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a b s t r a c t 

Aiming at reducing the total cost in cost-sensitive learning, this paper introduces a semi-supervised learn- 

ing model based on uncertainty of sample outputs. Its central idea is (1) to categorize the samples which 

are not in training set into several groups based on the uncertainty-magnitude of their outputs, (2) to 

add the group of samples which have the least uncertainty together with their predicted labels in the 

original training set, and (3) to retain a new classifier for total cost reduction. The ratio of costs between 

classes and its impact on learning system improvement is discussed. Theoretical analysis and experi- 

mental demonstration show that the model can effectively improve the performance of a cost-sensitive 

learning algorithm for a certain type of classifiers. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Technology of classification which belongs to a topic of ma-

hine learning has been widely applied in a lot of domains such as

attern recognition, knowledge discovery, intelligent control, net-

ork security, gene engineering, bioinformatics, and so on. From

iterature we can find many approaches to designing classifiers

uch as decision tree induction [1,2] , hypothesis version spaces

3] , Bayesian networks [4,5] , evolutionary computing [6] , logistic

egressions [7,8] , support vector machines [9,10] , neural networks

11] , and deep learning technique [12,13] . The most important in-

ex for evaluating a designed classifier is the generalization ability,

.e., the rate of correctly classifying samples which are not in train-

ng set. 

The concept of cost-sensitive classification can be introduced

nto the process of classifier design [14–18] . The “cost-sensitive”

efers to that a class (feature or object) has the different cost in

omparison with another class (feature or object respectively) in

lassification process. For example, the cost of wrongly classify-

ng a patient as non-cancer class is much bigger than the cost of

rongly classifying the patient as cancer class. From the viewpoint

f loss function, cost-sensitive classifier learning is to minimize a

ost-loss function but cost-insensitive learning is to maximize the

orrect rate of classification. Under some certain conditions, these

wo objective functions of optimization can be equivalent. 
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The following is an incomplete survey on cost-sensitive learn-

ng of classification problems. Reference [14] proposed a principled

ethod for making a general classifier cost-sensitive by wrapping

 cost-minimizing procedure called Meta-Cost around it. It is con-

rmed that class-imbalance often affects the performance of cost-

ensitive classifiers in [15] . While most studies of cost-sensitive

ave only paid attention how to deal with misclassification costs,

rticle [16] put forward to handle the equally important issue:

he test costs associated with querying the missing values in a

est case. A theoretical analysis on F-measures was presented in

17] for binary, multiclass and multi-label classification while these 

erformance measures are non-linear. Paper [18] proposed a cost-

ensitive rotation forest algorithm for gene expression data clas-

ification. Three classification costs, namely misclassification cost,

est cost and rejection cost, are embedded into the rotation forest

lgorithm. 

Under the framework of semi-supervised learning, this paper

ntroduces a cost-sensitive learning model based on uncertainty-

agnitude of sample outputs. Suppose we have selected a clas-

ifier training algorithm and trained a basic classifier. The funda-

ental operations of this model include three steps. The first step

s categorizing the testing samples into several groups based on

he uncertainty of their outputs given by the basic classifier; the

econd step is determining a group of samples with smallest un-

ertainty and adding these samples and their labels predicted by

he basic classifier in the original training set, and the third step

s retraining a classifier on the enlarged training set through the

elected training algorithm. We expect that the new classifier has

 reduced total cost in comparison with the basic classifier when
pervised learning model based on uncertainty, Neurocomputing 
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Table 1 

Different uncertainties. 

Uncertainty of an object with description 

Shannon entropy Probability Uncertainty caused by randomness 

Classification entropy Crisp set Impurity of the class distribution in a set 

Fuzziness Fuzzy set Uncertainty of a linguistic term 

Non-specificity Fuzzy set Non-specificity when choosing one from many available choices. 

Rough-degree Rough set Upper/lower approximation 
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a class-cost matrix for wrong classification among the classes is

given. 

The algorithm of training a basic classifier is selected in this pa-

per as Extreme Learning Machine (ELM) which is a recently pop-

ular scheme for training a single hidden layer feed forward neural

network. The reason is that the ELM has the non-iterative train-

ing mechanism, which has been studied intensively and exten-

sively in recent decade. ELM was firstly proposed in [19] , which

randomly chooses weights of hidden nodes and analytically de-

termines the output weights of a single-hidden layer feed-forward

network (SLFN). ELMs have both better generalization performance

and much faster learning speed than traditional algorithms. ELMs

were originally developed for the SLFNs [20] and then extended

to the generalized SLFNs which need not be neuron alike [21] .

To tackle with the data with imbalanced class distribution, paper

[22] proposed a weighted ELM which can be generalized to cost

sensitive learning by distributing different weights for individual

examples. The dissimilar ELM (D-ELM) was developed by introduc-

ing misclassification costs into the classifier and the cost-sensitive

D -ELM (CS- D -ELM) was proposed to increase the classification sta-

bility [23] . 

One can find from references many specific forms of uncer-

tainty representation for a vector within which each component

is a number between 0 and 1. The uncertainty in this work is cho-

sen as the fuzziness which basically is a variant of the entropy,

the typical representation of uncertainty for a probability distribu-

tion. It is worth pointing out that our developed learning model is

basically insensitive to the selection of both the classifier training

algorithms and the specific representation forms of uncertainty. 

The rest of this paper is organized as follows. Section 2 gives a

brief review on uncertainty of a vector. Section 3 introduces the

ELM training algorithm and then incorporates the cost-sensitive

class into the ELM training. Section 4 demonstrates some observa-

tions between uncertainty amount and classification cost, and then

proposes our new training model for class cost-sensitive learning.

Section 5 lists the experimental verification and provides some

analysis on our model. Section 6 finally concludes this paper. 

2. Uncertainty 

Uncertainty is usually referred to as that a concept cannot be

described clearly and exactly. We do not find a general definition

of uncertainty mathematically, but under different settings, spe-

cific definitions of uncertainty can be given. The following is a

brief summary of several uncertainties well modeled mathemati-

cally ( Table 1 ). 

We now focus on a typical uncertainty called fuzziness for a

fuzzy set [32] . Fuzziness is used to describe the unclear degree

between two terms such as hot and cold, which was first men-

tioned in 1968 by Zadeh who developed the fuzzy set theory [24] .

The essential idea in Zadeh proposed fuzzy set theory is the mem-

bership degree which extends a 0–1 valued function to a function

taking values within interval [0, 1]. It is noted that the member-

ship function is determined subjectively to a great extent. Follow-

ing the fuzzy set theory, Luca and Termini in 1972 deemed that

fuzziness was a type of the uncertainty described by the fuzzy set,
Please cite this article as: H. Zhu, X. Wang, A cost-sensitive semi-su
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nd furthermore [25] , defined the quantitative measure of fuzzi-

ess by non-probabilistic entropy resembled to the information en-

ropy of Shannon. They also put forward that fuzziness should sat-

sfy three properties which indicate that the degree of fuzziness

chieves maximum when all the elements are equal to each other

nd achieves minimum when all the elements are either 0 or 1. In

ddition, Luca and Termini expanded the definition of the entropy

n fuzzy sets [26] . It can be not only a numerical quantity but also

 column matrix or a vector. 

Fuzziness is considered as a kind of cognitive uncertainty which

merged from the transition of uncertainty from one linguistic

erm to another, where the linguistic term is a fuzzy set defined

n a certain universe of discourse. For instance, the weather can

e expressed as windy, rainy, sunny and so on. Here the windy,

ainy, sunny are fuzzy sets defined on a universal space such as a

umber of days. Suppose that X is a discrete finite universal space,

and σ denote two fuzzy sets defined on X , and F () is a fuzzi-

ess function defined on all fuzzy sets of X . As stated in [27] , the

unction F () must satisfy the following axioms: 

1. F ( μ) = 0 if and only if μ is a crisp set; 

2. F ( μ) gets its maximum if and only if μ( x ) = 0.5 for each x in X ;

3. F ( μ) ≥ F ( σ ) if μ ≤ σ ; 

4. F ( μ) = F ( μ’) where μ’( x ) = 1 – μ( x ) for each x in X ; 

5. F ( μ ∪ σ ) + F ( μ ∩ σ ) = F ( μ) + F ( σ ). 

Regarding the third axiom, the sharpened order “≤” is defined

s [25] : 

≤ σ ⇔ min ( 0 . 5 , ( x ) ) ≥ min ( 0 . 5 , ( x ) ) 
and max ( 0 . 5 , ( x ) ) ≤ max ( 0 . 5 , ( x ) ) 

(2.1)

efinition 1. Let S = { μ1 , μ2 ,…, μn } be a fuzzy set. According to

he opinion of Luca and Termini [25] , the fuzziness of S can be

ormulated as: 

 (S) = −1 

n 

n ∑ 

i =1 

( μi log μi + (1 − μi ) log (1 − μi ) ) (2.2)

Eq. (2.2) has many equivalent forms where the “equivalent”

eans the same extreme values and same monotonicity. For in-

tance, the following formulas (2.3) or (2.4) can be considered as

 simple form of fuzziness when n = 2 and S is normalized (i.e.

1 + μ2 = 1 ). 

 1 (S) = 1 − μ1 
2 − (1 − μ1 ) 

2 (2.3)

 2 ( S ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

μ1 

1 − μ1 

0 ≤ μ1 ≤ 0 . 5 

1 − μ1 

μ1 

0 . 5 ≤ μ1 ≤ 1 

(2.4)

The fuzziness of a fuzzy set defined by (2.2) achieves maximum

hen the element μi = 0.5 for each i ( 1 ≤ i ≤ n ), and achieves min-

mum when the element μi = 1 or μi = 0 for every i = 1, 2…, n . 

We connect the classifier output together with the fuzziness

f a fuzzy set [28] . In literatures we can find that many classi-

ers can have the output forms of fuzzy vector which means a

iscrete fuzzy set. Although the classifiers directly output a real
pervised learning model based on uncertainty, Neurocomputing 
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Fig. 1. ELM for training an SLFN. 
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ector in which each element can be a real member, it is easy

o make a normalization for the output such that the real vec-

or becomes a fuzzy vector, where the dimension of the vector

s the number of classes for a classification problem. This paper

oes not focus on the normalization process and supposes that the

utput of a classifier is a fuzzy vector in which each component

epresents the degree of the case belonging to the corresponding

lass. Given a set of training samples { X i } N i =1 
from which a classifier

s trained with outputs of fuzzy vectors, we can obtain a mem-

ership matrix U = ( μi j ) c×N where c represents the number of

lasses. After a normalization process, the matrix has the following

roperties: 

C 
 

i =1 

μi j = 1 , 0 < 

N ∑ 

j=1 

μi j < N, μi j ∈ [0 , 1] (2.5) 

here μi j denotes the membership of j th sample X j belonging to

he i th class. 

We highlight in this section that the matrix U is obtained after

raining and, for each sample, the trained classifier will produce an

utput vector in a form of fuzzy set μ j which is a row in matrix

. Based on (2.2) , the fuzziness of trained classifier on X j can be

valuated by 

 ( μ j ) = −1 

C 

C ∑ 

j=1 

( μi j log μi j + (1 − μi j ) log ( 1 − μi j ) ) (2.6) 

. Extreme learning machine with cost-sensitive class 

Neural networks are widely used in many fields because of

heir strong ability to approximate complex nonlinear mappings.

he approximation ability of randomly weighted neural networks

s confirmed in [20,21,29] . Extreme learning machine (ELM) [19] is

n algorithm for training single-hidden-layer feedforward neural

etworks (SLFNs), which is reported in many references to have

aster learning speed and better generalization performance than

he traditional algorithms of training feed-forward neural net-

orks. The traditional algorithms for training SLFN such as BP

earning algorithm need to tune parameters artificially and there-

ore are time consuming. 

lgorithm 1. The initial ELM algorithm for training an SLFN is de-

cribed as follows. 

nput: A training set S with N training samples which can be repre-

ented a feature matrix X N×dI , dI is the dimension of feature vector,

nd a tag matrix T N×dO , dO is the number of classes; a predefined

nterval [a, b] where a and b are two real numbers (a > b) 
utput: A function f ( x 1 , x 2 , · · · x dI ) which is corresponding to Fig. 1 
i  

s

Please cite this article as: H. Zhu, X. Wang, A cost-sensitive semi-su
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(1) Generate the hidden layer weight matrix A d I×d h , dh is the di-

mension of hidden layer, and bias matrix B N×dh by randomly

selecting real numbers from [ a , b ]. 

(2) The output matrix of hidden layer can be computed through

the following formula: 

H N×dh = h (X ) = h (X A + B ) (3.1)

here, 

X N×dI = 

⎡ 

⎢ ⎢ ⎣ 

x 11 x 12 · · · x 1 dI 

x 21 x 22 · · · x 2 dI 

. . . 
. . . 

. . . 
x N1 x N2 · · · x NdI 

⎤ 

⎥ ⎥ ⎦ 

, 

 d I×d h = 

⎡ 

⎢ ⎢ ⎣ 

a 11 a 12 · · · a 1 dh 

a 21 a 22 · · · a 2 dh 

. . . 
. . . 

. . . 
a dI1 a dI2 · · · a d Id h 

⎤ 

⎥ ⎥ ⎦ 

, 

B N×dh = 

⎡ 

⎢ ⎢ ⎣ 

b 11 b 12 · · · b 1 dh 

b 21 b 22 · · · b 2 dh 

. . . 
. . . 

. . . 
b N1 b 1 N2 · · · b Ndh 

⎤ 

⎥ ⎥ ⎦ 

The function h ( X ) is the activation function which is used to in-

rease the nonlinear impact of ELM model. Generally, the function

 ( x ) can be the following forms: 

1 © Liner function: h (x ) = k × x + c

2 © Ramp function: h (x ) = 

{ 

T , x > c 

k × x, | x | ≤ c 

−T , x < −c 

3 © Threshold function: h (x ) = 

{
1 , x ≥ c 

0 , x < c 

4 © Sigmoid function: h (x ) = 

2 
1+ e −ax (0 < h (x ) < 1) 

In this paper, we use sigmoid function to be the activation func-

ion. 

(3) The weights of output layer nodes are represented as a ma-

trix βd h ×d o which can be obtained by solving a least square

problem 

Min 

β
‖ 

Hβ − T ‖ 

(3.2) 

By solving its regular equations, the solution can be represented

s: 

= ( H 

T H ) −1 H 

T (3.3) 

The problem can also be transformed to solve a Moore–Penrose

eneralized inverse of matrix H. In this setting, it corresponds to

 minimum norm least square problem with the solution β = H 

+ T 
here H 

+ represents the Moore–Penrose generalized inverse ma-

rix of H. 

(4) The output function can be written as 

f 

(
⇀ 

x 

)
= h 

(
⇀ 

x 

)
β (3.4) 

We start to incorporate the cost-sensitive concept into the ELM

raining. From reference we can know different types of cost-

ensitive training. Usually it can be categorized three models, i.e.,

he learning is sensitive to specific examples, to particular fea-

ures, or to different classes respectively. We focus on the third

ne which indicates that, for any example, the cost of classifying

t wrongly from class A to class B is different from the cost of clas-

ifying it wrongly from class B to class A. 
pervised learning model based on uncertainty, Neurocomputing 
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Suppose that the classification problem has m classes and the

class–cost matrix is represented as 

 = 

(
C i j 

)
m ×m 

= 

⎛ 

⎜ ⎝ 

C 11 C 12 · · · C 1 m 

C 21 C 22 · · · C 2 m 

· · · · · · · · · · · ·
C m 1 C m 2 · · · C mm 

⎞ 

⎟ ⎠ 

m ×m 

(3.5)

where C i j is the cost that the true class of an example is the i th

but it is wrongly classified as the j th class where i and j can be any

integers in [1, m ]. Obviously each diagonal element in the matrix C

is zero. 

Let k j = C j1 + C j2 + · · · + C jm 

which denotes weight of wrongly

classifying an example of which the true class is the j th. We em-

bed these weights into the ELM training listed in Algorithm 1 . Ex-

amples in the training set are first sorted according to their class

labels. All of training examples are categorized as m groups. Sup-

pose that the j th group (corresponding to class # j ) has n j exam-

ples ( j = 1, 2, …, m ). We rewrite the matrix H in Algorithm 1 as

H = ( H 

T 
1 
, H 

T 
2 
, · · · , H 

T 
m 

) T where H j is a block of matrix H with n j 
rows and dI columns ( j = 1, 2, …, m ). Then, we consider the op-

timization problem formulated below. 

Min 

β

∥∥∥∥∥∥∥∥

⎛ 

⎜ ⎜ ⎝ 

k 1 H 1 β
k 2 H 2 β

. . . 
k m 

H m 

β

⎞ 

⎟ ⎟ ⎠ 

−

⎛ 

⎜ ⎜ ⎝ 

k 1 T 1 
k 2 T 2 

. . . 
k m 

T m 

⎞ 

⎟ ⎟ ⎠ 

∥∥∥∥∥∥∥∥
= Min 

β
( k 1 ‖ 

H 1 β − T 1 ‖ 

+ k 2 ‖ 

H 2 β − T 2 ‖ 

+ · · · + k m 

‖ 

H m 

β − T m 

‖ ) 

(3.6)

This is a weighted least square problem. Let H A =
( k 1 H 

T 
1 , k 2 H 

T 
2 , · · · , k m 

H 

T 
m 

) T and T A = ( k 1 T 
T 

1 , k 2 T 
T 

2 , · · · , k m 

T T m 

) T . As

same as in Algorithm 1 , the solution can be represented as: 

β = 

(
H 

T 
A H A 

)−1 
H 

T 
A T A (3.7)

Also the solution can be represented via Moore–Penrose gen-

eralized inverse. That is, the solution can be denoted as β = H 

+ 
A 

T A 
where H 

+ 
A 

represents the Moore–Penrose generalized inverse ma-

trix of H A . In summary we have the algorithm for training a class-

cost sensitive ELM. 

Algorithm 2. Let k = ( k 1 , k 2 , · · · , k m 

) be a given weight

vector corresponding to the cost of misclassification with

respect to m classes, H A = ( k 1 H 

T 
1 
, k 2 H 

T 
2 
, · · · , k m 

H 

T 
m 

) T and

T A = ( k 1 T 
T 

1 
, k 2 T 

T 
2 

, · · · , k m 

T T m 

) T . Replacing matrices H and T in

Algorithm 1 with H A and T A respectively, we have the solution 

β = 

(
H 

T 
A H A 

)−1 
H 

T 
A T A (3.8)

It is noted that Algorithm 2 will become Algorithm 1 when

the weigh vector is equal to (1, 1, …, 1), i.e., each class is equally

treated for the cost of misclassification. 

4. Sample categorization based on uncertainty 

This section reports an experimental observation regarding the

training/testing cost among sample categories with different un-

certainty. We can use Algorithm 2 to train an ELM with a given

class cost matrix and a training set of classification problem. The

trained ELM can have a vector output for any example (training or

testing), and the vector can further be normalized as a fuzzy set.

Then all examples (training or testing) are grouped as several cate-

gories based on the sorting of sample uncertainty. It is experimen-

tally observed that a significant difference of total cost (training or

testing) exists among the several categories. 
Please cite this article as: H. Zhu, X. Wang, A cost-sensitive semi-su
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lgorithm 3. Sample categorization based on uncertainty. 

(1) Divide the data set samples into two parts randomly based

on a given ratio, i.e., the training set and testing set respec-

tively. 

(2) Use Algorithm 2 to train an ELM for a given class cost ma-

trix. 

(3) Match each sample (training/testing) to the trained ELM and

get a fuzzy vector output. 

(4) Compute the fuzziness for each sample’s output, and based

on the amount of fuzziness, sort samples. 

(5) Group the samples (training and testing respectively) as 3

categories based on the fuzziness amount sorting, i.e., low,

middle, and high fuzziness categories of samples. 

(6) Calculate respectively averaged cost of training and testing

for each of 3 categories. 

(7) Calculate respectively the averaged fuzziness of training and

testing for each of 3 categories. 

(8) Repeat steps 1) −7) to get averaged training and testing cost

for low and high fuzziness categories. 

Some notes on Algorithm 3 . In step 3) the output of the trained

LM may not be a fuzzy vector. Suppose the initial output vector

s μ = ( μ1 , μ2 , ..., μn ) , then the fuzzy vector v = ( v 1 , v 2 , ..., v n ) is

iven by (4.1) while we make the appointment: log(0) = 0. 

 i = 

{ 

μi 0 < μi < 1 

0 μi ≤ 0 

1 μi ≥ 1 

(4.1)

In step (4) the formula of computing fuzziness is listed in

ection 2 [25] . In step (5) the number of samples for each category

epends on two thresholds. With different thresholds, the results

ay be far different with each other. Using appropriate thresh-

lds can better demonstrate the experimental results. In our exper-

ments, we define the thresholds equal to the values which evenly

ivide the sample set into three parts based on their fuzziness de-

rees. Honestly speaking, it is hard to find the best thresholds to

each an optimal result of experiments. We try to study this issue

n the future work deeply. 

We now experimentally observe the averaged cost of low and

igh fuzziness categories respectively both for training and testing

ets. The datasets used for our experiments are listed in Table 2

nd the experimental results are summarized in Table 3 . 

Figs. 2 –5 show the change of training and testing cost with ex-

erimental times for some datasets. 

From Table 3 and Figs. 2 –5 we can clearly see that the averaged

ost of high fuzziness category is significantly bigger than that of

ow fuzziness category both for training and testing. These illus-

rate that the averaged cost is closely related to the uncertainty.

hus, the averaged cost for a certain class with high fuzziness de-

ree is always bigger than those classes with low fuzziness degree.

t is verified that the cost with different fuzziness is significantly

ifferent from each other, and the higher fuzziness degree is, the

igger total cost is (both for training and testing). 

. Our approach and experimental demonstration 

Section 4 indicates experimentally an interesting phenomenon,

hat is, the testing cost of the low fuzziness category of samples is

enerally less than the testing cost of high fuzziness category for

 give class cost matrix. Carefully studying this phenomenon, we

ave three approaches to reduce the total cost of testing. 

(1) Divide-and-conquer strategy : It means we can regularly use

the trained classifier to predict classes of samples of low

fuzziness category and use an enhanced technique such as

ensemble learning to particularly predict the high fuzziness

samples. 
pervised learning model based on uncertainty, Neurocomputing 
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Table 2 

Datasets used for our experiments. 

Data set Total sample Input features Class Hidden nodes 

pima 768 7 2 50 

credit(0–1)21 690 6 2 100 

magic(0–1) 19,020 10 2 150 

sonar21 208 60 2 50 

musk01(0–1)21 476 166 2 50 

Spambase(p10)21 458 57 2 10 

AU1_21 10 0 0 20 2 100 

wilt 500 5 2 50 

wineQW(0–1)435 4535 11 3 150 

wineQW(p10)435 449 11 3 50 

wineQR(0–1)345 1518 11 3 100 

page(0–1)254 532 10 3 10 

Abalone-r(0–1)91,113 1379 7 3 100 

winequality-white657 4535 11 3 50 

Table 3 

Experimental results of Algorithm 3. 

Pima Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.1508 0.3023 50 [ 
0 1 

3 0 
] 

High fuzziness category 0.6111 0.6047 

credit(0–1)21 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.0957 0.3739 100 [ 
0 1 

3 0 
] 

High fuzziness category 0.8174 0.7478 

magic(0–1) Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.1587 0.1164 150 [ 
0 1 

3 0 
] 

High fuzziness category 0.5410 0.5726 

sonar21 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.0303 0.1944 50 [ 
0 1 

3 0 
] 

High fuzziness category 0.2727 0.6944 

musk01(0–1)21 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.1795 0.2500 50 [ 
0 1 

3 0 
] 

High fuzziness category 0.5641 0.7625 

Spambase(p10)21 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.1600 0.2338 10 [ 
0 1 

3 0 
] 

High fuzziness category 0.7733 0.7922 

AU1_21 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.2108 0.5663 100 [ 
0 1 

3 0 
] 

High fuzziness category 0.5181 0.7289 

wilt Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.0120 0.0482 50 [ 
0 1 

3 0 
] 

High fuzziness category 0.3614 0.3494 

wineQW(p10)435 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.5697 0.4331 100 [ 

0 1 1 

2 0 1 

4 3 0 

] 

High fuzziness category 0.6335 0.6457 

page(0–1)254 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.3864 0.1011 10 [ 

0 1 1 

2 0 1 

4 3 0 

] 

High fuzziness category 0.8182 0.4719 

Abalone-r(0–1)91,113 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.5833 0.5628 100 [ 

0 1 1 

2 0 1 

4 3 0 

] 

High fuzziness category 0.8158 0.8225 

winequality-white657 Training cost Testing cost Hidden nodes Class cost matrix 

Low fuzziness category 0.5007 0.5013 50 [ 

0 1 1 

2 0 1 

4 3 0 

] 

High fuzziness category 0.8093 0.7024 

Please cite this article as: H. Zhu, X. Wang, A cost-sensitive semi-supervised learning model based on uncertainty, Neurocomputing 
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Fig. 2. Cost for two classes (training). 

Fig. 3. Cost for two classes (testing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Cost for more-than-two classes (training). 

Fig. 5. Cost for more-than-two classes (testing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) Three way decision model [30] : It sets up a threshold. If a

sample has fuzziness bigger than the threshold, no decision

is made. It is explained that the current information for the

sample is not sufficient to predict its class. 

(3) Semi-supervised learning technique [31] : It thinks of that the

low fuzziness samples are quality samples and are good

enough to participate in training. These testing samples to-

gether with their predicted class labels are added in the

training set for retraining. 

Approach 1, i.e., the divide-and-conquer, which is a general

strategy suitable for large scale problems. It is often criticized to

have difficulties of lacking specific partition and fusion algorithms.

Approach 2, i.e., the three way decision, refuses to make decision

for high uncertainty samples which are usually very important to

the model development. In comparison with approaches 1 and 2,

approach 3, i.e., the semi-supervised learning is simpler, easier to

implement, and more effective for reducing the total cost. 

Algorithm 4. Adding low fuzziness samples together with their

predicted class labels in the training set and retraining. 
Please cite this article as: H. Zhu, X. Wang, A cost-sensitive semi-su

(2017), http://dx.doi.org/10.1016/j.neucom.2017.04.010 
(1) Divide the data set samples into two parts randomly based

on a given ratio, i.e., the training set and testing set respec-

tively. 

(2) Use Algorithm 2 to train an ELM for a given class cost ma-

trix, and compute the fuzziness of each sample’s output both

for training and testing. 

(3) Calculate the averaged cost both for training and testing,

then marked as first training averaged cost and first testing

averaged cost. 

(4) Group the samples (training and testing respectively) as 3

categories based on the fuzziness magnitude sorting, i.e.,

low, middle, and high fuzziness categories of samples. 

(5) Add a number of testing samples with low fuzziness and

their class labels predicted by the basic classifier in the orig-

inal training set, and retraining an ELM on the enlarged

training set. 

(6) Calculate the averaged cost both for training and testing for

the new classifier, and marked as second training averaged

cost and second testing averaged cost. 
pervised learning model based on uncertainty, Neurocomputing 
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Table 4 

Experimental results of Algorithm 4. 

Dataset Before adding samples After adding samples 

Training cost Testing cost Training cost Testing cost 

pima 0.5833 0.6074 0.4340 0.5481 

Phoneme-r(0-1)21 0.4327 0.3946 0.2667 0.3771 

magic(0-1) 0.4110 0.4151 0.2629 0.4004 

wineQR(0-1)345 0.4801 0.5475 0.4209 0.5097 

wineQW(0-1)435 0.5309 0.5576 0.4591 0.5376 

Abalone-r(0-1)91,113 0.5613 0.5183 0.5181 0.4821 

winequality-white657 0.5503 0.5405 0.4952 0.5171 

Fig. 6. Training cost for magic(0-1). 
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Fig. 7. Testing cost for magic(0-1). 

Fig. 8. Training cost for winequality-white657. 
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(7) Compare the first averaged cost with the second averaged

cost both for testing and training. 

Some notes on Algorithm 4 . The main idea of Algorithm 4 is

utting some testing samples with lowest fuzziness and their pre-

icted class labels into the original training samples, and retraining

n an enlarged training set. 

One problem we should pay attention to is that the data sam-

les we add into the original training set may have the same cate-

ory. In this situation, adding low fuzziness samples to the original

raining set and then retaining may not result in a classifier perfor-

ance improvement. And furthermore, the algorithm is invalid and

navailable. To solve this problem, we change the algorithm which

btains the data samples according only to fuzziness of output vec-

or of each testing sample which we add into the original training

et. In addition to the fuzziness, we need to consider the distri-

ution of class labels of added samples. In summary, the handling

trategy in this situation is to keep the balance of the categories of

he data samples with the lowest fuzziness. 

Datasets used in Algorithm 4 and other related information in-

luding the structure of neural networks are listed in Table 2 . The

lass cost matrix for 2 and 3 classes are given by 

 22 = 

[
0 1 

3 0 

]
, 

C 33 = 

[ 

0 . 0 1 . 0 1 . 0 

1 . 2 0 . 0 1 . 0 

1 . 4 1 . 3 0 . 0 

] 

(5.1) 

Experimental results are listed in Table 4 . 

The change of averaged training (resp. testing) costs before and

fter adding low fuzziness samples with the experimental number

f times for some datasets is shown in Figs. 6 –9 . 
Please cite this article as: H. Zhu, X. Wang, A cost-sensitive semi-su

(2017), http://dx.doi.org/10.1016/j.neucom.2017.04.010 
Furthermore we experimentally observe the change of cost dif-

erence between low and high fuzziness categories with the class

ost matrix. From Figs. 10 and 11 , it is not hard to see that the

ifference of total averaged cost between before-adding and after-

dding low fuzziness samples is not sensitive to the cost matrix. 

Keeping the first class misclassification cost unchanged and in-

reasing the second class misclassification cost from 1 to 3, we ob-
pervised learning model based on uncertainty, Neurocomputing 
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Fig. 9. Testing cost for winequality-white657. 

Fig. 10. Different cost matrix for pima (training). 

Fig. 11. Different cost matrix for pima (testing). 
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(2017), http://dx.doi.org/10.1016/j.neucom.2017.04.010 
erve the corresponding experimental results. The difference be-

ween the first cost and the second cost does not vary sharply

oth for training and testing processes. Generally, the misclassifi-

ation cost from one class to another is given by users according

o specific situations. The experiments confirm that the total cost

hange is not sensitive to the misclassification cost perturbation

hich should be under a controllable range. It is not meaningful

o discuss the total cost increase for large change of misclassifica-

ion inputs. We speculate that the non-sensitivity is resulted from

he stability of ELM model and its random selection mechanism of

onnection weights. Unfortunately we have not yet had a model to

nalyze this sensitivity. 

. Concluding remarks 

This paper empirically confirms that, for classification problem

ith cost-sensitive classes, samples with low output-fuzziness are

sually of high quality. It will reduce the total cost of prediction if

hese high quality samples together with their predicted labels are

dded in the original training set and a retraining on the enlarged

raining set is conducted. We highlight that it is an empirical ob-

ervation. We have not yet a mathematical equation to model this

bservation and then to logically prove the corresponding results.

ome initial study on building the model indicates that it is inter-

sting but very difficult. 

It may lead to an open problem that, under the condition of

earning consistency (i.e., with probability 1, the performance of

lassifier learned from A is better than that from B if B is a subset

f A), how to build a mathematical model to prove that the per-

ormance of classifier trained from S + will be better thanthat from

 ? Here S is the original training set which is categorized as two

arts, i.e., the low uncertainty and high uncertainty parts and S +
s the union of S and the part of low uncertainty samples (with

redicted labels). It assumes that the prediction accuracy of the S -

rained classifier on the low uncertainty parts is much higher than

he training accuracy. 
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