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Abstract—An important way to improve the performance of
naive Bayesian classifiers (NBCs) is to remove or relax the
fundamental assumption of independence among the attributes,
which usually results in an estimation of joint probability density
function (p.d.f.) instead of the estimation of marginal p.d.f. in the
NBC design. This paper proposes a non-naive Bayesian classifier
(NNBC) in which the independence assumption is removed and
the marginal p.d.f. estimation is replaced by the joint p.d.f.
estimation. A new technique of estimating the class-conditional
p.d.f. based on the optimal bandwidth selection, which is the
crucial part of the joint p.d.f. estimation, is applied in our NNBC.
Three well-known indexes for measuring the performance of
Bayesian classifiers, which are classification accuracy, area under
receiver operating characteristic curve, and probability mean
square error, are adopted to conduct a comparison among the
four Bayesian models, i.e., normal naive Bayesian, flexible naive
Bayesian (FNB), the homologous model of FNB (FNBROT), and
our proposed NNBC. The comparative results show that NNBC is
statistically superior to the other three models regarding the three
indexes. And, in the comparison with support vector machine
and four boosting-based classification methods, NNBC achieves
a relatively favorable classification accuracy while significantly
reducing the training time.

Index Terms—Joint probability density estimation, kernel
function, naive Bayesian classifier (NBC), optimal bandwidth,
probability mean square error.

I. Introduction

NAIVE BAYESIAN classifier (NBC for short) is a sim-
ple and but efficient probabilistic model based on the

Bayesian theory [17] in the supervised classification problems.
NBC can achieve better performances for a number of practical
applications such as a medical diagnosis [23], text categoriza-
tion [39], email filtering [37] and information retrieval [25]. In
many applications, NBC demonstrates favorable performances
than other learning models such as decision trees [45], [46]
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and neural networks [6], [24], [32]. In addition, NBC is con-
sidered adequate to classify the datasets with large number of
variables and instances due to its simplicity, low computational
complexity, and less memory requirement [8].

It is well acknowledged that NBC can be implemented
efficiently on classification problems with nominal attributes.
For tasks with continuous attributes, we usually have two
handling strategies. One is the discretization and the other is
the density estimation. The former has been widely studied in
NBC (e.g., [10], [49], and [51]), with the latest observation
shows that the combination of various discretization methods
can result in an improved classification accuracy [48]. During
the process of discretization for NBC, one of the most difficult
problems is the zero-counts problem [8], [33], which can be
effectively solved the Laplace correction strategy [22].

The density estimation strategy intends to find an underlying
distribution for the continuous attributes, instead of calculating
the necessary probabilities by counting the frequency of values
and combinations of values from a given dataset. A key step
of this strategy is to estimate the class-conditional probability
density function (p.d.f.) from a given set of training data with
class information. The following three kinds of methodologies
for estimating the class-conditional p.d.f. can be read in
literatures.

1) The normal method (also named normal naive Bayesian,
simply NNB) [2], [30]. NNB assumes that the con-
tinuous attributes are generated by a single Gaussian
distribution, whose mean and standard deviation can be
straightly calculated from the training dataset. NNB is
a simple and common technique with the advantages
of fast training/testing and little memory requirements,
while it is usually criticized for the performance when
continuous attributes do not follow the Gaussian dis-
tribution. More recently, as an extension of NNB, a
nonparametric version of NBC [41] focusing on the
application of diagnosis of breast cancer is proposed.

2) The flexible naive Bayesian (simply FNB) [19]. To cope
with the case of non-Gaussian distribution, John and
Langley [19] proposed the FNB in which the Parzen
window [31] is used to estimate the underlying class-
conditional p.d.f.. Specifically, the FNB uses the super-
position of many p.d.f.s of the normal distribution to fit
the true p.d.f. of each continuous attribute.

3) The homologous model of FNB (FNBROT) [28]. FNBROT

is designed to classify the unknown instance according
to the discriminant the same as FNB does. The dif-
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ference between FNB and FNBROT is the scheme of
parameter selection. FNB assigns a most straightforward
bandwidth for Parzen windows while FNBROT uses the
rule of thumb scheme [15], [34], [38], [44] to determine
the parameter.

Some comparative studies between the two strategies, i.e.,
the discretization and the density estimation, can be found in
[2], [10], [49], [50], and [51]. The comparative results show
difficulties on judging which one is universally better. The
classification performance depends mainly on the problem
domain and the experimental procedure setup (e.g., fivefold
cross-validation [10], tenfold cross-validation [2], and selective
tenfold cross-validation [2], etc.).

The aim of this paper is not to extend the comparative study
between the discretization and the density estimation but to
improve the classification performance of NBC by proposing
a technique of estimating joint p.d.f. The three methods men-
tioned above, i.e., NNB, FNB and FNBROT, are based on such
an assumption that all attributes are conditionally independent
with each other. Nevertheless, in many real-world applications,
this assumption does not always stand. Furthermore, the esti-
mated p.d.f.s that are used in design of NNB, FNB, or FNBROT

are far away from the true p.d.f. due to the inappropriate
distribution assumption or parameter selection. Motivated by
improving the classification performance via removing or
relaxing the restriction of independence among attributes and
obtaining a better estimation of the true p.d.f., in this paper
we propose a non-naive Bayesian classifier (NNBC) where
a model of joint p.d.f. is estimated by using Parzen windows
[21] based on the multivariate kernel function. Specifically, the
estimation is evaluated by seeking an optimal bandwidth for
the Parzen window through minimizing the mean integrated
squared error (MISE) between the true p.d.f. and the estimated
p.d.f.. The choice of bandwidth is considered an essential issue
for Parzen window based p.d.f. estimation [15], [34], [38],
[44]. Simulations show that NNBC can indeed achieve a better
p.d.f. estimation by selecting the optimal bandwidth.

The classification performances of NNBC are examined
in terms of classification accuracy, ranking, and the quality
of class-conditional probability estimation. The latter two
indexes are measured by the area under ROC curve (AUC)
[14], [40] and the probability mean square error (PMSE) [21]
respectively. Our experimental results on 30 UCI datasets [43]
demonstrate that NNBC outperforms NNB, FNB, and FNBROT

with most of testing datasets.
The rest of this paper is organized as follows. In Section II,

we summarize the basic NBC algorithm. In Section III, a non-
naive Bayesian classification model based on the estimation
of joint probability density is proposed. In Section IV, our
experimental setup and results are given. We conclude this
paper with some remarks in the last section.

II. NBC

This section will give a brief review on naive Bayesian
classifiers. We firstly introduce a number of denotations.

Let X be a set of instances. Each instance is described
by d condition attributes, which are used to depict the

specific features of an instance, and one decision attribute
indicating the class label of the instance. We assume that,
all the condition attributes are continuous, and the decision
attribute is discrete. Suppose that the decision attribute varies
from {w1, w2, . . . , wc}, which implies that all instances are
categorized into c classes. In this way, any instance in X will
be denoted as a d-dimensional vector

�x(k)
i =

{
x

(k)
i1 , x

(k)
i2 , . . . , x

(k)
id

}
(1 ≤ i ≤ nk, 1 ≤ k ≤ c)

where c is the number of classes and nk is the number of
instances within the kth class. Let �x = (x1, x2, . . . , xd) indicate
a new example whose value of decision attribute is unknown.

Bayesian classifier assigns the most likely class to the
new example �x = (x1, x2, . . . , xd) by the Bayesian theorem.
According to the prior probability and class-conditional prob-
ability of the new example, Bayesian classifier calculates the
posterior probability and determines the value of decision
attribute for the new example. The Bayesian classifier discrim-
inates the class of the new sample �x in the following equation:

w = arg max
wk,k=1,2,... ,c

{
P
(
wk

∣∣�x)}

= arg max
wk,k=1,2,... ,c

{
P (wk) P

(�x |wk

)
P
(�x)

}

= arg max
wk,k=1,2,... ,c

{
P (wk) P

(�x |wk

)}
(1)

where P (wk) is the prior probability of the kth class, which
can be estimated by the frequency of instances of the kth

class, i.e., P (wk) = nk

N
in which N =

c∑
k=1

nk is the size of

dataset X. P
(�x |wk

)
denotes the class-conditional probability.

The main objective of NBC is to estimate P
(�x |wk

)
based on

the training instances in the kth class.
NBC assumes that all condition attributes are independent

given the decision attribute (i.e., conditional independence
assumption). Hence, based on this assumption, the class-
conditional probability can be expressed as

P
(�x |wk

)
= P (x1, xk, . . . , xd |wk ) =

d∏

j=1
P
(
xj |wk

)
. (2)

By replacing the class-conditional probability with (2), NBC
obtains the following decision rule [in (3)] for determining the
value of decision attribute of �x

w = arg max
wk,k=1,2,... ,c

{
nk

N

d∏
j=1

P
(
xj |wk

)}
. (3)

From (3), we extract that the calculation of
P
(
xj |wk

)
(1 ≤ j ≤ d) is the key to apply the NBC to

determining the class of the new instance. Based on the
density estimation strategy, three handling-methodologies
NNB [2], [30], FNB [19], and FNBROT [28] are popular ways
to estimate the component P

(
xj |wk

)
for �x.

A. NNB

NNB [2], [30] assumes that the nk values of the jth
condition attribute,i.e., x

(k)
1j , x

(k)
2j , . . . , x

(k)
nk,j

, obey a single
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Gaussian distribution. Then, P
(
xj |wk

)
can be calculated by

the following equation:

P
(
xj |wk

)
= 1√

2πσ
(k)
j

exp

[
−
(

xj−μ
(k)
j

)2

2
(

σ
(k)
j

)2

]
, (4)

where μ
(k)
j =

nk∑
i=1

x
(k)
ij

nk
and

(
σ

(k)
j

)2
=

nk∑
i=1

[
x

(k)
ij −μ

(k)
j

]2

nk
are the mean

value and variance of x
(k)
1j , x

(k)
2j , . . . , x

(k)
nk,j

, respectively.

B. FNB

The continuous attributes do not always follow the Gaus-
sian distribution in many applications. To tackle the case of
non-Gaussian distribution, John and Langley [19] proposed
the FNB which estimates P

(
xj |wk

)
through the following

equation:

P
(
xj |wk

)
= 1

nkh
(k)
j

nk∑
i=1

[
K

(
xj−x

(k)
ij

h
(k)
j

)]
(5)

where h
(k)
j is the bandwidth and K (∗) is the kernel function.

In FNB, h
(k)
j = 1√

nk
and K (x) = 1√

2π
exp

(
− x2

2

)
. This kernel

is called the Gaussian kernel. The experimental study shows
that the classification performance of FNB mainly depends on
the selection of the bandwidth h

(k)
j .

C. FNBROT

In order to evaluate the impact of different parameter-
selection methods on the classification performance,
Liu et al. [28] apply the rule of thumb [38], [44] to
the selection of bandwidth parameter of FNB. They replace
the traditional bandwidth parameter in FNB h

(k)
j = 1√

nk
with

the following equation:

h
(k)
j =

(
4

3nk

) 1
5
σ

(k)
j

(6)

where
(
σ

(k)
j

)2
is the variance of the jth condition attribute

values x
(k)
1j , x

(k)
2j , . . . , x

(k)
nk,j

. In our study, we call these kind
of Bayesian classifiers FNBROT. Besides the above-mentioned
rule of thumb, we can access other parameter selection
methods from references (e.g., [15], [34], [38], and [44]).
As demonstrated in [28], sophisticated bandwidth selection
schemes may not give favorable performance in the context
of NBC classification, while some simple bandwidth selection
schemes tend to achieve considerably better performances.
Furthermore, in [28], the simple scheme, i.e., the rule of thumb
scheme, is used for bandwidth selection in their experiments.

III. NNBC Based on Joint p.d.f. Estimation

As we mentioned in Section II, NBC assumes that all con-
dition attributes are independent given the decision attribute.
In this section, we will propose an improved Bayesian classi-
fication model, i.e., NNBC which eliminates the assumption
of attribute-independence and is based on a technique of
joint p.d.f. estimation. Firstly, the basic concept of joint p.d.f.
estimation is introduced. Afterwards, the optimal parameter

selection in the estimation of the joint p.d.f. is discussed.
Finally, the NNBC model based on the joint p.d.f. with the
optimal bandwidth is described in detail.

A. Joint p.d.f. Estimation

In probability theory and statistical inference, p.d.f. esti-
mation [38], [44] refers to giving a specific function without
unknown parameters such that the error between this function
and the unobservable underlying p.d.f. can be small enough.
Particularly, the estimation of p.d.f. for a continuous distribu-
tion from the representative samples has been considered as
one of the major ingredients in machine learning and pattern
recognition. The mostly used strategy to construct the un-
derlying p.d.f. approximately is Parzen window method [31].
Based on the set of d-dimensional data �x1, �x2, . . . , �xN where
�xi = (xi1, xi2, . . . , xid) (1 ≤ i ≤ N), Parzen window method
estimates the underlying joint p.d.f. through the following
equation:

f̂h

(�x) = 1
Nhd

N∑
i=1

[
K
(

�x−�xi

h

)]
= 1

Nhd

N∑
i=1

[
K
(

x1−xi1
h

, x2−xi2
h

, . . . , xd−xid

h

)] (7)

where K (∗) is a multivariate kernel function and h is a crucial
parameter called bandwidth. The most common kernel is the
multivariate Gaussian kernel as shown in

K
(�x) = 1(√

2π
)d exp

(
−�x�xT

2

)
(8)

where �xT is the transpose of vector �x.
It is well acknowledged that the estimation performance

of Parzen window method strongly relies on the selection of
bandwidth h [15], [34], [38], [44]. Many researchers [29], [31],
[36], [38], [44] have claimed that an appropriate selection
of bandwidth can converge or minimize the estimated error
between the true p.d.f. and estimated p.d.f.

B. Optimal Selection of Bandwidth

In order to find the optimal bandwidth for a joint p.d.f.
estimation, in this section we adopt the MISE [3], [5], [21] as
our error criterion to measure the difference between the true
p.d.f. and the estimated p.d.f.. Let f

(�x) be the true p.d.f. of
the observed data �x1, �x2, . . . , �xN ; thus, MISE can be expressed
as

MISE (h) = E

[∫ {
f̂h

(�x)− f
(�x)}2

d�x
]

=
∫

var
(
f̂h

(�x)) d�x +
∫

bias2
(
f̂h

(�x)) d�x
(9)

where

bias
(
f̂h

(�x)) = E
[
f̂h

(�x)]− f
(�x)

and

var
(
f̂h

(�x)) = E
{
f̂h

(�x)− E
[
f̂h

(�x)]}2
.

In (9),
∫

and d�x are the abbreviations of
∫ ∫

. . .
∫

and
dx1dx2 . . . dxd , respectively. Next, we derive the expressions
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for bias
(
f̂h

(�x)) and var
(
f̂h

(�x)), respectively. Note the
fundamental definitions of mathematical expectation

E
(�x) =

∫ �xf
(�x) d�x, and E

[
g
(�x)] =

∫
g
(�x) f

(�x) d�x,

and the expressions of the estimated p.d.f. and the kernel
functions are

f̂h

(�x) =

N∑
i=1

[
K
(

�x−�xi

h

)]
Nhd

, and K
(�x) =

exp
(
−�x�xT

2

)
(√

2π
)d

we can obtain the following equation:

E
[
f̂h

(�x)] =
∫ [

1
hd K

(
�x−�y
h

)
f
(�y)] d�y (10)

where �y is a random variable with the p.d.f. f
(�y).

We now give the derivation of bias
(
f̂h

(�x)). After replacing
the component E

[
f̂h

(�x)] in bias
(
f̂h

(�x)) with (10), we gain
the following equation:

bias
(
f̂h

(�x))
=
∫ [

1

hd
K

( �x − �y
h

)
f
(�y)] d�y − f

(�x)
=
∫ [

K
(�z) f

(�x − h�z)] d�z − f
(�x)

=
∫ {

K
(�z) [f (�x)− h�zf ′ (�x) +

1

2
h2�z�zT

f ′′ (�x)
+O
(
h2
)− f

(�x)]} d�z
= −hf ′ (�x) ∫ �zK

(�z) d�z +
1

2
h2f ′′ (�x) ∫ �z�zTK

(�z) d�z

+ O
(
h2
) ∫

f
(�z) d�z (11)

where �z = �x−�y
h

.
It is known that for the multivariate Gaussian kernel K

(�z),∫ �zK
(�z) d�z = 0 and

∫
K
(�z) d�z = 1 hold well. Substituting

these two integrals in (11), we have the following equation:

bias
(
f̂h

(�x)) = 1
2h2f ′′ (�x) ∫ �z�zTK

(�z) d�z + O
(
h2
)
. (12)

Furthermore we give the derivation of var
(
f̂h

(�x)). Not-

ing that E
{

2f̂h

(�x)E
[
f̂h

(�x)]} = 2
{
E
[
f̂h

(�x)]}2
, we can

express var
(
f̂h

(�x)) as follows:

var
(
f̂h

(�x)) = E
[
f̂h

(�x)]2 − {E [f̂h

(�x)]}2

=
1

N

∫ [
1

h2d
K

( �x − �y
h

)2

f
(�y)
]

d�y

− 1

N

{∫ [
1

h2d
K

( �x − �y
h

)
f
(�y)] d�y

}2

=
1

Nhd

∫ [
K
(�z)2

f
(�x − h�z)] d�z

− 1

Nhd

{∫ [
K
(�z) f

(�x − h�z)] d�z
}2

=
1

Nhd

{
f
(�x) ∫ K

(�z)2
d�z − hf ′ (�x) ∫ �zK

(�z)2
d�z

+
1

2
h2f ′′ (�x) ∫ �z�zTK

(�z)2
d�z + O

(
h2
)}

+ O
(
N−1

)
(13)

where �z = �x−�y
h

.
Because of

1

Nhd

[
hf ′ (�x) ∫ �zK

(�z)2
d�z
]

= O
(
N−1

)
and

1

Nhd

[
1

2
h2f ′′ (�x) ∫ �z�zTK

(�z)2
d�z
]

= O
(
N−1

)
the formula of var

(
f̂h

(�x)) can be denoted as

var
(
f̂h

(�x)) =
1

Nhd
f
(�x) ∫ K

(�z)2
d�z + O

(
N−1h−d

)
.

(14)
Through replacing bias

(
f̂h

(�x)) and var
(
f̂h

(�x)) in (9)
with the derived equations (12) and (14), respectively, we have
the following equation:

MISE (h) =
1

Nhd

[∫
K
(�z)2

d�z
] [∫

f
(�x) d�x

]

+
1

4
h4

[∫
�z�zTK

(�z) d�z
]2{∫ [

f ′′ (�x)]2
d�x
}

.

(15)

Let R (K) =
∫

K
(�z)2

d�z, μ2 (K) =
∫ �z�zTK

(�z) d�z, and

R
(
f ′′) =

∫ [
f ′′ (�x)]2

d�x. Noting that
∫

f
(�x) d�x = 1, we thus

simplify the expression of MISE (h) as follows:

MISE (h) =
1

Nhd
[R (K)] +

1

4
h4 [μ2 (K)]2 R

(
f ′′) . (16)

To find the optimal bandwidth that minimizes MISE (h), we
let the derivative of MISE (h) (with respect to h) be 0, i.e.,
dMISE(h)

dh
= 0 which implies that the optimal h is achieved at

h
(MISE)
optimal =

[
dR (K)

[μ2 (K)]2 R (f ′′) N

] 1
d+4

(17)

and the corresponding minimal MISE (h) is given by

inf
h�0

MISE (h)

=
d + 4

4d

{
[μ2 (K)]2d [dR (K)]4

[
R
(
f ′′)]d N−4

} 1
d+4

.
(18)
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In the following we point out how to compute the three
components R (K), μ2 (K), and R

(
f ′′) in (17) and (18).

For a multivariate Gaussian kernel, we adopt the following
equations:

R (K) =
1(√

2π
)2d

d∏
j=1

∫
exp

(−x2
j

)
dxj = (4π)−

d
2 , (19)

and

μ2 (K) =
1(√
2π
)d

d∑
j=1

[∫
x2

j exp

(
−x2

j

2

)
dxj

]
= 1. (20)

For the sake of a robust estimation, we consider f
(�x) as a

multivariate normal density function N (0, �) with the diago-
nal matrix � = diag

(
σ2

1 , σ2
2 , . . . , σ2

d

)
where σ2

j , (1 ≤ j ≤ d)
is the variance of x1j , x2j , . . . , xNj . Now we envisage a
specific case of d = 2 and give its derivation of R

(
f ′′)

where f
(�x) = f (x1, x2) = 1(√

2π
)2

σ1σ2

exp
[
−
(

x2
1

2σ2
1

+ x2
2

2σ2
2

)]
.

The formula of R
[
f ′′ (x1, x2)

]
can be expressed as

R
[
f ′′ (x1, x2)

]
=
∫ ∫ [

∂2f (x1, x2)

∂2x1
+

∂2f (x1, x2)

∂2x2

]2

dx1dx2

=
1

4
(√

2π
)2

σ1σ2

[
2

(
1

σ4
1

+
1

σ4
2

)
+

(
1

σ2
1

+
1

σ2
2

)2
]

.

(21)

Similarly, the derivation of R
[
f ′′ (�x)] for the p.d.f. estima-

tion with d variables (d > 2) can be given by

R
[
f ′′ (�x)] =

2

d∑
j=1

1

σ4
j

+

⎛
⎝ d∑

j=1

1

σ2
j

⎞
⎠

2

4
(√

2π
)d d∏

j=1
σj

(22)

i.e.,

R
(
f ′′) =

(4π)−
d
2 |�|− 1

2
{

2tr
(
�−1�−1

)
+ tr2

(
�−1

)}
4

.

(23)
After bringing (19), (20), (23) into (17) and (18), we acquire

the optimal bandwidth in (24)

h
(MISE)
optimal =
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and the minimal MISE as follows:
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In our proposed NNBC, we use MISE to measure the error
between the true p.d.f. and the estimated p.d.f.. Apart from
MISE, another error criterion, i.e., integrated squared error
(ISE), is commonly used in the kernel density estimation. The
expression of ISE is given in

ISE (h) =
∫ [

f̂h

(�x)− f
(�x)]2

d�x. (26)

Through extending (26), we can get the following equation:

ISE (h) =
∫ [

f̂h

(�x)]2
d�x − 2

∫
f̂h

(�x) f
(�x) d�x

+
∫ [

f
(�x)]2

d�x. (27)

From (27), we can find that the third term
∫ [

f
(�x)]2

d�x is
not related to the unknown bandwidth h. Hence, the minimiza-
tion of Eq. (27) equals to the minimization of the following
equation:

ISE∗ (h) =
∫ [

f̂h

(�x)]2
d�x − 2

∫
f̂h

(�x) f
(�x) d�x. (28)

Following the derivation in MISE mentioned above, we can
obtain ∫ [
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where σ2
j , (1 ≤ j ≤ d) is the variance of x1j , x2j , · · · , xNj .

Bring (29) and (30) into (28), we can get

ISE∗ (h) =
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From (31), we gain that in order to determine the opti-
mal bandwidth h which minimizes ISE∗ (h), an optimization
scheme, e.g., brute-force or intelligent search algorithm, is
required. It will lead to a significant increase of time com-
plexity. However, by minimizing MISE, we can directly obtain
the expression of optimal bandwidth h as shown in (24) and
thus avoid the application of a time-consuming optimization
scheme.
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C. NNBC

As we discussed in the previous sections, NNB, FNB,
and FNBROT have the following two restrictions: 1) they are
based on such an assumption that all condition attributes are
independent given the decision attribute, which obviously does
not always stand in many real-world applications, and 2) in
the process of estimating the marginal p.d.f. of each attribute,
NNB assumes that each attribute follows a normal distribution;
FNB/FNBROT fixes the non-normal distribution problem to
some extent, while they have not an appropriate strategy of the
parameter selection. All these drawbacks seriously affect the
precision of the p.d.f. estimation. Motivated by improving the
classification performance via removing or relaxing the above-
mentioned two restrictions, we propose the NNBC model in
which the restraint of independence among the attributes is
removed and the joint p.d.f. estimation replaces the marginal
p.d.f. estimations. NNBC determines the class of a new sample
�x as the following equation:

w = arg max
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)}
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where K
(�x) = 1(√

2π
)d exp

(
−�x�xT

2

)
is the multivariate Gaus-

sian kernel as shown in (8), and hk (1 ≤ k ≤ c) is the optimal
bandwidth which has been derived as in Section III-B.

Specifically, for a set of instances belonging to the kth class,
the optimal bandwidth hk (1 ≤ k ≤ c) given in (24) can be
simplified as
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The main differences among NNB, FNB, FNBROT, and our
proposed NNBC are summarized as follows:

1) NNB, FNB, and FNBROT assume that all condi-
tion attributes are independent given the decision at-
tribute. By calculating every component P

(
xj |wk

)
(1 ≤ j ≤ d, 1 ≤ k ≤ c) through the marginal p.d.f.,
NNB, FNB, and FNBROT obtain the class-conditional
probability P

(�x |wk

)
for the new instance �x =

{x1, x2, . . . , xd}. Our proposed NNBC, which removes
the independence assumption, establishes a model of
joint p.d.f. in the estimation of P

(�x |wk

)
based on the

multivariate kernel function.
2) Due to the inappropriate distribution assumption for

NNB and the nonoptimal parameter selection in FNB
and FNBROT, large estimated errors usually occur be-
tween the true p.d.f. and the estimated p.d.f.. The

imprecise estimation of p.d.f. for NBC will lead to the
dissatisfactory classification performance. By minimiz-
ing the MISE, our proposed NNBC gains the optimal
bandwidth for the joint p.d.f. estimation. The optimal
bandwidth enables the estimated error between the true
p.d.f. and the estimated p.d.f. to reach the minimum.

Now, we analyze the time complexities of the above-
mentioned four Bayesian classification algorithms,i.e., NNB,
FNB, FNBROT, and NNBC. Let N be the number of train-
ing instances, M be the number of testing instances, and
d be the number of condition attributes. Since NNB needs
to calculate the means and variances for the d condition
attributes, the training time complexity of NNB is O (Nd)
and the classification time complexity is O (Md). FNB uses
the superposition of N p.d.f.s of the normal distribution to
fit the true p.d.f.; thus, the training and classification time
complexities of FNB are O (Nd) and O (MNd) respectively.
Compared with FNB, FNBROT applies the rule of thumb
to obtain some increase in the training time, however the
training and classification time complexities remain O (Nd)
and O (MNd), respectively. Similar to FNBROT, our NNBC
also needs the extra time to compute the optimal bandwidth in
the training phase. However, the determination of the required
parameter does not lead to additional increase of classification
time complexity. Thus, the training and classification time
complexities of NNBC are still O (Nd) and O (MNd) as well.

IV. Experimental Comparison of Classification

Performances Among the Four Bayesian Models

In this section, we conduct an experimental comparison
among the four Bayesian models (NNB, FNB, FNBROT, and
NNBC) on 30 UCI benchmark datasets [43] with respect to
the three indexes (i.e., the classification accuracy, the ranking
performance (measured by AUC) [14], [40], and the quality of
class-conditional probability density estimation (measured by
PMSE) [21]). The experiment is configured on a PC having the
OS of Windows 2000 with one Pentium 4 2.8 GHz processor
and a 1024 MB RAM.

A. Data Preparation Guidelines and Experimental Procedure

In our experiment, 30 UCI benchmark datasets are used to
test the classification performances of NNB, FNB, FNBROT,
and NNBC. These datasets involve a wide range of real
domains and data characteristics. The detailed description of
30 datasets can be referred to the information provided by UCI
Machine Learning Repository [43].

In order to use these datasets more efficiently and specifi-
cally, we preprocess these datasets according to the following
procedures.

1) Delete the nominal condition attributes. In our work, we
aim to study the impacts of different density estimation
methods on the classification performances of Bayesian
models. The class-conditional probabilities of the nom-
inal condition attributes can be calculated by counting
the frequency of attribute-values and combinations of
attribute values from a given dataset.
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TABLE I

Detailed Experimental Results of Classification Accuracy and Standard Deviation on 30 UCI Benchmark Datasets

Datasets NNB FNB FNBROT NNBC
1 Auto Mpg 0.673±0.004 0.662±0.006 0.675±0.006 0.727±0.008
2 Blood Transfusion 0.729±0.005 0.754±0.006 0.693±0.003 0.764±0.006
3 Breast Cancer 0.960±0.001 0.975±0.001 0.963±0.002 0.962±0.002
4 Breast Cancer W-D 0.932±0.003 0.944±0.002 0.946±0.002 0.947±0.004
5 Breast Cancer W-P 0.631±0.012 0.699±0.009 0.629±0.015 0.610±0.018
6 Contraceptive Method 0.472±0.003 0.498±0.005 0.462±0.004 0.501±0.004
7 Credit Approval 0.718±0.003 0.711±0.004 0.755±0.003 0.733±0.005
8 Cylinder Bands 0.632±0.011 0.711±0.006 0.686±0.011 0.698±0.011
9 Ecoli 0.845±0.006 0.852±0.004 0.848±0.007 0.852±0.007
10 Glass Identification 0.349±0.018 0.594±0.015 0.456±0.016 0.634±0.012
11 Haberman’s Survival 0.753±0.005 0.738±0.006 0.727±0.007 0.700±0.011
12 Heart Disease 0.842±0.006 0.841±0.001 0.841±0.001 0.766±0.011
13 Image Segment 0.797±0.001 0.898±0.001 0.843±0.002 0.969±0.001
14 Ionosphere 0.809±0.005 0.905±0.003 0.903±0.004 0.937±0.004
15 Iris 0.953±0.004 0.959±0.005 0.959±0.004 0.963±0.005
16 Libras Movement 0.640±0.013 0.554±0.013 0.681±0.012 0.807±0.008
17 Magic Telescope 0.738±0.003 0.762±0.003 0.768±0.004 0.806±0.003
18 Musk Version 1 0.730±0.007 0.803±0.008 0.783±0.007 0.804±0.007
19 New Thyroid Gland 0.963±0.001 0.911±0.002 0.965±0.004 0.919±0.002
20 Page Blocks 0.861±0.008 0.868±0.001 0.914±0.006 0.904±0.004
21 Parkinsons 0.694±0.006 0.810±0.007 0.715±0.006 0.837±0.009
22 Pima Indian Diabetes 0.745±0.003 0.742±0.004 0.752±0.004 0.738±0.006
23 Sonar 0.676±0.009 0.768±0.011 0.741±0.011 0.818±0.010
24 SPECTF Heart 0.667±0.007 0.781±0.007 0.698±0.008 0.695±0.007
25 Vehicle Silhouettes 0.487±0.008 0.519±0.006 0.547±0.006 0.620±0.008
26 Vowel Recognition 0.655±0.009 0.575±0.013 0.781±0.010 0.961±0.004
27 Wine 0.971±0.005 0.959±0.004 0.979±0.003 0.988±0.003
28 Wine Quality-Red 0.371±0.005 0.580±0.004 0.517±0.004 0.607±0.006
29 Wine Quality-White 0.381±0.008 0.499±0.005 0.440±0.008 0.518±0.008
30 Yeast 0.500±0.004 0.571±0.003 0.520±0.005 0.559±0.005

Average 0.706±0.006 0.748±0.006 0.740±0.006 0.778±0.007

2) Fill in the missing attribute values. We use the unsuper-
vised filter named ReplaceMissingValues in WEKA [47]
to fill in all the missing attribute values in each dataset.
It replaces all missing values of continuous attributes
with the means of the training data.

3) Reduce the large datasets. To compromise the running
time, we adopt the unsupervised filter named Resam-
ple with the sampleSizePercent 10 in WEKA [47]
to randomly reduce the sizes of three large datasets:
Magic Telescope, Page Blocks and Wine Quality-
White.

We evaluate the four Bayesian models in terms of classifica-
tion (measured by accuracy), ranking performance (measured
by AUC) [14], [40], and the quality of class-conditional
probability density estimation (measured by PMSE) [21]. In
our experiment the tenfold cross-validation procedure repeats
100 times. In every run, NNB, FNB, FNBROT and NNBC are
trained on the same training sets and evaluated on the same
testing set. When a partition of tenfolds on a dataset is given,
the evaluations on classification accuracy, AUC, and PMSE
are simultaneously carried out.

B. Comparisons for Classification Accuracy and Training
Time

On the 30 UCI datasets the experimental results including
the averaged classification accuracies and the standard
deviations are summarized in Table I. Subsequently, a
statistical analysis including the comparison of two classifiers
on each single dataset and the comparison of multiple
classifiers on all datasets are conducted based on the acquired
classification results.

This statistical comparison is to assess whether the classi-
fication accuracies of two Bayesian models differ on a single
dataset. The analysis is carried out based on the 100 runs of
tenfold cross-validation described above. So as to compare
the classification performances of the four models, i.e., NNB,
FNB, FNBROT, and NNBC on every dataset, the Wilcoxon
signed-ranks test [7] is adopted here. Since the paired t-
test suffers from several weaknesses [7], Wilcoxon signed-
ranks test is often regarded as the alternative of the paired
t-test. It ranks the absolute values of differences between the
classification accuracies of two classifiers on every run of
tenfold cross-validation and compares the ranks for positive
and negative differences. In our experiment, all statistical
comparisons are conducted under the significance level of 0.1.

According to the average classification accuracies of 100
runs of tenfold cross-validation in Table I and the statistical
analysis with Wilcoxon signed-ranks test, we draw the
following conclusions. Compared with NNB, NNBC obtains
considerably better performances on 25 datasets. Compared
with FNB, NNBC obtains considerably better performances
on 20 datasets and has the equal performances on 2 datasets.
Compared with FNBROT, NNBC obtains considerably better
performances on 21 datasets. The counts of wins, losses, and
ties regarding the comparison among the four models are
listed in Table VI.

For a given learning model, the number of wins obeys the
normal distribution, i.e., N

(
m
2 ,

√
m

2

)
under the null-hypothesis

in the sign test [7], where m is the number of datasets. If the
number of wins is at least of m

2 + zα/2 ×
√

m

2 , we conclude that
the given learning model is considerably better than another
one under the significance level α. In our study, 30 UCI
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TABLE II

Comparison of Training Time Among Different Classification Methods

Datasets boostedNNB boostedFNB BoostedC4.5 BoostedSVM SVM NNB FNB FNBROT NNBC
#1 0.0848 1.1943 0.1941 2.0969 0.4492 0.0006 0.0014 0.0018 0.0011
#2 0.1086 0.4180 0.1037 0.6169 0.0364 0.0010 0.0023 0.0024 0.0010
#3 0.2086 1.1479 0.5814 1.0349 0.0387 0.0023 0.0063 0.0069 0.0025
#4 0.5932 36.4797 0.7750 1.2959 0.0540 0.0041 0.0115 0.0151 0.0112
#5 0.2035 6.6344 0.3328 0.8882 0.0384 0.0021 0.0040 0.0056 0.0026
#6 0.0873 0.2026 0.1875 0.0813 0.3367 0.0020 0.0026 0.0028 0.0010
#7 0.0585 1.2339 0.1256 0.9031 0.0397 0.0025 0.0031 0.0037 0.0012
#8 0.4137 3.8174 1.4009 0.5973 0.0914 0.0036 0.0088 0.0098 0.0034
#9 0.0654 0.9572 0.1344 1.9106 0.7899 0.0005 0.0013 0.0029 0.0021
#10 0.0666 0.3849 0.1568 5.2616 1.2348 0.0006 0.0013 0.0015 0.0009
#11 0.0579 0.3062 0.0174 0.5975 0.0303 0.0005 0.0008 0.0008 0.0003
#12 0.0658 1.1686 0.1994 0.7733 0.0380 0.0010 0.0031 0.0038 0.0019
#13 1.3119 166.4212 3.1363 13.5033 3.1112 0.0123 0.0364 0.0408 0.0213
#14 0.3622 10.6366 0.7993 1.3526 0.0916 0.0049 0.0078 0.0095 0.0033
#15 0.0587 0.2035 0.0236 1.7529 0.1921 0.0003 0.0005 0.0005 0.0002
#16 3.2310 – 2.8991 – 6.4807 0.0077 0.0239 0.0274 0.0159
#17 0.6681 90.4503 2.4767 2.9130 0.2049 0.0055 0.0169 0.0226 0.0122
#18 2.2826 – 5.3123 10.2158 0.8144 0.0172 0.0522 0.0624 0.0317
#19 0.0624 0.5660 0.0489 2.0195 0.2285 0.0004 0.0008 0.0008 0.0004
#20 0.1909 4.8006 0.3772 3.6069 0.9426 0.0015 0.0048 0.0053 0.0024
#21 0.2454 3.7260 0.1561 0.8185 0.0280 0.0012 0.0028 0.0033 0.0017
#22 0.1453 5.9801 0.5107 0.4537 0.0363 0.0019 0.0045 0.0054 0.0028
#23 0.3642 14.0950 0.6664 1.0562 0.0685 0.0032 0.0079 0.0101 0.0044
#24 0.1357 3.7236 0.4293 0.8540 0.0374 0.0030 0.0085 0.0087 0.0027
#25 0.1456 6.1776 0.8431 2.4544 0.4731 0.0021 0.0060 0.0060 0.0023
#26 0.7223 21.3104 0.6153 11.9859 4.1316 0.0017 0.0044 0.0050 0.0024
#27 0.1376 1.7043 0.2256 1.5232 0.2035 0.0007 0.0015 0.0019 0.0010
#28 0.4545 9.7816 2.7406 4.3825 1.6616 0.0052 0.0143 0.0167 0.0071
#29 0.1170 3.0567 0.6449 2.6441 1.0338 0.0019 0.0048 0.0053 0.0020
#30 0.5960 11.0345 1.9844 10.5145 3.0285 0.0027 0.0104 0.0115 0.0057

datasets are used to test the classification performances of
different learning models, that is, m = 30. Let α = 0.1, then
m
2 +zα/2 ×

√
m

2 = 30
2 + 1.645×

√
30
2 ≈ 20. It indicates, compared

with the other three learning models, NNBC will obtain
considerably better classification performance if its number
of wins on 30 UCI datasets reaches 20. This conclusion can
be demonstrated from the results in Table VI. Through the
statistical comparisons between two classifiers on each single
dataset based on Wilcoxon signed-ranks test and sign test, we
conclude that NNBC obtains better classification accuracies
on the selected 30 UCI datasets compared with the other
three models, i.e., NNB, FNB, and FNBROT. All in all, NNBC
considerably outperforms the other three Bayesian models in
classification accuracy on the selected 30 UCI datasets.

Apart from the classification accuracy, the training time of
NNB, FNB, FNBROT, and NNBC are also compared based on
the experimental process mentioned above. The comparative
results of training time are listed in Table II. From the
comparative results, we extract that the practical training time
of NNBC is longer than NNB’s but shorter than FNB and
FNBROT’s. This is not contradictory to the theoretical analysis
which indicates NNB, FNB, FNBROT, and NNBC have the
same computational complexity of training time, i.e., O(Nd),
where N is the number of training instances and d is the
number of condition attributes. The reason can be stated as,
the computational complexity of an algorithm is a measure
of required steps for the algorithm in the worst case for a
specific-sized input, and the number of steps is measured as a
function of that input size. Based on the experimental results,
we give the following observations and explanations.

1) NNB obtains the least training time. By comparing the
discriminants of NNB, FNB, FNBROT, and NNBC, we
find that NNB avoids some operations of exponential

components exp (u), while each of FNB, FNBROT, and
NNBC cannot avoid them.

2) The training time of NNBC is shorter than FNB and
FNBROT’s. The discriminant of FNB and FNBROT can
be expressed as follows:
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And, from (32), we know the discriminant of NNBC is
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By comparing these two discriminants, we know that
the computational time of (33) is obviously longer than
(34)’s, since the product-of-sums in (33) includes the
sum-of-products in (34).

In this experiment, we also compare NNBC with four
boosting-based classification methods [1] (i.e., boostedNNB,
boostedFNB, boostedC4.5, and boostedSVM) and SVM [16]
in terms of training time and classification accuracy . The
boostedNNB, boostedFNB, boostedC4.5, boostedSVM, and
SVM are the standard WEKA [47] source programs. The
experimental results are the averages of 100 runs of tenfold
cross-validation. For the 30 UCI datasets, the comparative
training time and classification accuracies are summarized in
Tables II and III.1

The Wilcoxon signed-ranks test under the significance level
of 0.1 is used to conduct the statistical analysis on the classifi-
cation results listed in Table VI. The statistical results for com-
paring NNBC with boostedNNB, boostedFNB, boostedC4.5,

1The digit in parenthesis is the number of principal components.
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TABLE III

Classification Accuracies of Other Sophisticated and Complex Classification Methods

Datasets boostedNNB boostedFNB BoostedC4.5 BoostedSVM SVM PCANNB PCAFNB
1 Auto Mpg 0.686 0.747 0.872 0.701 0.691 0.679 (3) 0.704 (3)
2 Blood Transfusion 0.770 0.770 0.786 0.769 0.762 0.773 (3) 0.769 (3)
3 Breast Cancer 0.956 0.956 0.957 0.970 0.970 0.953 (8) 0.960 (8)
4 Breast Cancer W-D 0.958 0.965 0.956 0.974 0.975 0.930 (10) 0.930 (10)
5 Breast Cancer W-P 0.672 0.646 0.732 0.768 0.763 0.737 (13) 0.773 (13)
6 Contraceptive Method 0.505 0.509 0.508 0.474 0.474 0.470 (2) 0.520 (2)
7 Credit Approval 0.703 0.726 0.754 0.717 0.712 0.642 (6) 0.630 (6)
8 Cylinder Bands 0.680 0.685 0.774 0.650 0.652 0.607 (20) 0.628 (20)
9 Ecoli 0.878 0.878 0.853 0.859 0.838 0.872 (4) 0.872 (4)

10 Glass Identification 0.477 0.514 0.780 0.589 0.570 0.523 (6) 0.500 (6)
11 Haberman’s Survival 0.748 0.745 0.725 0.761 0.735 0.722 (3) 0.716 (3)
12 Heart Disease 0.815 0.822 0.781 0.830 0.833 0.815 (12) 0.789 (12)
13 Image Segment 0.805 0.920 0.982 0.928 0.929 0.869 (10) 0.900 (10)
14 Ionosphere 0.903 0.934 0.917 0.858 0.838 0.906 (23) 0.926 (23)
15 Iris 0.933 0.960 0.933 0.980 0.960 0.893 (2) 0.887 (2)
16 Libras Movement 0.636 – 0.822 – 0.744 0.669 (9) 0.700 (9)
17 Magic Telescope 0.800 0.795 0.851 0.794 0.794 0.768 (7) 0.764 (7)
18 Musk Version 1 0.777 – 0.884 0.853 0.823 0.800 (35) 0.826 (35)
19 New Thyroid Gland 0.958 0.963 0.935 0.953 0.898 0.967 (4) 0.967 (4)
20 Page Blocks 0.881 0.914 0.937 0.920 0.916 0.872 (6) 0.901 (6)
21 Parkinsons 0.692 0.831 0.903 0.887 0.867 0.800 (8) 0.836 (8)
22 Pima Indian Diabetes 0.756 0.732 0.728 0.772 0.772 0.730 (8) 0.758 (8)
23 Sonar 0.822 0.846 0.779 0.769 0.760 0.673 (30) 0.726 (30)
24 SPECTF Heart 0.704 0.805 0.790 0.783 0.797 0.738 (25) 0.719 (25)
25 Vehicle Silhouettes 0.495 0.559 0.717 0.616 0.617 0.480 (5) 0.550 (5)
26 Vowel Recognition 0.813 0.884 0.926 0.631 0.633 0.542 (8) 0.661 (8)
27 Wine 0.955 0.961 0.966 0.978 0.983 0.983 (10) 0.978 (10)
28 Wine Quality-Red 0.547 0.596 0.662 0.582 0.582 0.544 (9) 0.557 (9)
29 Wine Quality-White 0.472 0.487 0.577 0.534 0.532 0.513 (9) 0.528 (9)
30 Yeast 0.582 0.593 0.575 0.571 0.571 0.550 (8) 0.570 (8)

boostedSVM, and SVM are 18/2/10, 15/2/13, 7/1/22, 14/0/16,
and 15/3/12, respectively, where w/t/ l means w wins, t ties
and l losses for NNBC in all 30 data sets. We observe that,
compared with the sophisticated boostedNNB, boostedFNB,
and SVM, our NNBC still achieves a slight improvement on
classification accuracy. Besides, in comparison with boost-
edC4.5 and boostedSVM, NNBC obtains relatively inferior
classification performances. However, through avoiding the
time-consuming weight update in boosting and complicated
parameter optimization in SVM, our NNBC obtains the short-
est training time among all the compared methods. Conse-
quently, we summarize that NNBC can achieve a relatively
satisfactory classification accuracy with less time requirements
in comparison with the sophisticated and complex classifica-
tion methods, i.e., boosting and SVM.

C. Comparison for Ranking Performance (AUC)

AUC [14], [40] is based on the fact that the cost of classify-
ing a sample into the wrong class is significantly lower than the
reverse. AUC takes the misclassification cost into account. Let
there be n0 testing samples in class 0 and n1 testing samples
in class 1. p0→0

i (i = 1, 2, . . . , n0) denotes the estimated
probability that the i-th 0-class testing sample belongs to class
0; p1→0

j (j = 1, 2, . . . , n1) denotes the estimated probability
that the jth 1-class testing sample belongs to class 0. Next,
rank all p0→0

i and p1→0
j (i = 1, 2, . . . , n0; j = 1, 2, . . . , n1) in

an increasing order. Let ri denote the rank of the i-th 0-class
testing sample; then, the AUC of these can be defined as the
following formula:

AUC (0, 1) =

n0∑
i=1

ri − n0(n0+1)
2

n0n1
.

(35)

Based on the AUC of two classes, the definition of AUC
for k (k > 2) classes can be given by

AUC =
2

k (k − 1)

k−1∑
i=1

k∑
j=i+1

AUC (i, j). (36)

From (35), we know its maximum is 1, which can be achieved
when all p1→0

j are smaller than any p0→0
i (i = 1, 2, . . . , n0).

Then, the maximum of (36) is also 1 when all AUC (i, j)
(i < j) are 1.

Table IV gives the detailed results for average AUCs
and standard deviations of 100-runs tenfold cross-validation.
Furthermore, the statistical results based on the sign test
are summarized in Table VI. According to the experimental
comparisons and statistical analyses, we conclude that NNBC
indeed obtains the better ranking performance on the selected
30 UCI datasets compared with the other three models.

D. Comparison for the Quality of Class-Conditional Proba-
bility Density Estimation (PMSE)

The PMSE [20] is defined as

PMSE (D) = 1
N

∑
�x∈D

c∑
p=1

[
P
(�x ∣∣wp

)− tp
(�x)]2

(37)

where D is the training dataset on which the esti-
mated error is computed, N is the size of D, P

(�x ∣∣wp

)(�x ∈ D, p = 1, 2, . . . , c
)

denotes the estimated posterior prob-
ability of instance �x belonging to the class wp, and �t (�x) ={
t1
(�x) , t2

(�x) , . . . , tc
(�x)} is a c-dimensional vector in which

the pth component is 1 and the other components are 0 only
if the actual class of �x is wp.
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TABLE IV

Detailed Experimental Results of Ranking Performance and Standard Deviation on 30 UCI Benchmark Datasets

Datasets NNB FNB FNBROT NNBC
1 Auto Mpg 0.799±0.008 0.803±0.004 0.830±0.005 0.889±0.004
2 Blood Transfusion 0.707±0.002 0.695±0.004 0.715±0.002 0.725±0.006
3 Breast Cancer 0.975±0.001 0.993±0.002 0.981±0.025 0.978±0.001
4 Breast Cancer W-D 0.987±0.001 0.987±0.002 0.989±0.001 0.989±0.002
5 Breast Cancer W-P 0.666±0.015 0.618±0.008 0.647±0.018 0.648±0.017
6 Contraceptive Method 0.676±0.001 0.668±0.002 0.671±0.001 0.696±0.001
7 Credit Approval 0.790±0.005 0.790±0.003 0.833±0.003 0.783±0.004
8 Cylinder Bands 0.702±0.003 0.788±0.002 0.771±0.002 0.760±0.006
9 Ecoli 0.973±0.002 0.966±0.001 0.964±0.002 0.969±0.002

10 Glass Identification 0.772±0.012 0.725±0.009 0.787±0.012 0.843±0.009
11 Haberman’s Survival 0.644±0.016 0.689±0.012 0.692±0.008 0.659±0.012
12 Heart Disease 0.899±0.007 0.903±0.006 0.908±0.007 0.834±0.006
13 Image Segment 0.974±0.002 0.986±0.001 0.987±0.002 0.994±0.001
14 Ionosphere 0.809±0.005 0.905±0.003 0.903±0.004 0.937±0.004
15 Iris 0.987±0.005 0.986±0.005 0.988±0.005 0.990±0.002
16 Libras Movement 0.960±0.005 0.954±0.004 0.964±0.005 0.986±0.002
17 Magic Telescope 0.756±0.001 0.830±0.001 0.808±0.002 0.889±0.001
18 Musk Version 1 0.816±0.003 0.894±0.004 0.901±0.003 0.948±0.003
19 New Thyroid Gland 0.995±0.002 0.995±0.002 0.994±0.002 0.993±0.003
20 Page Blocks 0.650±0.012 0.586±0.022 0.646±0.004 0.540±0.007
21 Parkinsons 0.851±0.006 0.902±0.009 0.860±0.006 0.974±0.008
22 Pima Indian Diabetes 0.814±0.003 0.824±0.003 0.828±0.004 0.795±0.002
23 Sonar 0.799±0.007 0.861±0.007 0.845±0.008 0.921±0.008
24 SPECTF Heart 0.845±0.009 0.777±0.010 0.849±0.008 0.797±0.010
25 Vehicle Silhouettes 0.770±0.002 0.783±0.002 0.798±0.003 0.859±0.004
26 Vowel Recognition 0.965±0.001 0.943±0.002 0.984±0.001 0.999±0.000
27 Wine 1.000±0.001 0.999±0.001 1.000±0.000 1.000±0.000
28 Wine Quality-Red 0.722±0.002 0.712±0.002 0.769±0.002 0.811±0.003
29 Wine Quality-White 0.489±0.004 0.481±0.002 0.492±0.004 0.510±0.004
30 Yeast 0.755±0.002 0.749±0.001 0.782±0.002 0.808±0.002

Average 0.818±0.005 0.826±0.005 0.840±0.005 0.851±0.004

The experimental results of PMSE on 30 UCI datasets are
summarized in Table V in detail. And, the statistical results
based on the sign test are shown in Table VI.

According to the sign test, the numbers of wins of NNBC on
these 30 UCI datasets are equal or greater than 20 in compar-
ison with the other three learning models. It indicates that the
PMSE of NNBC is the best in these 30 datasets, which implies
that NNBC obtains the most accurate probability estimation.
The reason why NNBC can acquire the best classification
accuracy and ranking may reside here.

The following contents are used to depict how to use
PMSE to evaluate the estimation qualities of different density
estimation methods. Now we assume �x is an instance in a
two-class problem, and the true class of �x is w1, namely
�t (�x) = {1, 0}. Let MA and MB be two different density
estimation methods. Pi

(�x |w1
)

and Pi

(�x |w2
)

estimated by
Mi(i = A or B) represent the estimated posterior probabilities
of �x belonging to the class w1 and w2 respectively. The PMSEs
of MA and MB can be calculated in the following expressions:

{
PMSEA

(�x) =
[
PA
(�x |w1

)− 1
]2

+
[
PA
(�x |w2

)− 0
]2

PMSEB
(�x) =

[
PB
(�x |w1

)− 1
]2

+
[
PB
(�x |w2

)− 0
]2

.

(38)
Because PA

(�x |w1
)

+ PA
(�x |w2

)
= 1 and

PB
(�x |w1

)
+ PB

(�x |w2
)

= 1, (38) can be rewritten as
follows:

{
PMSEA

(�x) = 2
[
PA
(�x |w1

)− 1
]2

PMSEB
(�x) = 2

[
PB
(�x |w1

)− 1
]2 (39)

or {
PMSEA

(�x) = 2
[
PA
(�x |w2

)− 0
]2

PMSEB
(�x) = 2

[
PB
(�x |w2

)− 0
]2

.
(40)

If PMSEA
(�x) < PMSEB

(�x), then, we can derive∣∣PA
(�x |w1

)− 1
∣∣ <

∣∣PB
(�x |w1

)− 1
∣∣ or

∣∣PA
(�x |w2

)− 0
∣∣ <∣∣PB

(�x |w2
)− 0

∣∣. It reveals that, compared with MB, MA can
obtain the better performance of p.d.f. estimation, i.e., MA

further enables the estimated posterior probability to reach
the true probability. In other words, MA derives the correct
probability of �x belonging to the class w1 to be closer to 1
or the wrong probability of �x belonging to the class w2 to be
closer to 0.

In order to give more explanations, we select 11 real
samples in Vowel Recognition dataset to compare their PMSEs
based on four Bayesian models (NNB, FNB, FNBROT, and
NNBC). Because there are 11 classes in Vowel Recognition
dataset, we select one sample from each class. The 11 selected
samples (other samples are used to train the classifiers) are
listed in Table VII.

For the 11 instances, we calculate the 11 components of

PMSE
(�x) =

11∑
p=1

[
P
(�x ∣∣wp

)− tp
(�x)]2

based on the four

different estimation methods, respectively. The details of
comparative results are summarized in Table VIII. From
Table VIII, we extract that for each sample, when it belongs to
the pth class, its pth component �Ep =

∣∣P (�x ∣∣wp

)− tp
(�x)∣∣

(p = 1, 2, . . . , 11) computed by NNBC is the smallest
compared with the other three results. For example, for
the instance �x6 belonging to the sixth class in Table VII,
the

∣∣P (�x |w6
)− t6

(�x)∣∣ computed by these four estimation
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TABLE V

Detailed Experimental Results of Estimation Quality and Standard Deviation on 30 UCI Benchmark Datasets

Datasets NNB FNB FNBROT NNBC
1 Auto Mpg 0.478±0.003 0.449±0.002 0.438±0.003 0.367±0.002
2 Blood Transfusion 0.399±0.001 0.393±0.002 0.423±0.002 0.370±0.003
3 Breast Cancer 0.076±0.001 0.049±0.001 0.065±0.001 0.073±0.002
4 Breast Cancer W-D 0.126±0.004 0.105±0.002 0.097±0.003 0.087±0.003
5 Breast Cancer W-P 0.622±0.016 0.526±0.012 0.618±0.015 0.781±0.014
6 Contraceptive Method 0.628±0.001 0.618±0.001 0.616±0.001 0.597±0.002
7 Credit Approval 0.505±0.003 0.383±0.002 0.410±0.002 0.480±0.008
8 Cylinder Bands 0.521±0.011 0.410±0.007 0.440±0.014 0.496±0.014
9 Ecoli 0.221±0.003 0.222±0.001 0.216±0.004 0.219±0.007
10 Glass Identification 0.963±0.019 0.585±0.005 0.785±0.015 0.541±0.007
11 Haberman’s Survival 0.419±0.003 0.396±0.004 0.402±0.005 0.426±0.003
12 Heart Disease 0.263±0.006 0.262±0.005 0.253±0.005 0.451±0.018
13 Image Segment 0.374±0.003 0.161±0.001 0.271±0.002 0.053±0.002
14 Ionosphere 0.341±0.005 0.171±0.004 0.176±0.005 0.117±0.008
15 Iris 0.074±0.003 0.069±0.004 0.069±0.003 0.056±0.006
16 Libras Movement 0.689±0.022 0.746±0.010 0.604±0.018 0.361±0.013
17 Magic Telescope 0.470±0.000 0.338±0.001 0.377±0.001 0.336±0.002
18 Musk Version 1 0.515±0.011 0.376±0.013 0.417±0.008 0.364±0.011
19 New Thyroid Gland 0.062±0.002 0.130±0.001 0.063±0.001 0.115±0.001
20 Page Blocks 0.241±0.016 0.218±0.001 0.155±0.007 0.172±0.006
21 Parkinsons 0.596±0.007 0.290±0.006 0.549±0.005 0.270±0.009
22 Pima Indian Diabetes 0.364±0.003 0.347±0.003 0.344±0.004 0.376±0.006
23 Sonar 0.571±0.013 0.351±0.013 0.421±0.008 0.322±0.013
24 SPECTF Heart 0.638±0.008 0.371±0.008 0.569±0.007 0.586±0.004
25 Vehicle Silhouettes 0.670±0.003 0.612±0.003 0.609±0.003 0.489±0.004
26 Vowel Recognition 0.456±0.007 0.601±0.004 0.307±0.006 0.058±0.003
27 Wine 0.042±0.007 0.056±0.002 0.032±0.004 0.020±0.003
I28 Wine Quality-Red 0.814±0.005 0.573±0.002 0.642±0.002 0.553±0.006
29 Wine Quality-White 0.889±0.006 0.648±0.002 0.793±0.006 0.676±0.006
30 Yeast 0.760±0.004 0.575±0.002 0.658±0.004 0.626±0.004

Average 0.460±0.007 0.368±0.004 0.394±0.006 0.348±0.006

methods are |0.842−1|, |0.786−1|, |0.797−1|, and |1.000−1|
for NNB, ENB, FNBROT, and NNBC, respectively. The correct
posterior probability of �x6 belonging to the class w6 is almost
1. Meanwhile, we also find that the performances of NNBC
are the best for all other components of PMSE. It shows that
NNBC can indeed obtain a more accurate estimation of joint
p.d.f.

From our experiments, we can observe that the performance
of NNBC, not only in classification accuracy and ranking
performance but also in estimated quality, is overall the best
among the models discussed in the paper. Now, we summarize
some highlights briefly as follows.

1) NNBC statistically outperforms NNB in classification
accuracy (25 wins and five losses), AUC (21 wins and
eight losses), and PMSE (25 wins and five losses);

2) NNBC statistically outperforms FNB in classification
accuracy (20 wins and eight losses), AUC (22 wins and
eight losses), and PMSE (20 wins and ten losses);

3) NNBC statistically outperforms FNBROT in classification
accuracy (21 wins and nine losses), PMSE (20 wins and
ten losses), and slightly outperforms FNBROT in AUC
(19 wins and nine losses).

In summary, this section experimentally confirms that, com-
pared with NNB, FNB, and FNBROT, NNBC presents the
best performance in terms of the three indexes: classification
accuracy, ranking, and estimation quality. When handling the
classification tasks with continuous attributes, the main reasons
that the proposed NNBC is more effective than other state-of-
the-art p.d.f. estimation-based Bayesian classifiers can be listed
as follows.

TABLE VI

Detailed Experimental Results of Estimation Quality and

Standard Deviation on 30 UCI Benchmark Datasets

NNBC Versus NNB NNBC Versus FNB NNBC Versus FNBROT
(win/tie/ loss) (win/tie/ loss) (win/tie/ loss)

Accuracy 25/0/5 20/2/8 21/0/9
AUC 21/1/8 22/0/8 19/2/9
PMSE 25/0/5 20/0/10 20/0/10

1) It relaxes the independence assumption among contin-
uous attributes. It is universally acknowledged that the
independence assumption is regarded as one of the main
factors which limit the classification performance of
naive Bayesian. Currently, the main developing schemes
of relaxing this independence assumption include mod-
ifying the structure of traditional NBC [19], [28], pro-
jecting the attributes to other subspace [11], [18], and
proving the inefficiency of independence assumption [4],
[9]. Trying to solve this problem using the first scheme,
NNBC removes the independence assumption by replac-
ing the product of marginal p.d.f. with a joint p.d.f. when
determining the class label for a new instance. Through
expressing the class-conditional p.d.f.s as a joint p.d.f.,
the NNBC considers the dependence among continuous
attributes in an appropriate and effective way.

2) It acquires a more accurate estimation of class-
conditional p.d.f. by computing the optimal bandwidth
for the joint p.d.f. Many references show that a more ac-
curate density estimation can improve the classification
performance of Bayesian classifiers. For example, the
methods given in [19] by replacing Gaussian approxi-



32 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 1, JANUARY 2014

TABLE VII

Eleven Representative Instances in the Vowel Recognition Dataset (p = 1, 2, . . . , 11)

xp1 xp2 xp3 xp4 xp5 xp6 xp7 xp8 xp9 xp,10 wp

�x1 –3.844 1.056 –0.19 1.685 0.617 1.245 –0.811 –0.506 –1.128 0.076 1
�x2 –3.249 1.042 0.589 1.408 0.023 –0.821 –0.581 0.031 0.068 0.325 2
�x3 –2.03 1.764 –0.386 –0.249 0.18 0.117 0.096 –0.121 0.067 –0.552 3
�x4 –2.748 3.217 –0.976 –0.213 –0.792 0.771 –0.032 0.223 0.043 –0.825 4
�x5 –2.497 1.607 –0.621 –0.446 –0.226 –0.152 1.16 0.122 –0.809 0.495 5
�x6 –3.587 3.128 0.885 –0.188 –1.164 –0.215 0.051 1.334 0.641 –0.253 6
�x7 –3.675 3.132 –0.241 1.587 –1.75 –0.222 0.039 1.052 0.545 0.233 7
�x8 –4.079 2.663 –0.048 –0.315 0.234 0.861 0.335 0.435 –0.546 –0.928 8
�x9 –4.188 2.637 0.502 0.552 0.735 0.395 –0.026 0.803 –0.874 –0.913 9
�x10 –4.102 0.209 0.414 0.423 0.985 1.434 0.663 0.036 –0.784 –0.668 10
�x11 –2.91 0.918 –0.138 –0.382 0.115 0.29 0.418 0.757 –0.898 –0.189 11

TABLE VIII

Detailed Description to PMSE of 11 Representative Instances in the Vowel Recognition Dataset, Where �Ep =
∣
∣P
(�x ∣∣wp

)− tp
(�x)∣∣

(p = 1, 2, . . . , 11)

�E1 �E2 �E3 �E4 �E5 �E6 �E7 �E8 �E9 �E10 �E11

�x1 NNB |0.439 − 1| |0.097 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.001 − 0| |0.460 − 0| |0.002 − 0|
FNB |0.836 − 1| |0.114 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.036 − 0| |0 − 0| |0.013 − 0|
FNBROT |0.420 − 1| |0.409 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.006 − 0| |0.156 − 0| |0.009 − 0|
NNBC |0.982 − 1| |0.017 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0 − 0|

�x2 NNB |0.189 − 0| |0.788 − 1| |0.001 − 0| |0 − 0| |0.001 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.019 − 0| |0.001 − 0|
FNB |0.110 − 0| |0.890 − 1| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|
FNBROT |0.036 − 0| |0.949 − 1| |0.001 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.013 − 0| |0 − 0|
NNBC |0.001 − 0| |0.999 − 1| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|

�x3 NNB |0.001 − 0| |0 − 0| |0.736 − 1| |0.001 − 0| |0.200 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.062 − 0|
FNB |0 − 0| |0 − 0| |0.889 − 1| |0.001 − 0| |0.107 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.003 − 0|
FNBROT |0 − 0| |0 − 0| |0.810 − 1| |0.003 − 0| |0.164 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.023 − 0|
NNBC |0 − 0| |0 − 0| |0.999 − 1| |0.001 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|

�x4 NNB |0 − 0| |0 − 0| |0 − 0| |0.874 − 1| |0.018 − 0| |0.071 − 0| |0 − 0| |0.036 − 0| |0.001 − 0| |0 − 0| |0.001 − 0|
FNB |0 − 0| |0 − 0| |0 − 0| |0.862 − 1| |0.003 − 0| |0.134 − 0| |0 − 0| |0.001 − 0| |0 − 0| |0 − 0| |0 − 0|
FNBROT |0 − 0| |0 − 0| |0 − 0| |0.846 − 1| |0.034 − 0| |0.108 − 0| |0 − 0| |0.012 − 0| |0 − 0| |0 − 0| |0 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0.998 − 1| |0 − 0| |0.002 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|

�x5 NNB |0.013 − 0| |0 − 0| |0.003 − 0| |0.193 − 0| |0.608 − 1| |0.162 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.021 − 0|
FNB |0 − 0| |0 − 0| |0 − 0| |0.253 − 0| |0.738 − 1| |0.009 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|
FNBROT |0.001 − 0| |0 − 0| |0 − 0| |0.274 − 0| |0.658 − 1| |0.067 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0.002 − 0| |0.998 − 1| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|

�x6 NNB |0 − 0| |0 − 0| |0 − 0| |0.005 − 0| |0 − 0| |0.842 − 1| |0.132 − 0| |0.019 − 0| |0.002 − 0| |0 − 0| |0 − 0|
FNB |0 − 0| |0 − 0| |0 − 0| |0.016 − 0| |0 − 0| |0.786 − 1| |0.198 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|
FNBROT |0 − 0| |0 − 0| |0 − 0| |0.032 − 0| |0 − 0| |0.797 − 1| |0.164 − 0| |0.004 − 0| |0.001 − 0| |0 − 0| |0 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.982 − 1| |0.018 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0|

�x7 NNB |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.186 − 0| |0.801 − 1| |0.013 − 0| |0 − 0| |0 − 0| |0 − 0|
FNB |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.051 − 0| |0.948 − 1| |0 − 0| |0 − 0| |0 − 0| |0 − 0|
FNBROT |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0 − 0| |0.097 − 0| |0.897 − 1| |0.004 − 0| |0 − 0| |0 − 0| |0 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |1.000 − 1| |0 − 0| |0 − 0| |0 − 0| |0 − 0|

�x8 NNB |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.010 − 0| |0.526 − 1| |0.462 − 0| |0 − 0| |0.001 − 0|
FNB |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.010 − 0| |0.868 − 1| |0.115 − 0| |0 − 0| |0.003 − 0|
FNBROT |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.003 − 0| |0.012 − 0| |0.050 − 0| |0.676 − 1| |0.244 − 0| |0 − 0| |0.015 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.002 − 0| |0 − 0| |0.991 − 1| |0.007 − 0| |0 − 0| |0 − 0|

�x9 NNB |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.041 − 0| |0.408 − 0| |0.548 − 1| |0.001 − 0| |0 − 0|
FNB |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.271 − 0| |0.729 − 1| |0 − 0| |0 − 0|
FNBROT |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.023 − 0| |0.478 − 1| |0.495 − 1| |0.003 − 0| |0.001 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.044 − 1| |0.956 − 1| |0 − 0| |0 − 0|

�x10 NNB |0.207 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0.039 − 0| |0.748 − 1| |0 − 0|
FNB |0.077 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.923 − 1| |0 − 0|
FNBROT |0.267 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.007 − 0| |0.024 − 0| |0.701 − 1| |0 − 0|
NNBC |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |1.000 − 1| |0 − 0|

�x11 NNB |0.074 − 0| |0.084 − 0| |0.012 − 0| |0 − 0| |0.222 − 0| |0.012 − 0| |0 − 0| |0.021 − 0| |0.001 − 0| |0 − 0| |0.574 − 1|
FNB |0.002 − 0| |0.020 − 0| |0.001 − 0| |0 − 0| |0.016 − 0| |0.001 − 0| |0 − 0| |0.001 − 0| |0 − 0| |0 − 0| |0.960 − 1|
FNBROT |0.010 − 0| |0.052 − 0| |0.005 − 0| |0 − 0| |0.084 − 0| |0.007 − 0| |0 − 0| |0.008 − 0| |0 − 0| |0 − 0| |0.833 − 1|
NNBC |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.001 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0 − 0| |0.999 − 1|

mation with a kernel density estimation significantly im-
prove the classification performances of naive Bayesian
and, and the kernel density estimation-based Bayesian
classifiers in [28] are usually superior to the traditional
Bayesian classifiers which deal with the continuous at-
tributes through discretization techniques. Our proposed
NNBC applies the joint p.d.f. density estimation strategy
and further determines the optimal bandwidth parameter
in order to obtain a more accurate class-conditional
p.d.f.

V. Discussion

In this section, further discuss the dependence among the
attributes. Firstly, a theoretical theorem demonstrated that,
when the condition attributes are dependent, the joint p.d.f.
estimation can find a better substitution for the underlying
p.d.f. in comparison with the product of marginal p.d.f. es-
timations. The theorem shows that the joint p.d.f. estimation
is optimal in the L2 sense. Subsequently, we investigate the
relationship between the classification accuracy and depen-
dence among the attributes. The empirical results reflect that
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TABLE IX

Details of Dependence Between Attributes on 20 UCI Datasets

Datasets The bound of |R| The pairs of dependent attributes (Ai, Aj, R)
Auto Mpg > 0.800 (1, 2, −0.805), (1, 4, −0.832), (2, 3, 0.897), (2, 4, 0.933), (3, 40.865)
Blood Transfusion > 0.600 (2, 3, 1.000), (2, 4, 0.635), (3, 4, 0.635)
Breast Cancer W-D > 0.970 (1, 3, 0.998), (1, 4, 0.987), (3, 4, 0.987), (3, 23, 0.970), (11, 13, 0.973),

(21, 23, 0.994), (21, 24, 0.984), (23, 24, 0.978)
Contraceptive Method > 0.500 (1, 2, 0.540)
Ecoli > 0.800 (4, 5, 0.829)
Glass Identification > 0.500 (1, 5, −0.542), (1, 7, 0.810)
Image Segment > 0.900 (10, 11, 0.998), (10, 12, 0.996), (10, 13, 0.996), (10, 17, 0.997),

(11, 12, 0.991), (11, 13, 0.994), (11, 17, 0.992), (12, 13, 0.985),
(12, 17, 0.999), (13, 17, 0.990)

Ionosphere > 0.680 (9, 15, 0.748), (11, 13, 0.826), (11, 19, 0.688), (13, 15, 0.699), (13, 19, 0.741),
(15, 17, 0.685), (29, 31, 0.692)

Iris > 0.800 (1, 3, 0.872), (1, 4, 0.818), (3, 4, 0.963)
Libras Movement > 0.995 (1, 3, 1.000), (1, 5, 0.999), (1, 7, 0.996), (2, 4, 1.000), (2, 6, 0.999),

(2, 8, 0.996), (3, 5, 1.000), (3, 7, 0.998), (4, 6, 1.000), (4, 8, 0.998),
(5, 7, 0.999), (6, 8, 0.999), (7, 9, 0.997), (8, 10, 0.997), (10, 12, 0.996)

Magic Telescope > 0.750 (1, 2, 0.787), (3, 4, −0.847), (3, 5, −0.801), (4, 5, 0.975)
Musk Version 1 > 0.980 (7, 82, 0.990), (7, 86, 0.988), (7, 119, 0.982), (9, 52, 0.983), (30, 121, 0.990),

(30, 128, 0.989), (41, 71, 0.983), (41, 101, 0.984), (57, 100, 0.991),
(57, 100, 0.991), (57, 119, 0.987), (100, 143, 0.988)

Page Blocks > 0.800 (3, 8, 0.866), (3, 9, 0.945), (3, 10, 0.802), (8, 9, 0.932), (9, 10, 0.814)
Parkinsons >0.980 (4, 6, 0.990), (4, 8, 0.990), (6, 8, 1.000), (9, 10, 0.987), (9, 11, 0.988),

(9, 12, 0.983), (9, 14, 0.988), (11, 14, 1.000)
Sonar > 0.875 (9, 10, 0.877), (15, 16, 0.913), (16, 17, 0.899), (17, 18, 0.926), (18, 19, 0.875),

(20, 21, 0.905), (36, 37, 0.886), (48, 49, 0.895)
Vehicle Silhouettes > 0.800 (1, 2, 0.950), (4, 8, −0.805), (7, 8, 0.894)
Vowel Recognition > 0.800 (1, 3, −0.806), (1, 4, −0.848), (1, 8, 0.856), (3, 6, −0.828), (3, 8, −0.941),

(4, 9, −0.807), (5, 8, −0.815), (6, 10, −0.821)
Wine > 0.600 (1, 13, 0.644), (6, 7, 0.865), (6, 9, 0.612), (6, 12, 0.700), (7, 9, 0.653), (7, 12, 0.787)
Wine Quality-Red > 0.650 (1, 3, 0.672), (1, 8, 0.668), (1, 9, −0.683), (6, 7, 0.668)
Wine Quality-White > 0.800 (4, 8, 0.839), (8, 11, −0.826)

the Bayesian classifier (NNBC) that considers the dependence
among the attributes can gain a better classification perfor-
mance; conversely, the classifiers (NNB, FNB, and FNBROT)
based on the independence assumption usually achieve inferior
performances in classification accuracy.

A. Joint p.d.f. Estimation Is Optimal in L2 Sense When the
Attributes Are Dependent

As mentioned above, the joint p.d.f. estimation in NNBC
removes the fundamental assumption of independence among
the attributes, but also obtains a better estimation of p.d.f.
when the attributes are dependent. In order to explain the
advantages of joint p.d.f. estimation, we give the following
theoretical theorem. For simplicity, we consider the case of
2-D normal p.d.f. estimation.

Theorem 1: Given the N observed data �x1, �x2, . . . , �xN

obeying the joint p.d.f. f
(�x), where

�xi = {xi1, xi2} (1 ≤ i ≤ N)

and

f
(�x) = f (x1, x2)

=
1

2π
√

1 − ρ2
exp

[
−x2

1 + x2
1 − 2ρx1x2

2
(
1 − ρ2

)
]

(ρ �= 0). (41)

Then, as N → ∞
∫ ∫ [

fJ
(�x)− f

(�x)]2
d�x <

∫ ∫ [
fM
(�x)− f

(�x)]2
d�x

(42)

where fJ
(�x) and fM

(�x) are the estimated p.d.f.s through the
joint and marginal p.d.f. estimations, respectively

fJ
(�x) =

1

N

N∑
i=1

K

(
x1 − xi1

h
,
x2 − xi2

h

)
(43)

and

fM
(�x) =

1

N

N∑
i=1

K

(
x1 − xi1

h

)
1

N

N∑
i=1

K

(
x2 − xi2

h

)
. (44)

Proof: Let

� =
∫ ∫ [

fJ
(�x)− f

(�x)]2
d�x −

∫ ∫ [
fM
(�x)− f

(�x)]2
d�x

= A − B − 2C + 2D (45)

where A =
∫ ∫

f 2
J

(�x) d�x, B =
∫ ∫

f 2
M

(�x) d�x, C =∫ ∫
fJ
(�x) f

(�x) d�x, and D =
∫ ∫

fM
(�x) f

(�x) d�x.
Next, based on the given f

(�x), fJ
(�x), and fM

(�x) in (41),
(43), and (44), we derive the expressions for A [in (46)], B
[in (47)], C [in (48)], and D [in (49)], respectively
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1

4πNh2

+
1
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1

4πNh2
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(
1

N

)
(46)
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Fig. 1. Data distributions and joint p.d.f.s of the dependent attributes in Libras Movement dataset. (a) Data distribution of A1 and A3. (b) Data distribution
of A19 and A21. (c) Data distribution of A88 and A90. (d) f (A1, A3) with joint p.d.f. estimation. (e) f (A19, A21) with joint p.d.f. estimation. (f) f (A88, A90)
with joint p.d.f. estimation. (g) f (A1, A3) with marginal p.d.f. estimation. (h) f (A19, A21) with marginal p.d.f. estimation. (i) f (A88, A90) with marginal p.d.f.
estimation.

B =
1

4πN2h2
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1
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provided N → ∞.
Let

t = min
i=1,2,··· ,N

exp

(
− x2

i1 + x2
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then (50) can be rewritten as follows:

� <
1

4πNh2
−

√
1 − ρ2t

π
(
1 − ρ2 + h2

) . (52)

From (24), we know that h = O
[(

1
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) 1
6
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. Thus, as N → ∞
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In conclusion, when N → ∞, we can get � < 0, that is∫ ∫ [
fJ
(�x)− f

(�x)]2
d�x <

∫ ∫ [
fM
(�x)− f

(�x)]2
d�x.

This completes the proof of the theorem.
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Fig. 2. Data distributions and joint p.d.f.s of the independent attributes in Haberman’s Survival dataset. (a) Data distribution of A1 and A2. (b) Data distribution
of A1 and A3. (c) Data distribution of A2 and A3. (d) f (A1, A2) with joint p.d.f. estimation. (e) f (A1, A3) with joint p.d.f. estimation. (f) f (A2, A3) with joint
p.d.f. estimation. (g) f (A1, A2) with marginal p.d.f. estimation. (h) f (A1, A3) with marginal p.d.f. estimation. (i) f (A2, A3) with marginal p.d.f. estimation.

The theorem 1 reveals that when the dependence existed
among the attributes, the joint p.d.f. estimation will make the
estimated p.d.f. closer to the true p.d.f..

B. Relationship Between the Classification Accuracy and De-
pendence Among the Attributes

The previous experiments reflect that our proposed NNBC
can obtain considerably better classification accuracy in com-
parison with the other Bayesian classifiers, i.e., NNB, FNB,
and FNBROT. The main reason is that NNBC indeed relaxes
the independence among attributes and acquires a more ac-
curate estimation of the joint class-conditional p.d.f. Now, we
investigate the relationship between the classification accuracy
and dependence among the attributes. From the experimental
results in Tables I and VI, we extract that on 20 UCI
datasets NNBC obtains better classification accuracies than
NNB, FNB, and FNBROT. In order to evaluate the impacts
of dependence on the classification accuracy, we compute
the dependent degrees R between any two attributes Ai and
Aj . The details of dependence on these 20 UCI datasets are
summarized in Table IX in which R is calculated according
to the correlation coefficient [47].

From Table IX, we can see that all 20 UCI datasets contain
pairs of attributes with strong dependence. For example, in
Breast Cancer W-D, Image Segment, Libras Movement, Musk
Version 1, and Parkinsons datasets, the numbers of pairs
of attributes with strong dependence are 8 (|R| > 0.970),
10 (|R| > 0.900), 15 (|R| > 0.995), 11 (|R| > 0.980),
and 8 (|R| > 0.980), respectively. We select three pairs of
strongly dependent attributes in Libras Movement dataset, i.e.,
(A1, A3), (A19, A21), (A88, A90). The dependent degrees of
these three pairs of attributes are 1.000, 0.992, and 0.991
respectively. Such dependence can be easily found from Fig.
1(a)–(c). Meanwhile, in order to further emphasize the op-
timality of joint p.d.f. estimation in Theorem 1, we give a
comparison between the joint p.d.f. estimated by (43) and
product of marginal p.d.f.s estimated by (44). We, respectively,
estimate the joint p.d.f.s of dependent attributes pairs (A1, A3),
(A19, A22), and (A88, A90) with the joint p.d.f. estimation [see
Fig. 1(d)–(f)] and the product of marginal p.d.f. estimations
[see Fig. 1(g)–(i)]. Although the true joint p.d.f.s of (A1, A3),
(A19, A22), and (A88, A90) are unknown, we still get that the
estimated results in Fig. 1(d)–(f) are better than the ones in
Fig. 1(g)–(i). The characteristics of marginal p.d.f. can be
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Fig. 3. Data distributions and joint p.d.f.s of the independent attributes in Heart Disease dataset. (a) Data distribution of A1 and A8. (b) Data distribution of
A4 and A5. (c) Data distribution of A5 and A8. (d) f (A1, A8) with joint p.d.f. estimation. (e) f (A4, A5) with joint p.d.f. estimation. (f) f (A5, A8) with joint
p.d.f. estimation. (g) f (A1, A8) with marginal p.d.f. estimation. (h) f (A4, A5) with marginal p.d.f. estimation. (i) f (A5, A8) with marginal p.d.f. estimation.

reflected in the joint p.d.f. estimated with (43) but the joint
p.d.f. estimated with (44) cannot include these characteristics.
For example, the marginal p.d.f. of attribute A1 (or A2) in Fig.
1(a) has two local maxima. Correspondingly, the joint p.d.f. of
A1 (or A2) in Fig. 1(d) also has two local maxima which can
be found in the contour of joint p.d.f.. However, the joint p.d.f.
in Fig. 1(g) has only one local maximum. The same situation
also exists in Fig. 1(b)–(h). This shows (43) can give a more
accurate joint p.d.f. estimation for the dependent attributes of
Libras Movement dataset in which NNBC obtains the better
classification accuracy.

Figs. 2–4 also illustrate the estimated joint p.d.f.s for
attribute pairs with weak dependence. Since the true joint
p.d.f. is unknown, we compare the estimated performances of
different methods by analyzing the characteristics of marginal
p.d.f.s. For example, the two local maxima of marginal p.d.f.
of attribute A2 in Fig. 2(a) are not reflected in Fig. 2(d).
Unsmooth contours in Fig. 3(e) and (f) are inconsistent with
the marginal p.d.f.s without inflection points Fig. 3(b) and
(c). Furthermore the marginal p.d.f. of attribute A5 in Fig.
4(b) is closer to the projection of joint p.d.f. in Fig. 4(h).

These experimental observations indicate that, in comparison
with the estimation for product of marginal p.d.f.s, the joint
p.d.f. estimation can not obtain a more accurate joint p.d.f.
on Haberman’s Survival, Heart Disease, and Pima Indian
Diabetes.

From the above-mentioned analyses, we can extract
that the dependence among attributes indeed affects the
classification accuracy of NBC. When the conditional
attributes are strongly dependent, NNBC will obtain much
better classification accuracy by considering the dependence
with the joint p.d.f. estimation.

VI. Conclusion and Future Works

In this paper, we proposed an NNBC which removes
the independence assumption and estimates a more accurate
class-conditional p.d.f. The main works of our paper can be
concluded as follows: 1) the joint p.d.f. estimation was suc-
cessfully applied to approximating the class-conditional p.d.f.
in naive Bayesian, which effectively removed the traditional
independence assumption and took the dependence among
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Fig. 4. Data distributions and joint p.d.f.s of the independent attributes in Pima Indian Diabetes dataset. (a) Data distribution of A2 and A3. (b) Data distribution
of A3 and A5. (c) Data distribution of A6 and A7. (d) f (A2, A3) with joint p.d.f. estimation. (e) f (A3, A5) with joint p.d.f. estimation. (f) f (A6, A7) with joint
p.d.f. estimation. (g) f (A2, A3) with marginal p.d.f. estimation. (h) f (A3, A5) with marginal p.d.f. estimation. (i) f (A6, A7) with marginal p.d.f. estimation.

continuous attributes into account; 2) the optimality of joint
p.d.f. estimation in the L2 sense was justified when the depen-
dence existed among the continuous attributes; 3) a quick and
simple bandwidth selection method for joint p.d.f. estimation
based on the multidimensional Gaussian kernel function was
derived, which can help the NNBC obtain higher classification
accuracy without significantly increasing the time complexity;
and 4) a detailed experimental comparison was conducted
and the comparative results showed that NNBC obtained the
statistically best classification performances among all den-
sity estimation-based Bayesian methods. Meanwhile, NNBC
achieved a relatively favorable classification accuracy with the
shortest time consumption in comparison with the other so-
phisticated and complex classification methods, i.e., boosting-
based classification methods, PCA-based NBCs, and SVM.

Our scheduled further development in this research topic
locates in the following four aspects. First, the compara-
tive analysis between Bayesian network-based classifiers and
NNBC will be conducted. Secondly, in order to verify whether
the sophisticated bandwidth selection schemes, e.g., bootstrap,
least-squares cross-validation, and biased cross-validation, can

further lead to the improvement of classification accuracy
of NNBC, we will observe the impacts of different band-
width selection methods on the classification performance
in multivariate domains. Thirdly, a generalization bound is
drawn from the continuous-time Markov chains recently in
[52] which deals with the empirical risk minimization-based
learning processes when the assumption of independently
and identically distributed samples is violated. Enlightened
by the deviation inequality for time-dependent samples in a
countable state space, our future work will include finding and
formulating the locally and globally optimal conditions based
on the empirical risk minimization for our proposed NNBC.
Finally, several latest developments on the projection of sub-
space, e.g., exponential family PCA [26], diagonal covariance
Bayesian PCA [27], geometric mean for subspace selection
[42], manifold elastic net for sparse dimension reduction [53],
double shrinkage for sparse learning [35], and NeNMF for
non-negative matrix factorization [12], [13], etc., promise to
effectively improve the performances of classification meth-
ods in different applications. Our preliminarily experimental
results in Table III indicate that the projection strategy indeed
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helps NNB and FNB improve classification accuracy. One of
our future works will be exploring the feasibility of applying
the subspace projection learning to the NNBC aiming to
further improve the performance of NNBC.
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