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Abstract—We investigate essential relationships between gen-
eralization capabilities and fuzziness of fuzzy classifiers (viz., the
classifiers whose outputs are vectors of membership grades of a
pattern to the individual classes). The study makes a claim and
offers sound evidence behind the observation that higher fuzzi-
ness of a fuzzy classifier may imply better generalization aspects
of the classifier, especially for classification data exhibiting com-
plex boundaries. This observation is not intuitive with a commonly
accepted position in “traditional” pattern recognition. The rela-
tionship that obeys the conditional maximum entropy principle is
experimentally confirmed. Furthermore, the relationship can be
explained by the fact that samples located close to classification
boundaries are more difficult to be correctly classified than the
samples positioned far from the boundaries. This relationship is
expected to provide some guidelines as to the improvement of gen-
eralization aspects of fuzzy classifiers.

Index Terms—Classification, decision boundary, fuzziness, fuzzy
classifier, generalization.

I. INTRODUCTION

C LASSIFICATION refers to a task of assigning objects to
one of several predefined class labels and is one of the

most pervasive problems in data mining and pattern recogni-
tion. The input to the classification scheme is a certain object
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(pattern) to be labeled, and each object is typically described
by a set of attributes. More formally, the classification prob-
lem is about determining (estimating) a target function F that
maps each object to a class label y. Then, finding this estimate
is completed through a process of learning. Learning is usually
completed by minimizing some error between F and its estimate
f (classifier) on training samples.Wu et al. [1] list the top-ten
learning algorithms in data mining.

For the evaluation of a learning algorithm, generalization is
the most important index because the ultimate goal of learning
is to reduce the testing error on unseen samples and produce an
accurate prediction. In statistical learning theory, generalization
originally refers to the model’s ability to well generalize the
results obtained from the training set to a set of unseen sam-
ples drawn from the distribution same as that of the training
set [2]. Following this way, in the literature, one can highlight
many studies on the generalization abilities of classifiers being
expressed from different points of view.

1) Generating training/testing sample set: Focusing on the
relation between the training and testing sets, much re-
search investigates a way how to generate training and
testing samples so that they directly affect the evaluation
output of generalization performance. This type of stud-
ies includes resampling methods [3]–[6], leave-one-out
cross-validation [7]–[9] approaches to assuming a specific
distribution of testing samples and correspondingly devel-
oping generalization error formulation [10]–[14], online
learning models on samples coming from a dependent
source of data [15], etc.

2) Estimating error bounds: From references, one can find
a number of theoretical studies on the estimation of gen-
eralization error bounds, for example, the discussion on
the performance bounds to overcome overfitting problems
[16], structural risk minimization to link the generaliza-
tion to the error on training samples and the classifier
complexity [17], [18], necessary and sufficient conditions
on the number of required training examples [19], the the-
oretical analysis for classifier ensemble bounds [20], [21],
the biased regularization approach to computing the gen-
eralization bound [22], and the bounds on the false and
truth positive rates based on a VC-style analysis [23].

3) Relating diversity to generalization: The relationship be-
tween generalization ability and diversity of learning
strategies in coevolutionary learning systems is investi-
gated in [25] and [26]. The diversity in the population
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is shown to have the potential in improving the gener-
alization performance of coevolutionary learning if the
coevolved strategies can be combined, for example, the
diversity measure near training samples based on the out-
putted sensitivity of its member neural networks [24]
and the random initializations of network architecture’s
impact on the generalization ability [27]. This random-
ness can be understood as a manifestation of diversity of
the neural network structure.

Most of the above-mentioned studies on generalization focus
on some specific types of classifiers such as neural networks and
support vector machines (SVMs). In contrast, this paper offers
a study on generalization aspects from a different angle, which
does not limit us to a certain types of classifiers but focus on any
classifier with fuzzy outputs. We study the issue of measuring
and improving the generalization ability by discovering the re-
lationship between the generalization and the uncertainty of the
outputs of the classifier. The nature of this uncertainty, i.e., fuzzi-
ness, is quantified by fuzzy entropy of the output vectors, and
then, it is related to the generalization ability for different types
of classifiers with fuzzy vector output (see, e.g., [28]–[32]).

In the literature, except [33] and [34], we have not found other
studies on the generalization considered from the perspective of
fuzziness of classifier outputs. The works in [33] and [34], how-
ever, do not analyze the relationship between the generalization
and the fuzziness of the classifier outputs, and their proposed
methods are limited only to rule-based systems.

In this paper, for any classifier with fuzzy vector outputs
(fuzzy classifier), we attempt to associate fuzziness with the
generalization performance of a classifier. Our idea can be ex-
plained as follows. Suppose that there are two trained classifiers:
Classifier A and Classifier B. If we process training samples by
them, two groups of output vectors can be obtained, respec-
tively, from A and B, where each element in the output vector
indicates the membership with which the input sample belongs
to the corresponding class. Consider a case that the outputted
result of Classifier A is the same as that of B for each sample
using the maximum membership grade, i.e., the two classifiers
cannot be distinguished by their training accuracies, but the
fuzziness of classifier A’s output vector is different from that of
classifier B’s for samples. Assume that classifier A has lower
fuzziness level than classifier B. The question is: Which clas-
sifier will we select? Intuitively, we prefer the classifier having
lower fuzziness since this classifier contains less uncertainty and
can classify samples more profoundly. In contrast with this opin-
ion, we show that this intuitive view is not always true. For some
types of classification problems, the classifier with larger level
of fuzziness, i.e., classifier B, may achieve better generalization
performance. Therefore, the answer to the previous question can
vary. For some types of classification problems, when the classi-
fiers have the same or similar training accuracies, we would like
to select one or several with largest fuzziness. Furthermore, this
idea can be explained via boundary samples that are considered
to have a key impact on the classifier performance [36], [37].
This is essentially consistent with the idea of AdaBoost [38],
which assigns heavier weights to the training samples that are
hard to train.

Our main contributions in this paper include the following.
1) The establishment of statistical relationship between

boundary samples and fuzziness of the samples’ outputs.
It is demonstrated that boundary samples’ outputs given
by a classifier have higher fuzziness.

2) The first attempt to investigate the relationship between
classifier’s fuzziness and the generalization ability. For
some certain types of problems, when the classifiers ob-
tain similar training accuracies, higher fuzziness implies
higher generalization ability.

3) The finding that samples with higher fuzziness exhibit
higher risk of misclassification, which leads to a divide-
and-conquer handling strategy of classification.

This paper is organized as follows. Section II describes the
classification boundaries and their side effect on classification
performance. Section III introduces the fuzziness of a classifier
and analyzes the relationship between fuzziness and boundary
samples. Section IV discusses the relationship between gener-
alization and fuzziness of a classifier and provides the exper-
imental verifications. Section V gives conclusions and further
discussions of this research.

II. CLASSIFICATION BOUNDARY

The theme of this study is to investigate the relationship be-
tween generalization of a classifier and fuzziness of the classi-
fier’s output. One way to investigate this relation is the analysis
on boundary points including their fuzziness and their classi-
fication performance. This section will discuss the classifier’s
generalization from viewpoint of boundary points and their side
effect on classification performance.

A. Boundary and Its Estimation Given by a Leaned Classifier

Generally, a hypersurface in n-dimensional space can par-
tition the input space into disjoint subsets called decision re-
gions, and each region has points (samples) belonging to the
same class. Decision boundary usually refers to the hypersur-
face between decision regions with different classes. In many
real classification problems, the real decision boundary objec-
tively exists but is usually unknown. One purpose of learning
for the classification problem is to find an approximation of the
real boundary such that the difference between the real bound-
ary and its estimation is as small as possible. The difference
between the real boundary and its estimated boundary is called
approximation error, and a training algorithm is required to find
the estimated boundary. An ideal algorithm tries to make the
error equal to zero, but practically it is impossible. The esti-
mated boundary is usually acquired based on a classifier, which
is trained from a set of training samples according to a training
algorithm.

Theoretically, the estimated boundary can be determined if
the classifier has been trained well. It means that we can obtain
the class label of each sample in our considered area if the clas-
sifier has been well trained. For some classifiers, the mechanism
to obtain the label of a sample is clear. In these cases, the esti-
mated boundary is explicitly expressed by a certain formula. A
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simple illustration to indicate these cases is the linear boundary
of decision.

Consider a binary classification task with y = ±1 labels.
When the training samples are linearly separable, we can set
the parameters of a linear classifier so that all the training
samples are classified correctly. Let w denote a vector orthogo-
nal to the decision boundary, and b denote a scalar offset term;
then, we can write the decision boundary as

wT x + b = 0. (1)

A typical case of (1) is the classifier given by SVMs for
linearly separable samples. It is easy to judge whether a sample
is near to or far from the boundary. The distance between a
sample and the boundary is computed as

∣
∣wT x + b

∣
∣. A certain

threshold value imposed on the distance can be used to judge
whether a sample is near to or far from the boundary.

Some classifiers do not have a clear mechanism to obtain
the class label for each sample. In other words, we can use the
trained classifier to calculate the label for each sample, but the
pertinent formula cannot be provided explicitly. One example
of this case is the Bayes decision boundary [38]. Given a sam-
ple x, a prior probability P (yi) of class, and the conditional
probability p(x|yi), we convert the prior probability to the pos-
teriori probabilityP (yi |x) through Bayes’ theorem. The Bayes’
decision rule reads as

{
x ∈ class y1 , if P (y1)p(x|y1) > P (y2)p(x|y2)

x ∈ class y2 , if P (y1)p(x|y1) < P (y2)p(x|y2).
(2)

This decision boundary for a two-class problem can
be determined by the point locus {x|P (y1)p(x|y1) −
P (y2)p(x|y2) = 0}, which is difficult to be explicitly expressed
as a formula except for few certain special data distributions.

Another example of this situation is the fuzzy K-nearest
neighbor (K-NN) classifier [31], which outputs a vector of class
membership. Each component of the vector is a number in [0,1],
representing a membership of the sample belonging to the cor-
responding class. If the components are equal to either 0 or 1,
then it degrades to the traditional K-NN. Fuzzy K-NN acquires
the membership of a sample x by the formula

μi(x) =

∑K
j=1 μij ‖x − xj‖−2(m−1)

∑K
j=1 ‖x − xj‖−2(m−1) (3)

where (μ1(x), μ2(x), . . . , μc(x))T is a membership vector
(and the other symbols remain to be specified in next sub-
section). Its decision boundary is the locus {x|μ∗

1(x) =
μ∗

2(x)}, where {μ∗
1(x), μ∗

2(x), . . . , μ∗
c(x)} is a permutation of

{μ1(x), μ2(x), . . . , μc(x)} in a decreasing order. Obviously, it
is impossible to explicitly express the classification boundary.

These two examples indicate that it is difficult to judge
whether a sample is near to or far from the boundary when
the boundary cannot be explicitly expressed as a formula.

Due to the difference between classifier design objectives,
the estimated boundary is dependent strongly on the selection
of classifier for the same training set. The difference between
the estimated boundary and the real boundary is considered as
a key index to evaluate the generalization performance of a

classifier. From references (e.g., [39]), one can find the study on
the classifier design according to the estimated boundary. The
good estimated decision boundary could give an insight into the
high-performance classifier design, which cannot be supplied
by accuracy only. It can be applied to select proper classifiers,
to discover possible overfitting, and to calculate the similarity
among the models generated by different classifiers (see [39]).

For a well-trained classifier with high performance, it is rea-
sonable to believe that the estimated boundary has sufficiently
approximated the real boundary, but since the real boundary is
unknown, it is hard to judge which one is better based only
on estimated boundaries. Therefore, there is a need to find a
new index to measure the generalization. Perhaps, the ability of
a classifier correctly classifying boundary samples is a crucial
index.

B. Two Types of Methods for Training a Classifier

Usually, there are two types of classifiers: one can explicitly
give the analytic formula of the estimated decision boundary,
while the other cannot but provide the approximation by locus
of some points. SVM and fuzzy K-NN are two typical represen-
tatives of the two types of classifiers, respectively.

SVMs select a boundary according to the maximization of
margin, which is based on the statistical learning theory [40].
SVM supposes an implicit function ϕ mapping the data from
the input space X into a high-dimensional feature space F .
The mapping is associated with a kernel function K(xi ,xj ),
which satisfies K(xi ,xj ) = 〈ϕ(xi), ϕ(xj )〉, where xi and xj ,
respectively, denote the ith and jth training samples, and 〈·, ·〉
denotes the inner product. The decision boundary is explicitly
given by

f(x) = sgn

(
N∑

i=1

αiyiK(x,xi) + b

)

(4)

where αi and b are unknown parameters that are determined
by solving a quadratic programming. From [41], one can find
several open SVM tools such as LIBSVM [42]. For a more
detailed description of SVM, see [40].

The fuzzy K-NN classifier [31] considers fuzzy classification
problems and assigns each unseen sample x with a member-
ship vector (grades), which can be determined by using the
neighbors’ class memberships and computing the distances
between x and its K-NNs. For every training sample, fuzzy
K-NN assumes that the class information has been given by
the memberships of the sample belonging to the predefined
classes. Let (μ1(x), μ2(x), . . . , μc(x))T denote the output vec-
tor which fuzzy K-NN outputs for an unseen sample x, where
μi(x) ∈ [0, 1] is the membership of x belonging to the ith class.
μi(x) is given by formula (3), where xj ∈ X is a labeled train-
ing sample that falls in the set of K-NNs of the unseen sample x,
(μij )j=1,2,···,K ∈ [0, 1] is the known class membership of xj to
the ith class yi , ‖x − xj‖ is the distance between x and xj , and
m is a parameter to adjust the weights that indicate neighbors’
contribution to the membership value. As the parameter m is
increasing, the neighbors are more evenly weighted, and their
relative distances from the sample being classified have less ef-
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Fig. 1. Simple two class data and its boundary.

fect. In the experiments in Sections III and IV, without otherwise
specified, we set m = 2 and train 49 fuzzy K-NN classifiers by
varying the value of K from 2 to 50 with a step size of 1. The
impact of different values of m on the classifier performance
will also be discussed in Section IV.

It is worth noted that if we only know the class label of each
training sample, i.e., μij is equal to either 0 or 1, then formula (3)
will degenerate and can be considered as the weighted summa-
tion of samples in the K-NNs that belong to the ith class, where
the weight is the inverse of the distance between the sample and
its neighbors.

In this paper, we focus on the second type of classifiers con-
sidered above.

C. Side Effect of Boundary and Experimental Verification

It is experimentally observed that for classification problems
with continuous attributes in supervised learning, a sample near
to boundary usually has the statistical testing error higher than
a sample positioned far from boundary. Here, the boundary
refers originally to real one, which is replaced by an estimated
boundary encountered in real-world problems. We call this phe-
nomenon a side effect of boundary. The classifier we use in this
study to estimate the boundary is fuzzy K-NN. As mentioned
in Section II-A, judging whether a sample is located near to or
far from the boundary is more difficult for fuzzy K-NN than
for other classifiers, which have an explicit expression of the
boundary.

The following simple simulation confirms the side effect phe-
nomenon for a known boundary. Consider a two-class prob-
lem in the xy plane, and suppose that the real boundary is
given by the function y = cos(2x) via the following rule: A
sample (x, y) is considered as positive if y > cos(2x) and
negative if y < cos(2x). The boundary is shown in Fig. 1.
Uniformly, we select 200 samples from the rectangular area
{(x, y)| − π < x < π, −2 < y < 2} to form a sample set from
which we randomly select 70% as the training set. Since the
real boundary is known, we artificially split the entire set
of all samples as two categories: samples near to boundary
{(x, y)||y − cos(2x)| < 0.5} and sample far from boundary
{(x, y)||y − cos(2x)| > 0.5}. Using fuzzy K-NN (K = 5) to

Fig. 2. Relationship between the real boundary and the classification error.

TABLE I
DATASETS USED IN EXPERIMENTS

Databases N s a m p le N c a t N c o n N c la s s

Banknote 1372 0 4 2
Blood 748 0 4 2
Breast Cancer 263 9 0 2
Cleverland Heart 297 7 6 2
Diabetes 768 8 0 2
Flare Solar 144 9 0 2
German 1000 7 13 2
Glass 214 10 0 6
Heart 270 7 6 2
Housing 506 1 12 2
Ionosphere 351 0 34 2
New Thyroid 215 0 5 3
Parkinsons 195 0 22 2
Seeds 210 7 3 3
Sonar 208 0 60 2
Vowel 990 0 10 11
Wall-Following 5456 0 2 4
Wdbc 569 0 9 2
Wholesale 440 0 7 2
Yeast 1484 0 8 10

Note: N s a m p le —Number of samples; N c a t —Number of
categorical features; N c o n —Number of continuous features;
N c la s s —Number of classes.

train a classifier and then apply it to classify the samples near to
and far from the boundary, respectively, we have the experimen-
tal result that the classification error rate for samples near to the
boundary is 20%, while the error rate for samples far from the
boundary is zero. Fig. 2 clearly shows the experimental result.

More numerical experiments are conducted to confirm this
side effect phenomenon for the fuzzy K-NN classifier on a num-
ber of selected datasets that are obtained from UCI Machine
Learning Repository [43] and summarized in Table I.

Basically, the experiments have three steps: 1) training the
classifiers and estimating boundaries; 2) splitting all samples
as two categories, i.e., samples near to or far from boundaries;
and 3) computing the classification error rates, respectively, for
the two categories. A difficulty for the three steps is how to
estimate the boundary and then judge a sample near to or far
from the boundary for fuzzy K-NN. We have a simple scheme
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TABLE II
EXPERIMENTAL RESULTS FOR THE FUZZY K-NN CLASSIFIER

Databases NMSNTB (Err ) NMSFFB (Err ) Threshold

Banknote 0 (0.0000) 0 (0.0000) 1.0000
Blood 38 (0.3393) 21 (0.1858) 0.8499
Breast Cancer 12 (0.3077) 8 (0.2000) 0.6340
Cleverland Heart 15 (0.3750) 3 (0.0600) 0.6821
Diabetes 45 (0.3913) 17 (0.1466) 0.6238
Flare Solar 8 (0.3636) 5 (0.2273) 0.3115
German 44 (0.2933) 26 (0.1733) 0.6118
Glass 1 (0.0312) 0 (0.0000) 1.6667
Heart 7 (0.1842) 4 (0.0930) 0.7355
Housing 23 (0.3026) 8 (0.1053) 0.8299
Ionosphere 10 (0.1887) 2 (0.0377) 1.0000
New Thyroid 4 (0.1250) 0 (0.0000) 1.3333
Parkinsons 4 (0.1379) 1 (0.0333) 1.0000
Seeds 6 (0.1935) 0 (0.0000) 1.3333
Sonar 9 (0.2903) 1 (0.0312) 0.8425
Vowel 9 (0.0608) 1 (0.0067) 1.7618
Wall-Following 19 (0.0232) 3 (0.0037) 1.5000
Wdbc 14 (0.1647) 2 (0.0233) 1.0000
Wholesale 8 (0.1212) 2 (0.0303) 1.0000
Yeast 118 (0.5291) 75 (0.3363) 1.6000

Note: NMSNTB —Number of samples near to boundary; Err—Error rate;
NMSFFB —Number of samples far from boundary.

to overcome this difficulty for fuzzy K-NN without an explicit
expression of the estimated boundary. Since the output of fuzzy
K-NN for a sample is a vector (μ1 , μ2 , . . . , μn )T in which the
component is a number in [0,1] representing the membership of
the sample belonging to the corresponding class, we estimate its
boundary as {x|μ1(x) = μ2(x) = 0.5} for a two-class problem
and define the distance between the boundary and a sample
with output (μ1 , μ2)T as (|μ1 − 0.5| + |μ2 − 0.5|). This way, a
threshold can also be set to judge a sample near to or far from
the boundary. Experimental results are listed in Table II, from
which one can see that the classification error rate for samples
near to boundaries is much higher than that for samples located
far from boundaries.

III. FUZZINESS OF CLASSIFIERS

The final aim of this study is to make clear the statistical
relationship between fuzziness of a classifier and generalization
of the classifier. This section first shows an investigation to the
classifier’s fuzziness and then discusses the fuzziness’s impact
on misclassification.

A. Fuzziness of Fuzzy Set

In [44], Zadeh first mentioned the term “fuzziness” in con-
junction with the proposed concept of fuzzy set. The term refers
to the imprecision existing in ill-defined events, which cannot
be described by sharply defined collection of points. He also
generalized a probability measure of an event to fuzzy event
and suggested using entropy in information theory to interpret
the uncertainty associated with a fuzzy event. Luca and Termini
[45] considered fuzziness as the indefiniteness connected with
the situations described by fuzzy sets and defined a quantitative
measure of fuzziness by a nonprobabilistic entropy that did not
use any probabilistic concepts. For the first time, they clearly

proposed three properties that fuzziness measure should satisfy,
and these properties indicate that the degree of fuzziness should
attain its maximum and minimum when all the memberships
are equal to each other and equal to either 0 or 1, respectively.
In [46], Luca and Termini extended their definition of entropy
to measure the fuzziness of L-fuzzy sets, where the entropy was
no longer a numerical quantity but a column matrix or a vector.
In the above-mentioned references, it seems that the term of
“fuzziness” is interchangeable with “ambiguity,” “uncertainty,”
“indefiniteness,” “imprecision,” etc., which may cause confu-
sion. Klir and Folger [47], [48] stated that vagueness or fuzzi-
ness is different from ambiguity and gave two cognitive uncer-
tainty measures. In general, vagueness or fuzziness is associated
with the difficulty of making sharp or precise distinctions in the
world. Ambiguity, on the other hand, is associated with one-
to-many relations, i.e., situations with two or more alternatives
such that the choice between them is left unspecified.

In this paper, we consider fuzziness as a type of cognitive
uncertainty which results from the uncertainty transition from
one linguistic term to another, where a linguistic term is a value
of linguistic variable. A linguistic variable is a word or a phrase,
which could take linguistic values. For example, temperature is
a linguistic variable that can take the linguistic terms/values, say
hot, cool, middle, or etc. Essentially, a linguistic term is a fuzzy
set defined on a certain universe of discourse (space).

A mapping from a space X → [0, 1] is called a fuzzy set and
all fuzzy set on X is denoted by F (X). As stated in the literature
[49], the fuzziness of a fuzzy set can be measured by a function
E : F (X) → [0,+∞) that satisfies the following axioms.

1) E(μ) = 0 if and only if μ is a crisp set.
2) E(μ) attains its maximum value if and only if μ(x) =

0.5 ∀x ∈ X .
3) If μ ≤S σ, then E(μ) ≥ E(σ).
4) E(μ) = E(μ′), where μ′(x) = 1 − μ(x) for ∀x ∈ X .
5) E(μ ∪ σ) + E(μ ∩ σ) = E(μ) + E(σ).
Among the third axiom, the sharpened order ≤S is defined as

[45]

μ ≤S σ ⇔ min(0.5, μ(x)) ≥ min(0.5, σ(x))

& max(0.5, μ(x)) ≤ max(0.5, σ(x)). (5)

.
Definition 3.1: Let B = {μ1 , μ2 , . . . , μn} be a fuzzy set.

According to [45], the fuzziness of B can be defined as

E(B) = − 1
n

n∑

i=1

(μi log μi + (1 − μi) log(1 − μi)). (6)

It is easy to verify that formula (6) indeed satisfies axioms
1–5. The fuzziness of a fuzzy set defined by (6) attains its
minimum when every element absolutely belongs to the fuzzy
set or absolutely not, i.e., μi = 1 or μi = 0 for each i (1 ≤ i ≤
n); the fuzziness attains its maximum when the membership
degree of each element is equal to 0.5, i.e., μi = 0.5 for every
i = 1, 2, . . . , n.
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B. Fuzziness of Classifier

Given a set of training samples {xi}N
i=1 , a fuzzy partition of

these samples assigns the membership degrees of each sample
to the c classes. The partition can be described by a membership
matrix U = (μij )c×N , where μij = μi(xj ) denotes the mem-
bership of the jth sample xj belonging to the ith class. The
elements in the membership matrix have to obey the following
properties:

c∑

i=1

μij = 1, 0 <

N∑

j=1

μij < N, μij ∈ [0, 1]. (7)

Therefore, once the training procedure of a classifier com-
pletes, the membership matrix U upon the N training sam-
ples can be obtained. For the jth sample xj , the trained clas-
sifier will give an output vector represented as a fuzzy set
μj = (μ1j , μ2j , . . . , μcj )T . Based on (6), the fuzziness of the
trained classifier on xj is given by

E(μj ) = −1
c

c∑

i=1

(μij log μij + (1 − μij ) log(1 − μij )). (8)

Furthermore, the fuzziness of the trained classifier can be given
as follows.

Definition 3.2: Let the membership matrix of a classifier on
the N training samples with c classes be U = (μij )c×N . The
fuzziness of the trained classifier is given by

E(U) = − 1
cN

c∑

i=1

N∑

j=1

(μij log μij + (1 − μij ) log(1 − μij )).

(9)
Equation (9) defines the fuzziness of a trained classifier that

has fuzzy vector output. It plays a central role in investigating the
classifier’s generalization. From the above definition, one can
view that the fuzziness of a trained classifier is actually defined
as the averaged fuzziness of the classifier’ outputs on all training
samples. In other words, it is the training fuzziness of the clas-
sifier. The most reasonable definition of a classifier’s fuzziness
should be the averaged fuzziness over the entire sample space in-
cluding training samples and unseen testing samples. However,
the fuzziness for unseen samples is generally unknown, and for
any supervised learning problem, there is a well-acknowledged
assumption, that is, the training samples have a distribution iden-
tical to the distribution of samples in the entire space. Therefore,
we use (9) as the definition of a classifier’s fuzziness.

C. Relationship Between Fuzziness and Misclassification

To observe the relationship between misclassified samples
and their fuzziness, Ripley’s synthetic dataset [50] is utilized
in the following experiment. There are 250 2-D samples in the
dataset. Moreover, the samples are generated from mixtures of
two Gaussian distributions. Fig. 3 visualizes the dataset.

The number of neighbors used in the fuzzy K-NN classifier,
i.e., the value of K in our experiment, ranges from 2 to 50
with a step size of 1. The experimental results are shown in
Fig. 4, where we report the averaged fuzziness over 1) the set

Fig. 3. Ripley’s synthetic dataset.

Fig. 4. Fuzziness of fuzzy K-NN produced for the Ripley’s synthetic dataset.

of correctly classified samples, 2) the set of all samples, and 3)
the set of misclassified samples. For the fuzzy K-NN classifier,
the values of fuzziness reported over misclassified samples are
significantly higher than the values reported for the correctly
classified samples.

To further verify the relationship between fuzziness and mis-
classification, more experiments are conducted on the 20 bench-
mark datasets taken from UCI Machine Learning Repository
[43]. Two illustrations are shown in Fig. 5, where one can still
see that the fuzziness on misclassified samples is much larger
than that on correctly classified samples, which once again ex-
perimentally confirms the mentioned relationship. One worth
noting point is that the mentioned relationship is not sensitive
to the classifier change. That is, the relationship still holds if the
classifier-training algorithm changes from one to another.

D. Relationship Between Fuzziness
and Classification Boundary

Furthermore, from the study on the relationship between
fuzziness and misclassification, it is found that samples with
higher fuzziness are near to the classification boundary, while
samples with lower fuzziness are relatively far from the clas-
sification boundary. The following experiment gives an illus-
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Fig. 5. Relationship between fuzziness and misclassification on the two benchmark datasets.

Fig. 6. Classification results of fuzzy K-NN with K = 20 upon the Ripley’s
synthetic dataset. (a) Misclassified samples and classification boundary. (b) Fifty
samples with highest values of fuzziness.

tration in which the fuzzy K-NN is still used as our classifier,
the dataset is the Ripley’s synthetic data given in Section III-C,
and the number of neighbors for fuzzy K-NN is fixed as 20.
The misclassified samples and the classification boundary are
demonstrated in Fig. 6(a). Fig. 6(b) shows the 50 samples with
highest value of fuzziness. It can be observed from Fig. 6 that

both the misclassified samples and the samples with the larger
fuzziness are all near to the classification boundary.

Furthermore, regarding the fuzzy K-NN classifier, Proposi-
tion 1 relates a sample’s fuzziness to the distance between the
sample and the classification boundary.

Proposition 1: For a two-class problem, let D1 be the dis-
tance between the sample x1 and the classification boundary,
while D2 be the distance between the sample x2 and boundary.
Moreover, μ and σ are the outputs of the classifier on x1 and
x2 , respectively. If D1 ≤ D2 , then the fuzziness of x1 is no less
than that of x2 , i.e., E(μ) ≥ E(σ).

Proof: Let the outputs of the trained classifier on x1 and x2
be μ = (μ1 , μ2)T and σ = (σ1 , σ2)T , respectively. According
to the distance metric defined in Section II-C, we have D1 =
|μ1 − 0.5| + |μ2 − 0.5| and D2 = |σ1 − 0.5| + |σ2 − 0.5|. The
value of D1 keeps unchanged if the values of μ1 and μ2 are ex-
changed, while the value of D2 remains fixed if the values of σ1
and σ2 are exchanged. Therefore, without losing generality, we
suppose that μ1 ≥ μ2 and σ1 ≥ σ2 . It implies that μ1 ≥ 0.5 and
σ1 ≥ 0.5, which result in D1 = 2(μ1 − 0.5) and D2 = 2(σ1 −
0.5). Since D1 ≤ D2 , we have μ1 ≤ σ1 . According to formula
(5), it can be obtained that μ1 ≤s σ1 , and further according to
the axiom (c) in Section III-A, the inequality E(μ1) ≥ E(σ1)
holds. Since E(μ1) = E(μ2) and E(σ1) = E(σ2), we finally
arrive at the result E(μ) = E(μ1) ≥ E(σ) = E(σ1).

E. Divide-and-Conquer Strategy

As an experimental observation in Section III-D, we view
that the risk of misclassification becomes higher as the fuzzi-
ness of training samples gets larger, while the risk is relatively
decreasing as the fuzziness of training samples gets statistically
smaller. This analysis on misclassification risk inspires us to
handle samples with large fuzziness separately from samples
with small fuzziness. For most classification problems, samples
with more fuzziness are more difficult to be correctly classified
in comparison with samples having less fuzziness. Equivalently
to say, that boundary points are more difficult to be correctly
classified in comparison with inner points. However, the bound-
ary points are often more important than inner points for most
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classification problems. Our idea is to use a usual classifier to
deal with the samples with less fuzziness while to use a par-
ticularly trained classifier to cope with the samples exhibiting
higher fuzziness. This is the strategy of divide-and-conquer.

According to the magnitude of fuzziness, all samples are cat-
egorized as two groups. One group is of high fuzziness, while
the other is of low fuzziness. A number of experiments on both
simulated data and on real datasets have been conducted to
verify the difference of performance (the correct classification
rate) between the two groups. Fig. 7 gives four illustrations,
which clearly indicate the significant difference upon the Rip-
ley’s synthetic, Diabetes, Flare Solar, and German datasets. The
experimental results show that, upon all datasets, the difference
is significant for any number of neighbors K (1 < K < 50). To
save space, we do not report here the difference obtained on
some other datasets.

One may argue that the difference tells nothing about the im-
provement of the classification performance because samples
users are really interested in are ones with high fuzziness. In
fact, this difference is to make users pay particular attention to
samples with high fuzziness and to tell users that the classifica-
tion for samples with small fuzziness is much possibly correct
even they use a simple trained classifier. Due to the limit of pa-
per length, we will report in the next study the handling strategy
of high-fuzziness samples separating from the low-fuzziness
samples, and the improvement the strategy brings.

F. Impact of the Weighting Exponent m on the Fuzziness
of Fuzzy K-Nearest Neighbor Classifier

It is obvious to see from (3) that the output of the fuzzy K-
NN classifier with respect to a sample is a membership vector.
Each component of the membership vector depends on m (m >
1), i.e., the parameter of weighting exponent. According to
definition 3.2, the fuzziness of a classifier is computed based
on the membership vectors, and therefore, the fuzziness of
a Fuzzy K-NN classifier changes with value of parameter m.
Fuzzy K-NN approaches the traditional K-NN as m is decreas-
ingly tending to 1. We experimentally examine the impact of
m on the fuzziness of fuzzy K-NN classifier on the 20 se-
lected databases. All experiments show a consistent trend for
the change of the fuzziness value in fuzzy K-NN classifiers with
a different weighting exponent m. To save space, we only list
two illustrations in Fig. 8. It can be observed from Fig. 8 that the
fuzziness of fuzzy K-NN drastically increases as m increases
from 1.05 to 4, and the increase of fuzziness of fuzzy K-NN
classifier becomes more saturated as m > 8.

IV. RELATIONSHIP BETWEEN GENERALIZATION

AND FUZZINESS

This section will discuss our main concern, i.e., the relation-
ship between the generalization of a classifier and the fuzziness
of the classifier, based on the fuzziness definition of a classi-
fier given in (9) and the properties of boundary points listed in
Section II.

A. Definition of Generalization and Its Elaboration

Generally, the task of a learning model is to construct a func-
tion f(x) based on a training set D : (x1 , y1), . . . , (xN , yN ) in
order to approximate an objective function y = F (x) at future
observations of x. The use of f to approximate F on future ob-
servations is called “generalization.” The learned function f(x)
is called a classifier for classification problems. The difference
between f and F is called generalization error, which is consid-
ered as the measurement of generalization ability of the involved
learning model.

Theoretically, the generalization error can be investigated
from many different angles. One typical method is to estimate
an upper bound for the generalization error. The true generaliza-
tion error reported on the entire input space can be denoted as
Rtrue =

∫

S [f(x) − F (x)]2p(x)dx, where S denotes the entire
input space, and p(x) is the probability density function of in-
put x. Since both target outputs and distributions of the unseen
samples are unknown, it is impossible to compute Rtrue directly.
Many researchers want to find an upper bound to estimate the
generalization error. For example, from the angle of structural
risk minimization, Vapnik et al. [17], [18] gave a bound that de-
pends on the training error and the complexity of the classifier.
Here, the complexity of a classifier is described by the size of
training set and the VC dimension of a function group including
the learned function f . Another example is the localized gener-
alization error model proposed by Ng et al. [11], in which the
derived error bound is mainly composed of the training error
within a neighborhood of training samples and the stochastic
sensitivity of classifier outputs.

Experimentally, the generalization error is often verified by
observing the prediction accuracy of a classifier on a set of sam-
ples, called testing samples, which are not used in the process
of training the classifier. This is the testing accuracy, which is
regarded as the most crucial index for experimentally measuring
the generalization of a classifier.

This paper makes an attempt to study on the generalization
of a classifier from a new viewpoint. Different from search for
an upper error bound, we try to find a relationship between the
generalization of a classifier and the fuzziness of the classifier
outputs. The relationship is expected to provide some useful
guidelines for improving the generalization ability of a classifier.

B. Classifier Selection

When the membership μj of a fuzzy set A is equal to 0.5 for
all j, the fuzziness of the fuzzy set attains the maximum. The
fuzziness maximization implies that for drawing a fuzzy set as
our conclusion, we prefer a fuzzy set with bigger fuzziness to
other fuzzy sets. In other words, we consider that an event with
much uncertainty (fuzziness) will bring us more information
when it occurs [33].

We now consider the output of a trained classifier. Suppose
that there are c classes and the output of the classifier for an
unseen sample can be represented as μ = (μ1 , μ2 , . . . , μc)T

in which each component is the degree of the unseen sample
belonging to the corresponding class. The final class label Ci0

for the unseen sample is determined by i0 = arg max1≤i≤c μi .
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Fig. 7. Difference of testing accuracy rates between the high-fuzziness group and low-fuzziness group.

Fig. 8. Impact of the weighting exponent m on the fuzziness of fuzzy K-NN classifier.

Our basic idea is described as Fig. 9, where classifiers A and B
denote two trained classifiers, respectively.

Focusing on Fig. 9, we consider the two classifiers having
the same training accuracy but generally having the different
predictive accuracy. Our problem is: Which one has the better
generalization?

It is impossible to provide a general answer since it depends
on the specific problem. Nevertheless, from the viewpoint of
“traditional” pattern recognition, one definitely prefers classifier
A. The reason is at least twofold. The first is that the uncertainty
in the training set for classifier A is smaller than for classifier B.
People always prefer the one with the lower uncertainty, since it

seems making the decision easier. The second is that classifier
A has the training accuracy the same as classifier B. In fact,
in many approaches to the design of classifiers, the design ob-
jective to be optimized is usually the one associated with some
constraints using which we tend to minimize the uncertainty of
the entries of the output vector while retaining accuracy on the
training set. Implicitly, it acknowledges that for two classifiers
with the same training accuracy, the classifier with the lower
uncertainty has better generalization than the classifier with the
higher uncertainty level. However, through a large number of ex-
periments carried out for classification problems with complex
and highly nonlinear boundaries or without a clearly delineated
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Fig. 9. Underlying idea of the proposed approach—we argue that classifier B
has higher generalization capabilities batter than those of classifier A.

boundary, we found that this traditional viewpoint is not always
true. In this study, we propose an alternative that for some types
of classification problems, classifiers with higher uncertainty for
the training set exhibit higher generalization abilities.

C. Explanation Based on Extreme (Max/Min) Fuzziness

We recall the crux of the training algorithm as follows. Basi-
cally, the idea of this algorithm is very simple. First, we generate
an ensemble of base classifiers, and then, from this ensemble,
we find the first m classifiers with the highest fuzziness values
while keeping an acceptable individual training accuracy.

Training Phase: Suppose that we have had a training algo-
rithm for generating an ensemble of classifiers by setting up
different parameters of this algorithm. Given a training set, we
first generate an ensemble of classifiers based on the training
algorithm. With respect to any sample xj , each classifier is
required to have an output vector μj = (μ1j , μ2j , . . . , μcj )T .
According to (9), the fuzziness level is computed for each clas-
sifier. We sort these classifiers in a decreasing order based on the
fuzziness magnitudes of these classifiers and select the first M
classifiers with highest fuzziness while keeping an acceptable
individual training accuracy. Here, the fuzzy K-NN is used as
our classifier generation algorithm.

Reasoning Phase: For any testing sample, match this sample
to each of M trained classifiers and get M vectors in which the
component represents a possibility of the sample belonging to
corresponding class. Take an average for each component of the
M vectors and assign the class label with maximum component
to the considered sample.

Basically, this algorithm is to raise the fuzziness during the
classifier training process under the condition that an accept-
able training accuracy is kept. The central idea behind this al-
gorithm is that, regarding the improvement of generalization
performance, the classifiers with big fuzziness play an impor-
tant role more than other classifiers. This idea is identical to
our discussion in Section II regarding the relationship between
boundary area and high-fuzziness samples. Section II provides
us with a result that basically samples near to boundary have
the outputted fuzziness higher than samples far from bound-
ary. Usually, we believe that samples near to the boundary are

more difficult to be correctly classified than samples far from
the boundary. The idea implies such a preference that we would
like to select classifier C1 if, for two classifiers C1 and C2, C1
can correctly a set of boundary samples (denoted by A) and C2
can correctly another set of boundary samples (denoted by B),
the number of samples in A is as same as in B, and samples
in A are nearer to the boundary than samples in B averagely.
One may argue that for a classification problem with a simple
real boundary, this sufficient consideration of boundary points
will give a very complex boundary, which possibly results in
the overfitting phenomenon. In fact, for classification problems
with simple boundaries such as the linearly separable cases,
the fuzziness of a well-trained classifier is usually very small.
However, for classification problems with complex boundaries,
experimental results do not show the overfitting.

Interestingly, this idea coincides with the following maximum
fuzziness principle.

Maximum fuzzy entropy principle [33]: Consider a reason-
ing process that includes a number of parameters to be deter-
mined. With respect to a given fact, the reasoning conclusion
will be a parametric fuzzy set, which implies that the reasoning
conclusion can be changing with diverse parameters. We pre-
fer the parametric fuzzy set with maximum fuzziness (to other
fuzzy sets) as our reasoning conclusion, subject to the given
constraints.

We have the following explanations and remarks regarding
the maximum fuzziness principle in classifier generalization
improvement.

Remark 1: Why does the fuzziness maximization can im-
prove the generalization capability of a classifier? Intuitively,
we can offer the following explanation. The explanation is sim-
ilar to that in [33]. Suppose that there is a classification problem
with c classes and A is an object to be classified. If there is not
any additional available information for classification, the most
reasonable classification result for A should be that the member-
ship degree of A belonging to each of the c classes is identical
(i.e., 1/c). This can be achieved by maximizing the entropy of
A, according to the maximum entropy principle in traditional
probability theory. If some additional information for classifi-
cation is available (i.e., there exists a training set in which each
example’s class is known and an acceptable training accuracy
is required to be kept), then in order to get a reasonable and
fair classification for A, we should maximize the fuzziness of
A subject to some constraints; each constraint represents that a
training example can be classified correctly. These constraints
mean that the available information for classification has been
utilized, but there still exists uncertain factors such that the clas-
sification for other objects is uncertain. A reasonable way to
handle the remaining uncertain information for classification is
to use the maximum uncertainty principle. The reasonable and
fair classification for A is expected to result in an increase of
generalization capability.

Remark 2: The maximum fuzziness principle is more suit-
able for classifiers in which the classification uncertainty exists
inherently. These cases indicate that the problem may be of crisp
classification, but its essence of classes for samples is fuzzy. For
example, a crisp classification problem in which any positive
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TABLE III
TRAINING ACCURACY (%) OF THREE FUZZY CLASSIFIERS (F-KNN, F-ELM, AND F-DCT) WITH DIFFERENT FUZZINESS

Databases Fuzzy K-NN
(low

fuzziness)

Fuzzy K-NN (high fuzziness) Fuzzy ELM
(low

fuzziness)

Fuzzy ELM (high fuzziness) Fuzzy DCT
(low

fuzziness)

Fuzzy DCT (high fuzziness)

Acct r a in Acct r a in (P1 , P2 ) Acct r a in Acct r a in (P1 , P2 ) Acct r a in Acct r a in (P1 , P2 )

Banknote 100± 0.00 99.77± 0.22(1.431E-004,4.883E-004) 100± 0.00 100± 0.00(1,1) 93.15± 1.06 95.86± 0.64(6.487E-009,1.316E-004)
Blood 86.63± 1.13 79.43± 0.76(1.409E-015,8.782E-005) 84.86± 0.80 81.89± 0.72(1.380E-012,8.696E-005) 76.73± 0.33 77.95± 0.87(2.855E-011,2.130E-005)
Breast
Cancer

88.83± 1.60 79.43± 1.11(1.357E-012,8.720E-005) 97.73± 0.93 87.98± ± 1.27(1.811E-017,8.720E-005) 77.49± 1.88 91.86± 1.31(1.209E-016,8.696E-005)

Cleverland
Heart

99.93± 0.18 93.33± 1.00(4.514E-016,8.282E-005) 99.83± 0.24 92.71± 1.26(5.143E-016,8.211E-005) 86.64± 3.57 99.35± 0.53(6.206E-012,8.720E-005)

Diabetes 90.08± 0.56 81.86± 0.93(4.922E-14,8.782E-005) 87.12± 0.80 82.07± 1.19(4.455E-015,8.832E-005) 77.17± 1.10 84.17± 1.27(1.016E-014,8.807E-005)
Flare Solar 76.65± 2.54 66.20± 1.11(7.869E-018,8.858E-005) 85.50± 2.72 84.95± 2.39(0.061,0.056) 76.05± 2.31 79.05± 2.24(8.393E-006,1.847E-004)
German 99.76± 0.18 89.57± 0.77(4.279E-025,8.832E-005) 86.13± 0.68 80.03± 0.78(4.187E-017,8.820E-005) 79.34± 4.49 98.81± 0.51(4.189E-014,8.858E-005)
Glass 100± 0.00 100± 0.00(0.3299,1) 100± 0.00 99.53± 0.50(4.103E-004,9.766E-004) 93.11± 3.33 96.76± 1.50(2.747E-005,1.803E-004)
Heart 99.60± 0.38 91.14± 1.43(1.866E-016,8.745E-005) 99.86± 0.24 92.46± 1.36(1.803E-015,8.609E-005) 77.35± 1.26 99.07± 1.27(1.544E-025,8.414E-005)
Housing 100± 0.00 100± 0.00(1,1) 97.54± 0.64 92.17± 0.89(5.586E-014,8.820E-005) 83.57± 1.10 92.71± 0.73(1.839E-018,8.795E-005)
Ionosphere 97.29± 0.50 85.08± 2.52(7.193E-022,8.858E-005) 99.74± 0.20 96.12± 0.82(5.219E-014,8.560E-005) 99.89± 0.20 93.92± 0.86(1.312E-014,8.832E-05)
New thyroid 100± 0.00 98.00± 0.61(8.653E-012,6.757E-005) 100± 0.00 99.73± 0.34(0.002,0.008) 81.00± 2.87 93.80± 1.18(2.286E-007,0.002)
Parkinsons 100± 0.00 100± 0.00(1,1) 100± 0.00 97.11± 0.83(2.814E-012,7.557E-005) 84.15± 1.21 99.19± 0.90(2.223E-022,8.271E-005)
Seeds 90.82± 1.58 91.09± 1.43(0.0029,0.0079) 100± 0.00 99.73± 0.34(0.002,0.008) 87.11± 1.61 95.27± 1.31(4.227E-012,8.646E-005)
Sonar 89.38± 1.78 81.22± 2.57(5.249E-012,8.795E-005) 100± 0.00 98.68± 0.74(1.904E-007,1.019E-004) 99.12± 0.00 98.11± 0.79(0.003,0.006)
Vowel 98.40± 0.48 95.12± 0.84(3.480E-015,8.770E-005) 97.92± 0.52 88.66± 1.18(2.003E-017,8.832E-005) 95.75± 0.71 97.41± 0.50(2.364E-006,0.002)
Wall-
Following

98.64± 0.08 98.25± 0.12(1.215E-016,8.832E-005) 95.55± 0.24 94.41± 0.19(1.884E-016,8.708E-005) 50.09± 0.35 51.47± 0.55(3.674E-010,8.8575–005)

Wdbc 99.72± 0.26 99.77± 0.18(0.0217,0.0242) 98.31± 0.36 97.13± 0.44(7.498E-010,8.696E-005) 91.79± 0.73 95.26± 0.37(2.852–008,0.002)
Wholesale 100± 0.00 100± 0.00(1,1) 97.87± 0.63 93.89± 0.68(9.567E-017,8.487E-005) 82.56± 2.09 83.40± 2.01(0.026,0.037)
Yeast 50.95± 1.29 59.19± 0.86(6.750E-018,8.807E-005) 69.03± 0.68 63.14± 0.69(2.110E-016,8.770E-005) 55.74± 1.29 60.27± 1.33(1.033E-011,8.845–005)

Note: Acct r a in —Training accuracy rate; P1 —P-value for paired t-test; P2 —P-value for Wilcoxon signed rank test.

(negative respectively) sample has several negative (positive re-
spectively) nearest neighbors will definitely not have a boundary,
which separates one class of samples from another even with a
very low correct rate of classification. This way, every sample
associated with a vector (p, q) (representing the possibilities of
the sample belonging to each of both classes, respectively) is
more reasonable and more accurate than that associated with
a crisp class label. The maximum fuzziness principle makes a
classifier to output a vector (p, q) with p and q approaching 0.5
rather than with p and q approaching either 0 or 1.

Remark 3: Since A is an object remaining to classify, we
do not know its components before matching A to the trained
classifier, and further, we cannot directly maximize its fuzzi-
ness. Noting that any supervised learning algorithm has a fun-
damental assumption that the training set is a sampling from a
population of examples and the testing set has the distribution
identical to the training set, it is reasonable that we replace the
fuzziness maximization of A over the entire sample space with
that over the training set. Unfortunately, so far, we still have not
yet a formal mathematical formulation for this explanation on
maximum fuzziness.

Remark 4: The acceptability threshold is referring to the ac-
ceptable training accuracy rate which is problem-dependent.
Usually, it is defined by users. Experimentally, we find that this
threshold is sensitive to the output of our approach. The en-
semble of classifiers with high maximum fuzziness is obtained
by selecting individual classifiers, which are required to have a
training accuracy rate over the threshold. Therefore, the ensem-
ble varies with the change in the threshold value. We experimen-
tally find that our proposed approach has a better performance

when the threshold is smaller in comparison with a big threshold
for a given learning problem. One explanation may be that for
a smaller threshold, the individual classifier with high fuzziness
will have more chance to be selected, which will enhance the
diversity of the ensemble.

D. Experimental Results

To validate the proposed training and reasoning algorithm
presented in Section IV-C, three classifiers, i.e., the fuzzy K-
NN, the fuzzy extreme learning machine (ELM) [51], [52],
and the fuzzy decision tree (DT) [28], are utilized to generate
the base classifier ensemble. For a given training set and an
integer N, we first train N fuzzy K-NN classifiers by varying
the value of K from 2 to N + 1 with a step of 1, N fuzzy ELM
classifiers by repeating the random weight N times, and N fuzzy
DTs by varying the leaf level and the parameters of triangular
memberships, respectively. Once the training procedure of the N
fuzzy classifiers has been completed, these classifiers are sorted
in a descending order according to their fuzziness values. Then,
the first ten base classifiers with highest fuzziness values and
the last ten base classifiers with the lowest fuzziness values are
selected.

Two mechanisms of validation are selected. The first is the
hold-out validation (70–30), namely, for each dataset, 70% sam-
ples are randomly chosen for training, while the rest 30% are
used for testing. The second is the DOB-SCV validation scheme
[53], [54] in which the concept of class-neighbor is used to gen-
erate the partition for increasing the randomness and uniformity
of samples.
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TABLE IV
TESTING ACCURACY (%) OF THREE CLASSIFIERS (F-KNN, F-ELM, AND F-DCT) WITH DIFFERENT FUZZINESS

Databases Fuzzy K-NN
(low

fuzziness)

Fuzzy K-NN (high fuzziness) Fuzzy ELM
(low

fuzziness)

Fuzzy ELM (high fuzziness) Fuzzy DCT
(low

fuzziness)

Fuzzy DCT (high fuzziness)

Acct e s t Acct e s t (P1 , P2 ) Acct e s t Acct e s t (P1 , P2 ) Acct e s t Acct e s t (P1 , P2 )

Banknote 99.95± 0.10 99.66± 0.40(0.006,0.023) 100± 0.00 100± 0.00 (1,1) 93.28± 1.08 95.66± 1.09(4.941E-007,1.316E-004)
Blood 66.33± 2.66 74.27± 1.66(2.806E-012,8.745E-005) 74.16± 2.12 77.67± 1.85(1.137E-005,1.489E-004) 76.27± 0.34 77.09± 1.29 (0.012,0.013)
Breast
Cancer

66.94± 3.79 72.50± 2.47(8.425E-006,4.899E-004) 51.94± 6.58 72.06± 4.06(1.286E-010,8.758E-005) 73.88± 2.66 75.75± 4.68(2.123E-007,8.330E-005)

Cleverland
Heart

85.22± 2.88 82.72± 2.20(6.917E-006,0.001) 83.67± 3.43 82.06± 2.82(1.840E-010,8.795E-005) 81.83± 2.80 79.83± 3.33 (0.009,0.017)

Diabetes 72.51± 1.61 74.37± 2.16(0.003,0.001) 73.27± 2.34 76.39± 2.64(3.383E-010,8.758E-005) 73.77± 2.03 73.40± 2.12 (0.376,0.370)
Flare Solar 61.70± 3.85 66.02± 0.90(8.727E-005,7.204E-004) 37.05± 7.19 39.66± 6.66(0.108,0.169) 58.98± 4.92 63.98± 4.29(9.104E-006,1.924E-004)
German 73.50± 2.13 74.17± 1.28(0.175,8.795E-005) 75.07± 1.80 75.83± 1.70(0.066,0.048) 72.41± 1.34 72.89± 1.96(0.396,0.408)
Glass 98.64± 1.19 98.18± 1.36(0.083,0.001) 67.65± 6.82 86.29± 4.46(2.732E-009,8.832E-005) 87.27± 5.02 88.56± 3.59(0.198,0.238)
Heart 80.19± 3.91 84.14± 3.50(1.493E-005,0.006) 68.77± 5.82 79.57± 3.68(1.499E-008,8.597E-005) 75.93± 3.89 77.47± 3.42 (0.046,0.060)
Housing 80.56± 3.33 80.98± 2.75(0.418,0.370) 87.09± 2.02 86.70± 2.06(0.368,0.359) 83.99± 2.65 86.21± 2.27 (0.001,0.001)
Ionosphere 84.29± 2.84 84.81± 2.51(2.734E-011,8.858E-005) 85.43± 3.05 89.95± 2.69(1.892E-004,9.426E-004) 84.34± 3.34 83.95± 3.88(1.562E-005,1.697E-004)
New thyroid 92.54± 4.21 87.08± 3.40(6.917E-006,1.379E-004) 77.39± 5.07 86.00± 4.52(4.428E-006,2.180E-004) 78.46± 4.53 92.62± 1.75 (1.681E-006,0.002)
Parkinsons 85.33± 2.79 85.75± 3.13(0.514,0.247) 72.42± 9.23 89.42± 2.93(2.312E-007,8.795E-005) 84.75± 2.31 93.17± 2.96(5.370E-012,8.536E-005)
Seeds 90.87± 2.41 91.90± 2.82(0.019,0.0002) 79.37± 4.89 76.43± 1.70(2.478E-013,8.745E-005) 87.14± 3.13 92.78± 2.84(7.266E-008,1.282E-004)
Sonar 81.41± 4.59 85.44± 3.61(0.015,0.007) 72.27± 8.27 81.64± 4.44(2.797E-006,2.459E-004) 75.28± 9.17 82.66± 4.67(3.745E-007,8.832E-005)
Vowel 96.82± 1.19 93.45± 1.67(5.360E-010,8.782E-005) 89.69± 1.59 90.36± 2.41(1.141E-014,8.832E-005) 86.33± 2.13 89.06± 1.75 (4.517E-004,0.002)
Wall-
Following

98.66± 0.25 98.91± 0.34(1.914E-007,8.820E-005) 95.35± 0.63 94.17± 0.72(2.436E-012,8.621E-005) 50.30± 0.74 51.69± 1.11(1.965E-007,8.807E-005)

Wdbc 87.18± 2.11 88.40± 2.12(2.033E-004,0.004) 93.11± 2.45 95.44± 1.09(7.662E-004,4.743E-004) 91.80± 1.76 93.90± 1.65(0.002,0.006)
Wholesale 90.19± 1.70 89.36± 2.29(0.013,0.015) 82.03± 2.81 79.55± 2.01(3.143E-010,8.795E-005) 82.59± 2.73 81.71± 2.50 (0.789,0.763)
Yeast 54.99± 2.14 60.00± 2.03(1.151E-009,8.858E-005) 58.42± 1.82 60.37± 1.53(1.856E-005,4.267E-004) 53.21± 2.17 56.35± 2.53(2.215E-007,1.398E-004)

Note: Acct e s t —Testing accuracy rate.

The average training and testing accuracy rates together with
their corresponding standard deviations are recorded. Further-
more, the paired T-test is conducted to examine whether the
performance improvement achieved by the proposed ensemble
of classifiers with high fuzziness over the ensemble of classi-
fiers with low fuzziness is statistically significant. Experimental
results do not show significant difference between the two val-
idation mechanisms except for two datasets with imbalanced
classes. The experimental results for DOB-SCV validation are
listed in Tables III and IV.

We have conducted the Wilcoxon signed rank test, which is
a nonparametrical statistical test provided in [59] and [60]. The
testing results are placed in Tables III–V (of the current version).
The paired t-test in previous version is also placed in the current
version for comparison. It is observed there is no significant
difference between both statistical tests.

From Table IV, one can observe that the fuzzy classifier en-
semble with higher fuzziness achieves better generalization abil-
ity in comparison with the ensemble with lower fuzziness. This
occurs on 14 datasets for fuzzy K-NN, 15 datasets for fuzzy
ELM, and 16 datasets for fuzzy DT respectively. Taking the
average testing accuracy rate into consideration, the values of
standard deviation in Table IV show that the ensemble with
higher fuzziness is more stable than the ensemble with lower
fuzziness on most datasets. Moreover, the paired t-test shows
that the difference between the ensemble with higher fuzziness
and the ensemble with lower fuzziness is statistically significant
on all the datasets except for two datasets. It is worth noting that
the experimental results in Table IV show that the fuzziness of
base classifiers is important for constructing an ensemble, rather

than showing that the fuzziness of a classifier is very important
for its generalization power.

In addition, from Table IV, it is experimentally observed
that the proposed algorithms may be more suitable for tackling
classification problems with complex boundaries than for those
with simple boundaries. The boundaries estimated by the fuzzy
K-NN classifier are very difficult to exactly express and visualize
for more than 4-D data. We still not yet have an effective way
to estimate the complexity of boundaries acquired from K-NN
on n-dimensional data when n > 3, but 3-D feature subsets
selected from the n-dimensional original data can provide some
visualized impression about the K-NN estimated boundary. For
example, we consider in Table IV the Cleverland Heart data,
which do not support our conclusions (i.e., which does not show
an improvement of testing accuracy for high-fuzziness K-NNs).
In comparison with other datasets in Table IV, the Cleverland
Heart data may have a relatively simpler boundary of K-NN,
which can be partially verified via a projection of the original
data in a 3-D space. Fig. 10 shows the projections in feature sets
(3, 8, 10) and (3, 4, 9) of Cleverland Heart data. Although the
two projection figures cannot reflect the entire characteristics of
the K-NN estimated boundary, they partially indicate the less
complexity of the boundary from different visualized profiles.

Ho and Basu [56] proposed data complexity framework that
defines a number of measures to describe the difficulty of a clas-
sification problem and its boundary complexity. It is observed
that based on the framework, the behavior of a fuzzy-rule-based
classification system and its relationship to data complexity was
discovered in [57], and also based on this framework, the per-
formance of three classic neural network models and one SVM
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TABLE V
TRAINING AND TESTING ACCURACY OF F- KNN (K = 20) ENSEMBLES WITH DIFFERENT FUZZINESS INDUCED BY VARYING WEIGHTING EXPONENT m (%)

Databases Fuzzy K-NN (Low fuzziness) Fuzzy K-NN (High fuzziness)

Acct r a in Acct e s t Acct r a in (P1 , P2 ) Acct e s t (P1 , P2 )

Banknote 100.00± 0.00 99.98± 0.07 99.64± 0.25(2.937E-006,5.102E-005) 99.47± 0.53(6.722E-004,0.002)
Blood 92.81± 0.73 72.20± 2.12 79.04± 0.83(1.086E-024,8.858E-005) 75.62± 1.60(4.379E-006,0.004)
Breast Cancer 85.11± 1.02 63.19± 2.61 77.87± 1.28(6.304E-019,8.858E-005) 73.37± 3.27(2.525E-011,5.167E-004)
Cleverland Heart 99.18± 0.45 72.67± 0.56 86.21± 1.40(5.720E-020,8.845E-005) 81.89± 2.28(2.501E-013,5.167E-004)
Diabetes 91.69± 0.64 62.34± 2.17 79.41± 1.14(1.690E-021,8.845E-005) 74.13± 2.37(3.631E-013,5.934E-004)
Flare Solar 66.05± 1.32 64.66± 1.56 67.60± 1.10(7.595E-004,8.858E-005) 65.91± 0.00(0.002,0.0002)
German 90.48± 0.53 53.11± 0.78 78.66± 0.89(1.178E-025,8.832E-005) 74.70± 1.57(6.587E-028,8.770E-005)
Glass 100.00± 0.00 98.86± 1.09 95.98± 0.71(4.149E-016,8.807E-005) 94.62± 1.59(3.183E-010,8.845E-005)
Heart 92.84± 0.78 65.43± 1.93 86.35± 1.56(2.455E-017,8.795E-005) 83.77± 3.93(3.502E-019,5.501E-004)
Housing 100.00± 0.00 79.64± 3.42 81.05± 1.37(2.202E-023,8.858E-005) 86.57± 3.21(8.178E-004,8.832E-005)
Ionosphere 98.90± 0.38 83.49± 2.42 83.22± 2.40(1.659E-017,8.845E-005) 81.70± 2.78(0.002,0.003)
New Thyroid 100.00± 0.00 85.00± 3.82 85.57± 1.50(2.179E-020,8.845E-005) 91.15± 3.54(5.066E-008,8.720E-005)
Parkinsons 100.00± 0.00 84.42± 3.64 82.78± 1.46(4.488E-022,8.858E-005) 85.00± 2.32(0.0016,0.0023)
Seeds 89.90± 1.78 90.79± 3.03 90.85± 1.64(0.0206,0.0001) 91.19± 3.19(0.5664,0.0006)
Sonar 90.52± 1.89 81.33± 3.88 71.94± 3.01(9.255E-019,8.858E-005) 69.22± 4.36(7.853E-011,8.858E-005)
Vowel 98.13± 0.58 93.86± 2.31 78.52± 1.51(1.056E-021,8.845E-005) 95.07± 2.89(2.817E-019,8.820E-005)
Wall-Following 97.55± 0.17 97.05± 0.90 97.27± 0.17(6.900E-012,8.858E-005) 97.07± 0.40(1.070E-006, 8.807E-005)
Wdbc 99.80± 0.25 85.96± 2.34 89.57± 0.69(2.675E-024,8.683E-005) 88.66± 1.72(1.515E-006,0.002)
Wholesale 100.00± 0.00 88.83± 1.83 92.69± 0.92(7.319E-019,8.820E-005) 89.59± 2.27 (0.0761,0.135)
Yeast 52.24± 1.19 52.75± 1.78 60.59± 0.78(4.680E-017, 8.858E-005) 59.69± 1.77(5.839E-013, 8.858E-005)

TABLE VI
DIFFERENT FUZZINESS AND TESTING ACCURACY (%) OF THREE DIFFERENT

MODELS ON THE Breast Cancer DATASET INDUCED BY VARYING

THE PARAMETER K VALUES

Single fuzzy K-NN Low fuzziness group High fuzziness group

K Fuzziness Acct e s t Fuzziness Acct e s t Fuzziness Acct e s t

2 0.3013 65.23 0.2674 63.62 0.3412 68.38
5 0.5286 68.40 0.4884 67.63 0.5632 72.13
10 0.6402 70.63 0.6045 68.13 0.6756 72.63
15 0.6774 71.45 0.6426 69.75 0.7037 71.75
20 0.7038 73.18 0.6722 71.12 0.7335 74.25
25 0.7140 73.35 0.6827 72.50 0.7418 74.88
30 0.7269 73.18 0.6951 71.63 0.7621 74.00
35 0.7382 73.68 0.7074 72.75 0.7643 73.25
40 0.7397 73.40 0.7104 72.88 0.7628 74.75
45 0.7468 73.27 0.7224 72.12 0.7717 75.62
50 0.7468 73.55 0.7190 71.87 0.7703 74.12

with respect to a series of data complexity measures was inves-
tigated in [58]. We select two metrics F1 and F2 in our revision
to measure the boundary complexity of two-class classification
problems. For multiple-class problems, we tentatively select
two of them. Bigger F1 for a dataset indicates that its boundary
has more complexity. The experimental results are given in Ta-
ble VIII from which one can see that the better performance is
achieved on datasets with bigger values of F1.

We now focus on the fuzzy K-NN classifier. As discussed in
Section III-F, the fuzziness of fuzzy K-NN classifiers is greatly
affected by its weighting exponent m. In the following exper-
iment, the impact of different values of m on our proposed
algorithm is examined. We first generate an ensemble of fuzzy
K-NN base classifiers by varying the value of m in (1, 15). The
parameter m varies in (1, 2) with a step size of 0.05 and in [2]
and [15] with a step size of 1, and the parameter K is fixed as

20 during the change in m. Therefore, 46 different fuzzy K-NNs
can be constructed on each dataset. The average training and
testing accuracy rates together with their corresponding stan-
dard deviations are summarized in Table V. Worth noting is the
difference between Table V and Tables III and IV (fuzzy K-NN
column). The difference is that the fuzzy K-NN ensemble in
Tables III and IV is generated by varying the value of K for
fixed weighting exponent m, while the fuzzy K-NN ensemble in
Table V is generated by varying the weighting exponent m for
fixed K.

Table V shows an experimental result similar to those reported
in Table IV. From Table V, one still can note that the ensemble
of fuzzy K-NNs with higher fuzziness produces better general-
ization performance and results in higher stability in comparison
with the ensemble of fuzzy K-NNs with lower fuzziness. More-
over, the paired t-test demonstrates that the difference between
the ensemble of fuzzy K-NNs with higher fuzziness and the en-
sembles of fuzzy K-NNs with higher fuzziness and with lower
fuzziness is statistically significant on all the datasets. The ex-
perimental result indicates that the proposed methodology is
basically independent of the weighting exponent parameter m
used in the classifier.

The fuzziness is strongly related to the number K of nearest
neighbors. When we increase the number of K for points on the
boundaries between classes, we can obtain a better generaliza-
tion. It implicitly gives the relation between K and the classifiers
selected with the highest fuzziness. That is, the classifiers with
the highest fuzziness are also the classifiers obtained with the
highest number of K. We experimentally verify this relation on
the 20 selected datasets. Basically, most experimental results
show a uniform trend, namely, both the fuzziness and the test-
ing accuracy are increasing with the value of K for the single
K-NN, and low-fuzziness and high-fuzziness K-NN ensembles.
For any given training set, K has a maximum value. When K
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TABLE VII
TESTING ACCURACY (%) AND DIVERSITY OF CLASSIFIERS WITH DIFFERENT FUZZINESS

Fuzzy K-NN (Acct e s t /Q av ) Fuzzy ELM (Acct e s t /Q av ) Fuzzy DCT (Acct e s t /Q av )

Databases Low Fuzziness High Fuzziness Low Fuzziness High Fuzziness Low Fuzziness High Fuzziness

Banknote 99.95± 0.10/1.00 99.66± 0.40/1.00 100± 0.00/1.00 100± 0.00/0.69 93.28± 1.08/0.93 95.66± 1.09/0.90
Blood 66.33± 2.66/0.89 74.27± 1.66/0.99 74.16± 2.12/0.99 77.67± 1.85/0.98 76.27± 0.34/0.99 77.09± 1.29/0.98
Breast Cancer 66.94± 3.79/0.97 72.50± 2.47/0.99 51.94± 6.58/0.96 72.06± 4.06/0.95 73.88± 2.66/0.99 75.75± 4.68/0.96
Cleverland Heart 85.22± 2.88/0.95 82.72± 2.20/0.99 83.67± 3.43/0.95 82.06± 2.82/0.83 81.83± 2.80/0.95 79.83± 3.33/0.03
Diabetes 72.51± 1.61/0.97 74.37± 2.16/0.99 73.27± 2.34/0.98 76.39± 2.64/0.91 73.77± 2.03/0.97 73.40± 2.12/0.89
Flare Solar 61.70± 3.85/0.95 66.02± 0.90/0.99 37.05± 7.19/0.86 39.66± 6.66/0.87 58.98± 4.92/0.94 63.98± 4.29/0.97
German 73.50± 2.13/0.97 74.17± 1.28/0.99 75.07± 1.80/0.95 75.83± 1.70/0.91 72.41± 1.34/0.97 72.89± 1.96/0.96
Glass 98.64± 1.19/1.00 98.18± 1.36/1.00 67.65± 6.82/0.93 86.29± 4.46/0.86 87.27± 5.02/0.87 88.56± 3.59/0.62
Heart 80.19± 3.91/0.97 84.14± 3.50/0.99 68.77± 5.82/0.95 79.57± 3.68/0.78 75.93± 3.89/0.72 77.47± 3.42/0.35
Housing 80.56± 3.33/1.00 80.98± 2.75/1.00 87.09± 2.02/0.97 86.70± 2.06/0.81 83.99± 2.65/0.98 86.21± 2.27/0.93
Ionosphere 84.29± 2.84/0.97 84.81± 2.51/0.99 85.43± 3.05/0.95 89.95± 2.69/0.88 84.34± 3.34/0.95 83.95± 3.88/0.91
New Thyroid 92.54± 4.21/1.00 87.08± 3.40/1.00 77.39± 5.07/0.99 86.00± 4.52/0.99 78.46± 4.53/0.93 92.62± 1.75/0.96
Parkinsons 85.33± 2.79/1.00 85.75± 3.13/1.00 72.42± 9.23/0.72 89.42± 2.93/0.97 84.75± 2.31/0.99 93.17± 2.96/0.54
Seeds 90.87± 2.41/0.99 91.90± 2.82/0.99 79.37± 4.89/0.99 76.43± 1.70/0.82 87.14± 3.13/0.98 92.78± 2.84/0.95
Sonar 81.41± 4.59/0.95 85.44± 3.61/0.99 72.27± 8.27/0.17 81.64± 4.44/0.41 75.28± 9.17/0.95 82.66± 4.67/0.27
Vowel 96.82± 1.19/0.99 93.45± 1.67/0.99 89.69± 1.59/0.90 90.36± 2.41/0.74 86.33± 2.13/0.79 89.06± 1.75/0.75
Wall-Following 98.66± 0.25/0.99 98.91± 0.34/0.99 95.35± 0.63/0.99 94.17± 0.72/0.90 50.30± 0.74/0.99 51.69± 1.11/0.99
Wdbc 87.18± 2.11/0.98 88.40± 2.12/1.00 93.11± 2.45/0.99 95.44± 1.09/0.95 91.80± 1.76/0.93 93.90± 1.65/0.98
Wholesale 90.19± 1.70/1.00 89.36± 2.29/1.00 82.03± 2.81/0.99 79.55± 2.01/0.95 82.59± 2.73/0.99 81.71± 2.50/0.98
Yeast 54.99± 2.14/0.94 60.00± 2.03/0.99 58.42± 1.82/0.99 60.37± 1.53/0.85 53.21± 2.17/0.93 56.35± 2.53/0.89

exceeds this maximum, the generalization is no longer increase
with change of K. So far, we do not have an effective method to
estimate the maximum value of K. As an illustration, Table VI
lists different fuzziness and testing accuracy of three different
models on the Breast Cancer dataset induced by varying the
parameter K values from 2 to 50.

Finally, we check the impact of classifier ensemble diver-
sity on our proposed model. From references, we can know
that in ensemble learning, the diversity of a classifier ensemble
has a direct impact on the generalization ability of the classifier
ensemble. In ensemble learning, the generalization of an ensem-
ble system is closely related to the diversity of base classifiers,
classification confidence of base classifiers, and approaches to
generating base classifiers. In [61], Hu et al. proposed a new
methodology for generating base classifiers based on rough
subspaces, which can lead to a powerful and compact classi-
fication system. Furthermore, in [62], Li et al. explored the
impact of classification confidence of base classifiers on voting
mechanism in ensemble learning and obtained some interesting
results.

It is interesting to observe the difference of diversity between
two classifier ensembles with low and high fuzziness. There are
many different definitions of diversity for a classifier ensemble.
In this study, we select a widely used form [55]. That is, the
Q statistic that can be used to compute the diversity between
two classifiers based on the prediction correctness rate of both
classifiers. The formula can be expressed as

Qi,k =
N 11N 00 − N 01N 10

N 11N 00 + N 01N 10 (10)

where Nab denotes the number of samples for which the output
of classifier Ci is a and simultaneously the output of classifier
Ck is b. Moreover, if a given sample is correctly classified by
Ci (Ck ), the value of a (b) is taken as 1. Otherwise, the value

TABLE VIII
BOUNDARY COMPLEXITY AND ACCURACY

Databases F1 F2 Acct r a in Acct e s t

Banknote 0.5894 0.1563 99.77± 0.22 99.66± 0.40
Blood 0.0049 0.2706 79.43± 0.76 74.27± 1.66
Breast Cancer 0.3088 0.1875 79.43± 1.11 72.50± 2.47
Cleverland Heart 0.9515 0.2120 93.33± 1.00 82.72± 2.20
Diabetes 0.6633 0.2516 81.86± 0.93 74.37± 2.16
Flare Solar 1.3786 0 66.20± 1.11 66.02± 0.90
German 0.4186 0.6619 89.57± 0.77 74.17± 1.28
Glass 42.2465 9.164E-004 100± 0.00 98.18± 1.36
Heart 1.0059 0.1959 91.14± 1.43 84.14± 3.50
Housing 44.8778 0.0144 100± 0.00 80.98± 2.75
Ionosphere 2.0177 0 85.08± 2.52 84.81± 2.51
New Thyroid 1.3481 6.998E-004 98.00± 0.61 87.08± 3.40
Parkinsons 3.957E + 008 7.712E-010 100± 0.00 85.75± 3.13
Seeds 96.8723 0.0012 91.09± 1.43 91.90± 2.82
Sonar 1.932E + 003 1.045E-006 81.22± 2.57 85.44± 3.61
Vowel 0.8790 0.0600 95.12± 0.84 93.45± 1.67
Wall-Following 9.8487 -6.669E-006 98.25± 0.12 98.91± 0.34
Wdbc 2.656E + 003 0.0015 99.77± 0.18 88.40± 2.12
Wholesale 0.0158 4.814E-004 100± 0.00 89.36± 2.29
Yeast 13.0694 0 59.19± 0.86 60.00± 2.03

of a (b) is taken as 0. The averaged diversity for an ensemble is
evaluated by

Qav =
2

L(L − 1)

L−1∑

i=1

L∑

k=i+1

Qi,k (11)

where L is the number of classifiers. Q statistic’s value varies
from –1 to +1 denoting negative and positive correlation. Ex-
perimental results on the 20 selected datasets for three kinds of
classifiers are shown in Table VII. The testing accuracy rates of
the three different methods are directly taken from Table IV.

It can be observed from Table VII that the diversity of an
ensemble of classifiers with high fuzziness is a little less than
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Fig. 10. Visualization of Cleverland Heart on 3-D feature space. (a) Three-
dimension F: 3, F: 8, F: 10, (b) Three-dimension F: 3, F: 4, F: 9.

the diversity of an ensemble of classifiers with low fuzziness.
From a new angle, it indicates that the diversity has a key impact
on the ensemble learning performance, but it does not mean that
the more the diversity, the better the performance.

V. CONCLUSION AND FUTURE WORKS

This paper delivers a study on the relationship between gener-
alization and fuzziness of classifiers with outputs of membership
vectors by experimentally observing the high risk of misclassi-
fication for samples near to boundaries. We have the following
conclusions.

1) For classification problems with complex boundary, big
fuzziness samples are more likely misclassified in com-
parison with small fuzziness samples.

2) The set of samples near to the boundary is identical to
the set of samples with high fuzziness, but the one-to-
one mapping is difficult to find, which depends on the
definition of boundary sample.

3) While a training accuracy is acceptable, we believe that
the classifier with higher fuzziness output has a better
generalization for complex boundary problems, which is
experimentally confirmed in this paper.

Our future works on this topic include the following.
1) For a well-trained classifier that outputs a membership

vector, samples with higher fuzziness outputted by the

classifier mean a bigger risk of misclassification. One in-
teresting way to promote the correct classification rate
is separating the high-fuzziness samples from the low-
fuzziness samples and using a particular technique (maybe
with more time complexity) to handle the high-fuzziness
samples.

2) There are many algorithms to train classifiers with out-
puts of class memberships. One problem is whether the
relationship between the generalization and fuzziness, de-
veloped in this paper based on the fuzzy K-NN classifier,
is sensitive to the selection of classifier. Particularly, is
there any difference in the developed relationship between
problems with implicit and explicit boundaries?
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