siderable computation resources. So, one of the important future
works of us is to add direct assignment based on experience or self-
adaptive parameter techniques to the MEHDE to overcome this
disadvantage.

6. Conclusion and future works

This paper is devoted to develop an effective and robust feature
weighting technique for similarity-based clustering. The objective
is to improve the performance of clustering in terms of some
selected clustering evaluation indices. So, the MEHDE integrating
multiple DESs and hybrid DE/DDE scheme is proposed. Then, the
MEHDE is used to determine feature weights in similarity-based
clustering by minimizing the uncertainty (fuzziness and nonspe-
cificity) existing in the similarity matrix. This reduces the difficulty
of making a crisp decision based on similarity matrix. The

Table 7
Experimental results of SMTC-C, W-SMTC-C with GD-FWL, and W-SMTC wih MEHDE-FWL.

Data sets Methods Intra-similarity Inter-similarity Ratio Maximal ratio Fuzziness Non-specificity

Iris SMTC-C 0.88 0.44 1.99 2.16 0.32 1.78
SMTC-C-GD-FWL 0.85 (0.00) 0.32 (0.00) 2.75 (0.03) 3.28 (0.04) 0.27 (0.00) 1.25 (0.04)
SMTC-C-MEHDE –FWL 0.85 (0.00) 0.31 (0.00) 2.78 (0.00) 3.30 (0.00) 0.27 (0.00) 1.17 (0.00)

Pima SMTC-C 0.94 0.42 2.25 2.7 0.34 1.83
SMTC-C-GD-FWL 0.96 (0.00) 0.24 (0.00) 4.78 (0.62) 6.42 (0.74) 0.21 (0.00) 1.74 (0.02)
SMTC-C-MEHDE –FWL 0.93 (0.00) 0.22 (0.00) 4.79 (0.00) 6.13 (0.01) 0.31 (0.00) 1.25 (0.00)

Rice SMTC-C 0.92 0.40 2.38 2.79 0.33 1.85
SMTC-C-GD-FWL 0.91 (0.00) 0.17 (0.00) 4.00 (2.13) 6.40 (3.56) 0.22 (0.00) 1.72 (0.03)
SMTC-C-MEHDE –FWL 0.89 (0.00) 0.30 (0.00) 3.48 (0.07) 5.68 (0.22) 0.30 (0.00) 1.54 (0.00)

Servo SMTC-C 0.73 0.47 1.54 1.99 0.34 0.87
SMTC-C-GD-FWL 0.72 (0.02) 0.18 (0.00) 4.28 (1.21) 5.80 (2.25) 0.22 (0.00) 0.93 (0.15)
SMTC-C-MEHDE –FWL 0.99 (0.00) 0.17 (0.00) 6.15 (0.70) 6.25 (0.29) 0.16 (0.00) 0.07 (0.05)

Thyroid SMTC-C 0.92 0.34 2.83 3.49 0.32 1.75
SMTC-C-GD-FWL 0.91 (0.00) 0.26 (0.00) 4.18 (0.47) 7.44 (2.93) 0.29 (0.00) 1.57 (0.05)
SMTC-C-MEHDE –FWL 0.91 (0.00) 0.24 (0.00) 4.57 (0.00) 7.65 (0.00) 0.28 (0.00) 1.19 (0.00)

Bupa SMTC-C 0.94 0.39 2.47 2.91 0.33 1.90
SMTC-C-GD-FWL 0.97 (0.00) 0.14 (0.00) 4.22 (0.58) 7.49 (0.95) 0.31 (0.00) 1.69 (0.01)
SMTC-C-MEHDE –FWL 0.95 (0.00) 0.30 (0.00) 3.39 (0.00) 6.55 (0.01) 0.30 (0.00) 1.37 (0.00)

MPG SMTC-C 0.85 0.48 1.76 2.00 0.33 1.69
SMTC-C-GD-FWL 0.89 (0.00) 0.17 (0.00) 5.26 (0.55) 6.03 (0.37) 0.20 (0.00) 1.65 (0.58)
SMTC-C-MEHDE –FWL 0.94 (0.00) 0.19 (0.00) 5.46 (0.78) 6.56 (0.15) 0.17 (0.00) 0.92 (0.02)

Boston SMTC-C 0.86 0.45 1.92 2.14 0.33 1.97
SMTC-C-GD-FWL 0.88 (0.00) 0.16 (0.00) 5.64 (0.93) 6.32 (1.19) 0.22 (0.00) 2.29 (0.01)
SMTC-C-MEHDE –FWL 0.94 (0.00) 0.26 (0.00) 4.14 (0.02) 6.73 (0.02) 0.23 (0.00) 1.03 (0.00)

Image SMTC-C 0.91 0.44 2.08 2.32 0.33 1.95
SMTC-C-GD-FWL 0.89 (0.00) 0.23 (0.00) 4.03 (0.40) 4.93 (0.23) 0.27 (0.00) 2.02 (0.05)
SMTC-C-MEHDE –FWL 0.91 (0.00) 0.16 (0.00) 5.70 (0.01) 6.15 (0.09) 0.22 (0.00) 2.39 (0.01)

Libras SMTC-C 0.90 0.48 1.91 1.97 0.34 2.00
SMTC-C-GD-FWL 0.91 (0.00) 0.20 (0.00) 4.64 (0.18) 4.87 (0.21) 0.25 (0.01) 1.95 (0.02)
SMTC-C-MEHDE –FWL 0.93 (0.00) 0.15 (0.00) 6.10 (0.07) 6.39 (0.05) 0.21 (0.00) 1.88 (0.00)

Gas SMTC-C 0.94 0.39 2.45 2.68 0.32 2.06
SMTC-C-GD-FWL 0.94 (0.00) 0.16 (0.02) 6.13 (0.63) 8.43 (0.42) 0.24 (0.06) 1.73 (0.02)
SMTC-C-MEHDE -FWL 0.94 (0.00) 0.13 (0.00) 7.25 (0.15) 10.30 (0.02) 0.20 (0.00) 1.70 (0.00)
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contributions of this paper mainly include the proposal of a
multiple differential strategies with hybrid DE/DDE algorithm,
and its adoption into feature weight learning for similarity-based
clustering. Experimental results on 11 datasets show that the FCM
and SMTC-C based on our method usually outperform that with-
out feature weighting and that based on GD-based feature weight
learning in terms of better clustering evaluation indices and robust
performance.

For datasets with more features, as indicated in [41], the
performance of DE-based optimization methods may be deterio-
rated, especially when the dimensionality of the search space
larger than 500. So, one of the future works of us is to improve the
proposed method for large dataset with large number of features.
One possibility is to incorporate latest evolutionary strategies
which are specifically proposed for large-scale optimization, e.g.
the fittest individual refinement (FIR) based method [42] and the
stochastic properties of chaotic system based approach [43]. As
stated in Section 5.4, we will also focus on the improvement of the
MEHDE algorithm based on some self-adaptive parameter tuning
techniques.
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