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A B S T R A C T

Monotonic classification problems mean that both feature values and class labels are ordered and monotonicity
relationships exist between some features and the decision label. Extreme Learning Machine (ELM) is a single-
hidden layer feedforward neural network with fast training rate and good generalization capability, but due to
the existence of training error, ELM cannot be directly used to handle monotonic classification problems. This
work proposes a generalization of ELM for processing the monotonic classification, named as Monotonic
Classification Extreme Learning Machine (MCELM) in which the monotonicity constraints are imposed to the
original ELM model. Mathematically, MCELM is a quadratic programming problem in which the monotonicity
relationships are considered as constraints and the training error is the objective to be minimized. The
mathematical model of MCELM not only can make the generated classifier monotonic but also can minimize the
classification error. MCELM does not need to tune parameters iteratively, and therefore, keeps the advantage of
extremely fast training which is the essential characteristic of ELM. MCELM does not require that the
monotonic relationships existing between features and the output are consistent, which essentially relaxes the
assumption of consistent monotonicity used in most existing approaches to handling monotonic classification
problems. In comparison with exiting approaches to handling monotonic classification, MCELM can indeed
generate a monotonicity-reserving classifier which experimentally shows a much better generalization capability
on both artificial and real world datasets.

1. Introduction

As a fundamental task of supervised learning, classification is to get
a classifier by training a number of labeled samples, and then to predict
the class label of an unseen sample based on the trained classifier.
From references we can find many different algorithms proposed to
solve classification problems, such as decision tree induction [1],
Bayesian classifier [2], kernel methods [3], support vector machine
[4], artificial neuron networks [5], etc. They can be used to handle
different kinds of data, such as uncertain data [6,7] and ordinal data.

Ordinal classification is a generalization of the traditional classifica-
tion. In traditional classification problems the class labels are nominal
while in the ordinal classification the class labels are ordered, in other
words, there is an order relationship among the class labels in ordinal
classifications. For example, the damage degree after a typhoon hit can
be classified into three levels: slight, moderate and serious. It is clear
that there is an order relationship among these class labels. In
comparison with the traditional classification, the ordinal classification
sufficiently employs the information of order among the labels.

The monotonic classification is essentially an ordinal classification

with monotonicity constraints, in which both feature values and class
labels are ordered and monotonic relationships exist between them.
The monotonicity can be either increasing or decreasing. If the decision
value increases (decreases) with the increasing (decreasing) of a
particular feature value, then the monotonicity between the decision
attribute and the feature is increasing; otherwise it is decreasing. For
example, the grade of scholarship is monotonically increasing with
respect to the student's academic performance and the satisfaction
degree of a car is monotonically decreasing with respect to the
maintenance cost. Monotonic classification problems widely exist in
many real application fields such as disease diagnoses, bankruptcy risk
assessments and employee selections.

In recent decades, the monotonic classification has attracted lots of
attention from researchers. The following is an incomplete survey on
monotonic classifications.

In 1989, Ben David et al. introduced the first algorithm OLM [8] for
ordinal classification with monotonic constraints in the machine
learning community. This method consists of two components. It first
chooses a subset of training objects and then classifies the samples of
the subset by using a function. Unfortunately this approach may
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produce non-monotonic results. Greco et al. proposed a dominance-
based rough set approach [9] to deal with the multi-criteria sorting,
which is an extension of the classical rough set approach [10]. The
approach handles inconsistencies coming from violation of the mono-
tonicity constraints by substituting the indiscernibility relation with the
dominance relation. It is the first approach using the comprehensive
theory for monotonic classification tasks in the domain of knowledge
discovery. Further in [11,12], the model of dominance rough set was
used to extract rules for monotonic classification. Similar pieces of
work can be found from many other researchers' studies, such as [13–
18]. Among the existing approaches to learning with monotonicity
constraints, the nonparametric approach is the most general one. In
[19], the authors introduced a probabilistic model for ordinal classi-
fications with monotonicity constraints based on the concept of
stochastic dominance and investigated the possible loss functions. Its
main contribution is considered as the analysis on nonparametric
approach from a statistical point of view. The analysis suggested that
convex losses were suitable for monotonic classification, and provided
a necessary foundation for nonparametric methods.

Decision tree algorithms such as the CART [20] and the C4.5 [21]
are widely used in the machine learning community to solve classifica-
tion problems. Many variants of these algorithms have been developed
and segment based decision tree [22] is an instance. To solve ordinal
classifications with monotonicity constraints, lots of decision tree
studies on monotonic classifications have been done. The following is
a brief summary about them.

Ben-David [23] introduced a tree induction algorithm called
Monotone Induction of Decision trees (MID) to this context. His main
work was to modify the conditional entropy by adding a term called
order-ambiguity-score, which made the splitting strategy monotonic.
In 1999, Makino et al. provided two algorithms which were named as
Positive Decision Trees (PDT) and Quasi-Positive Decision Trees (Q-
PDT) [24] based on the former decision tree algorithms. However, both
of these algorithms can only be applied to solve binary-class monotonic
classification problems. In [25–29], those two algorithms were ex-
tended to handle K-class monotonic classification problems. In 2000,
R. Potharst and J. C. Bioch developed an order-preserving tree-
generation algorithm and provided a technique for repairing non-
monotonic decision trees for multi-attribute classification problems
with several linearly ordered classes [30]. In 2003, A. J. Feelders and
Martijn Pardoel proposed a collection of pruning techniques to make a
non-monotonic tree monotonic [31]. In the same year, a tree construc-
tion algorithm was proposed by Cao-Van and De Baets to avoid
violating the monotonicity of data [32,33]. In 2008, Xia, et al. extended
the Gini impurity used in CATR to ordinal classifications, and called it
ranking impurity [34]. In 2009, Kamp, Feelders and Barile proposed a
new algorithm for learning isotonic classification trees [35].

The algorithms mentioned above have enhanced the capability of
extracting ordinal information. However, they have a common dis-
advantage, that is, the algorithms cannot guarantee a monotonic tree is
generated if the training data are monotonically increasing or decreas-
ing.

To generate a monotonic classifier for monotonic classification
problems, in 2011 Qinghua Hu et al. introduced a new measure of
feature quality, which was called rank mutual information [36]. It not
only can inherit the advantage of robustness from Shannon's entropy,
but also can extract ordinal structures from monotonic datasets. Based
on the rank mutual information, the authors designed a decision tree
algorithm named REMT which can get consistently monotonic decision
tree. However, the REMT algorithm does not take the classification
error into account, which cannot guarantee the classification accuracy
of the generated classifier. Moreover, the classifier is obtained under
the restriction that all the monotonic relationships between features
and the decision attribute are consistent; otherwise, the data have to be
preprocessed to meet this restriction, which may cause information
loss. Besides, in many other existing methods, such as those proposed

in [19,36], all the monotonic relationships are required to be consis-
tent, too.

Conventional artificial neural networks have great approximation
capability and almost always generate good separation in training
datasets, but the behavior of the neural networks training process
depends heavily on the training set. For a given training sample the
classification boundary generated by a neural network is relatively
unpredictable, especially in the case of small sample size. There are
many extendings of artificial neural network. Such as the polygonal
fuzzy neural network which is proposed to handle polygonal fuzzy data
in [37], weighted networks [38,39] and discrete-time stochastic neural
networks [40]. In addition, to make a breakthrough, researchers have
proposed a few methods which are based on artificial neural networks
to handle monotonic classification problems. In order to solve the two-
group classification problems with monotonicity constraints, Norman
P. Archer [41] developed a modification of the existing back propaga-
tion neural network algorithm by preprocessing the training samples
with a linear classification function. In [42], C. Li et al. studied the
monotonic type-2 fuzzy neural network (T2FNN). Under the mono-
tonicity constraints, a hybrid algorithm was provided to optimize the
parameters of the monotonic T2FNN. In [43], C. Li et al. studied the
incorporation of monotonicity into interval type-2 fuzzy logic systems.
They showed that type-2 fuzzy logic systems were monotonic if the
antecedent and consequents parts of their fuzzy rules were arranged
according to the proposed monotonicity conditions. These approaches
tend to be much more efficient than standard back propagation
learning algorithms. However, all the parameters in these algorithms
still need to be tuned iteratively by using the gradient descent method,
which is time consuming and easily gets stuck in local minima.

In the past two decades, support vector machine (SVM) [44] and its
variants [45–48] have been extensively used in classification applica-
tions due to their surprising classification capability. But the optimiza-
tion constraints are strict and the generalization ability is not very
good. The ELM method proposed in [49] has overcome the short-
comings of SVM. ELM [49] is a single-hidden layer feed-forward neural
network with fast training rate and good generalization capability, but
due to the existence of training error, ELM cannot be directly used to
handle monotonic classification problems. Motivated by extending
ELM for handling monotonic classifications and by overcoming the
above-mentioned shortcomings of those approaches handling mono-
tonic classifications, this paper proposes a generalization of ELM,
which is named as Monotonic Classification Extreme Learning
Machine (MCELM) in which the monotonicity constraints are imposed
to the original ELM model. The mathematical model of MCELM is a
quadratic programming problem in which both the classification error
and monotonicity are taken into account. The model can perform well
with very little classification error, and more importantly, can ensure
that the generated classifier is monotonic. Moreover, different from
other existing approaches, MCELM does not require that all the
monotonic relationships between features and the decision attribute
are consistent, which indicates that the related data preprocessing is
unnecessary and furthermore some information loss can be avoided.
Similar to ELM, in MCELM the gradient descent method is not adopted
and all the parameters do not need to be tuned iteratively, which keeps
the essential advantage of extremely fast training of the original ELM.

The rest of the paper is organized as follows. Section 2 introduces
the basic knowledge of monotonic classification and ELM. Section 3
develops our MCELM model and describes the framework of MCELM.
Experimental results are presented in Section 4. Finally, Section 5
provides the concluding remarks.

2. Basic knowledge of monotonic classification and ELM

2.1. Monotonic classification

Suppose that U x x= { , … }n1 is the set of objects; A is the set of
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features describing the objects; D is the decision attribute of the
samples, which represents the class label in classification problems.
The value of sample xi in terms of attribute a A∈ or D is denoted by
v x a( , )i or v x D( , )i respectively. The ordinal relationship between
samples in terms of attribute a or D is denoted by ‘≤ ’ or ‘≥ ’. We say
xj is not worse than xi in term of a or D if v x a v x a( , ) ≤ ( , )i j or
v x D v x D( , ) ≤ ( , )i j denoted by x x≤i a j and x x≤i D j respectively.
Correspondingly, we can also define x x≥i a j and x x≥i D j. Given
B A⊆ , we say v x B v x B( , ) = ( , )i j if for a B∀ ∈ , we have
v x a v x a( , ) = ( , )i j .

Definition 1. Given a feature a, let B A a= − { }. For x x U∀ , ∈i j ,
under the restriction of v x B v x B( , ) = ( , )i j , if v x a v x a( , ) ≥ ( , )i j then
v x D v x D( , ) ≥ ( , )i j or if v x a v x a( , ) ≤ ( , )i j then v x D v x D( , ) ≤ ( , )i j , we say
decision attribute D is monotonically increasing with respect to feature
a; otherwise if v x a v x a( , ) ≥ ( , )i j then v x D v x D( , ) ≤ ( , )i j or if
v x a v x a( , ) ≤ ( , )i j then v x D v x D( , ) ≥ ( , )i j , we say decision attribute D
is monotonically decreasing with respect to feature a.

In monotonic classification problems, some of the monotonicity
relationships are increasing and some are decreasing. This phenom-
enon widely exists in our real life. For instance, in the problem of car
evaluation, the car acceptability increases when the size of luggage boot
varies from small to big and it decreases when the maintenance cost
varies from low to high.

2.2. Extreme Learning Machine (ELM)

In conventional feedforward neural networks, all parameters are
tuned iteratively by using gradient descent technique. Therefore the
learning speed of feedforward neural networks is in general far slower
than required, which has been a major bottleneck in applications of the
gradient descent-based neural networks for past decades. Moreover,
conventional neural networks may easily converge to local minima. To
overcome these shortcomings, Guang Bin Huang et al. proposed the
Extreme Learning Machine (ELM) in [49]. The ELM algorithm can
learn thousands of times faster than the BP-based algorithm in
conventional neural networks. Furthermore ELM can produce good
generalization performance in most cases and has been successfully
applied to many classification and regression problems [50–53]. In this
section, we will introduce the basic framework of ELM briefly.

In fact ELM is a single-hidden layer feedforward neural network
(SLFN). There are three layers in the framework of ELM: the input
layer, the hidden layer and the output layer. The input weights link the
input layer to the hidden layer and the output weights connect the
hidden layer to the output layer.

In the framework of ELM, suppose there are n neurons in the input
layer, N͠ neurons in the hidden layer and m neurons in th output layer.
For N arbitrary distinct samples x t( , )i i , where x x x Rx = [ , ,…, ] ∈i i i in

T n
1 2

and t t t Rt = [ , ,…, ] ∈i i i im
T m

1 2 ( i N1 ≤ ≤ , R is a set of real numbers),
ELM with activation functions g x i N( )( = 1,…, )͠

i is mathematically
modeled as

∑ ∑β βg g b j Nx w x o( ) = ( · + ) = , = 1,…, .
i

N

i i j
i

N

i i j i j
=1 =1

͠ ͠

(1)

In Eq. (1), w w ww = [ , ,…, ]i i i in
T

1 2 is a weight vector connecting the ith
hidden node and the input nodes, β β β β= [ , ,…, ]i i i im

T
1 2 is a weight

vector connecting the ith hidden node and the output nodes, and bi is
the threshold of the ith hidden node i N( = 1,…, )͠ . w x·i j denotes the
inner product of wi and xj.

As named by Huang et al. in [54,55], H is called the hidden layer
output matrix of the neural network. The expression of H is shown as
follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

b b
g b g b

g b g b

H w w x x
w x w x

w x w x

( ,…, , ,…, , ,…, )

=
( · + ) ⋯ ( · + )

⋯ ⋯ ⋯
( · + ) ⋯ ( · + )

.

N N N

N N

N N N N N N

1 1 1

1 1 1 1

1 1 ×

͠ ͠

͠ ͠

͠ ͠ ͠ (2)

Traditionally, in order to train a single-hidden layer feedforward
neural network, we wish to find specific wi, b i N( = 1,…, )͠i and β such
that

β βb b b bH w w T H w w T( ,…, , ,…, ) − = min ( ,…, , ,…, ) −

,
β

N N
b

N N
w

1 1
, ,

1 1͠ ͠ ͠ ͠
i i

(3)

where
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×
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×͠ ͠ ͠ ͠ (4)

which is equivalent to minimizing the cost function

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑E β g b tw x= ( · + ) − .

j

N

i

N

i i j i j
=1 =1

2͠

(5)

In the ELM model, the input weights wi and hidden layer biases bi
are randomly assigned. For fixed wi and bi, where i N1 ≤ ≤ ͠ , to train a
single-hidden layer feedforward neural network is simply equivalent to
finding a least-squares solution β of the linear system Hβ T= , i.e.,

β βb b b bH w w T H w w T( ,…, , ,…, ) − = min ( ,…, , ,…, ) − .
β

N N N N1 1 1 1͠ ͠ ͠ ͠

(6)

According to[49], the smallest norm least-squares solution of the
above system is

β H T= ,† (7)

where H† is the Moore-Penrose generalized inverse of matrix H
[56,57].

The learning speed of ELM is much faster than those of the
traditional gradient-based learning algorithms because activation func-
tions are infinitely differentiable in ELM, which makes input weights
and hidden layer biases can be randomly assigned. In ELM, once input
weights and hidden layer bases are fixed, output weights can be
analytically determined by Eq. (7). All parameters do not need to be
tuned iteratively in ELM.

ELM can infinitely approximate any function when the number of
hidden neurons is infinitely close to the number of training samples.
But limited by some factors, the number of hidden neurons or training
samples may not be enough, which can weaken the approximation
capability of ELM. Therefore, when ELM is used to solve monotonic
classification problems, the generated classifier cannot be guaranteed
being monotonic, which will be illustrated by the following example.

Example 1. We use the following function to generate a dataset:

f x x x x x x( , , ) = − + sin ,1 2 3 1 2
2

3 (8)

where x x,1 2 and x3 are three random variables which represent the
values of three features a a,1 2 and a3 (a a a A, , ∈1 2 3 is the set of features
that describe samples) of each sample. x x,1 2 and x3 are independently
drawn from the uniform distribution over the interval π[0, ].

In order to generate ordered class labels, the resulting numeric
values are discretized into eight intervals [−10, −8],(−8, −6],…,(4, 6],
corresponding to which the class labels are marked as 1, 2,…,8. The
samples of which the function values belonging to the same interval
share the same rank label. Then we form an eight-class dataset in
which the class label is monotonically increasing with respect to the
feature a1 and monotonically decreasing with respect to the feature a .2

According to the above method, we generate a dataset with 100
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samples, based on which a classifier is trained by ELM. Then we test
the performance of the classifier and find that the predicted class label
of sample (1.3418, 1.5335, 0.8736) is 5 while the predicted class label
of sample (0.7872, 1.5335, 0.8736) is 6, which goes against of the
increasing monotonicity relationship between feature a1 and the
decision attribute.

The example shows that ELM cannot guarantee the generated
classifier is monotonic when the training data are monotone. In order
to solve monotonic classification problems, we impose monotonicity
constraints to the framework of the original ELM model in this work.

3. Monotonic classification extreme learning machine
(MCELM)

3.1. The framework of MCELM

Similar to ELM, there are three layers in the framework of MCELM.
The first layer is called the input layer, suppose where there are n
neurons, and each of them represents a real input value of a feature.
The number of input neurons equals to that of the features which are
used to describe samples. The second layer is the hidden layer which
contains N͠ neurons. The last layer is the output layer. In MCELM,
there is only one neuron which represents the classification result in
the output layer.

Suppose S x x x= { , ,…, }N1 2 is a training set and
x x x j Nx = [ , ,…, ] (1 ≤ ≤ )j n1 2 is a sample which belongs to S, where N

is the number of training samples; n is the total number of features.
x k n(1 ≤ ≤ )k is the kth feature that describes the samples. t R∈j is the
decision value of sample xj.

MCELM with N͠ hidden nodes and activation function g x( ) is
mathematically modeled as

∑ β g b o j Nw x( · + ) = , = 1,…, ,
i

N

i i j i j
=1

͠

(9)

where w w ww = [ , ,…, ]i i i in
T

1 2 is the weight vector connecting the ith
hidden node and the input nodes; βi is the output weight connecting the
ith hidden node and the output node; bi is the threshold of the ith
hidden node, where i N1 ≤ ≤ ͠ .

When solving monotonic classification problems based on MCELM,
if increasing monotonicity is desired for a particular feature, then the
partial derivative of the decision attribute with respect to the feature is
constrained to be positive. Similarly, partial derivative with respect to a
feature where decreasing monotonicity is required is considered to be
negative. It is not necessary to require all the monotonic relationships
between features and the decision attribute to be consistent, in other
words, some of the monotonic relationships can be increasing and
some can be decreasing.

By constraining the signs of the partial derivatives, we can get r
monotonicity constraints in monotonic classification problems, where
(r is the total number of features that are monotonically increasing or
decreasing with the decision attribute and r n1 ≤ ≤ ). We incorporate
these constraints into the framework of ELM.

3.2. The mathematical model of MCELM

To train a monotonic classifier by MCELM means to minimize the
cost function

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑E β g b tw x= ( · + ) −

j

N

i

N

i i j i j
=1 =1

2͠

(10)

under those monotonicity constraints

o
x

o
x

∂
∂

> 0 or ∂
∂

< 0,
k k (11)

where

∑o β g bw x= ( · + ).
i

N

i i i
=1

͠

(12)

N͠ is the number of neurons in the hidden layer; k k n(1 ≤ ≤ ) is the
label of the feature which has monotonic relationship with the decision
attribute.

The activation functions in MCELM are restricted to be infinitely
differentiable, such as the sigmoidal function, the radial basis, sine,
cosine, exponential, and many non-regular functions as shown in [54],
which can make input weights wi and hidden layer biases bi be assigned
randomly. In this paper, we choose sigmoidal function as the active
function. Once the values of wi and bi are fixed, the cost function is
quadratic and the constraints are linear in terms of βi. Therefore, the
mathematical model of MCELM is actually a quadratic programming
problem in terms of βi, where i N1 ≤ ≤ ͠ . The partial derivative of o with
respect to feature xk can be represented as follows:

∑

∑

o
x

β g b
x

β g w x w x b β g w x w x b
x

β g w x w x b
x

β g w x w x b
x

β w g w x w x b β w g w x

w x b β w g b

β w g b g b

w x

w x

w x w x

∂
∂

=
∂( ∑ ( · + ))

∂

=
∂( ( +⋯+ + ) +⋯+ ( +⋯+ + ))

∂

= ∂ ( +⋯+ + )
∂

+⋯+ ∂ ( +⋯+ + )
∂

= ′ ( +⋯+ + ) +⋯+ ′( +⋯

+ + ) = ′( · + )

= ( · + )(1 − ( · + )).

k

i
N

i i i

k

n n N N N n n N

k

n n

k
N

N N n n N

k

k n n N Nk N

N n n N
i

N

i ik i i

i

N

i ik i i i i

=1

1 11 1 1 1 1 1

1
11 1 1 1 1 1

1 1 11 1 1 1 1 1

=1

=1

͠

͠ ͠ ͠ ͠

͠
͠ ͠

͠ ͠

͠ ͠

͠

͠

(13)

If the decision attribute is monotonically increasing with a feature
xk , the derivative of the decision attribute with respect to xk is positive,
i.e.,

∑ β w g b g bw x w x( · + )(1 − ( · + )) > 0.
i

N

i ik i i i i
=1

͠

(14)

Similarly if the decision attribute is monotonically decreasing with
feature xk , the derivative of the decision attribute with respect to xk is
negative, i.e.,

∑ β w g b g bw x w x( · + )(1 − ( · + )) < 0,
i

N

i ik i i i i
=1

͠

(15)

where N͠ is the number of neurons in the hidden layer; n is the total
number of features.

In equations (14) and (15) are considered as the monotonicity
constraints in our MCELM model.

For the monotonically increasing situation, it is well noted that
β w g b g bw x w x( · + )(1 − ( · + )) > 0i ik i i i i for each i N(1 ≤ ≤ )͠ implies In
equation (14). Since g b g bw x w x( · + )(1 − ( · + ))i i i i is a positive function,
β w g b g bw x w x( · + )(1 − ( · + )) > 0i ik i i i i is equivalent to β w > 0i ik for each
i i N(1 ≤ ≤ )͠ . In this way, we will have N͠ constraints which can be
expressed as

⎪
⎪

⎧
⎨
⎩

β w

β w

> 0
⋯

> 0.

k

N N k

1 1

͠ ͠ (16)

Similarly we can discuss the monotonically decreasing situation and
express the constrains as

⎪
⎪

⎧
⎨
⎩

β w

β w

< 0
⋯

< 0.

k

N N k

1 1

͠ ͠ (17)

The mathematical model of MCELM can be represented as follows:
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Minimize:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑ ∑

∑

E β g b t g b β

β β g b g b g b t β t

w x w x

w x w x w x

= ( · + ) − = ( · + )·

+ ·2 ( · + ) ( · + ) − 2 ( · + ) · +

j

N

i

N

i i j i j
j

N

i

N

i j i i

i
k i

N

k i j i k j k i j i j i j

=1 =1

2

=1 =1

2 2

= +1

2

͠ ͠

͠

(18)

Subject to:

⎪
⎪

⎧
⎨
⎩

β w

β w

> 0
⋯

> 0

k

N N k

1 1

͠ ͠

or

⎪
⎪

⎧
⎨
⎩

β w

β w

< 0
⋯

< 0.

k

N N k

1 1

͠ ͠

The standard form of the quadratic programming model of MCELM
is shown as follows:

β β βC fmin 1
2

+
β

T T
(19)

βA B· ≤ , (20)

where β β β β= [ , ,…, ]N
T

1 2 ͠ . C is the Hessian matrix of the cost function
(10), which is symmetric. The expression of C is shown as follows:
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The element in the ith row and the jth column of matrix C is

∑E
β β

g b g bw x w x∂
∂ ∂

= 2 ( · + ) ( · + ),
i j l

N

i l i j l j
2

=1 (22)

where i N= 1,…, ͠ and j N= 1,…, ͠ . f is a column vector consists of
monomial coefficients in terms of β i N(1 ≤ ≤ )͠

i in the cost function. Its
expression is

⎡
⎣
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2 2
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͠ ͠

(23)

A is a matrix consists of coefficients in terms of β i N(1 ≤ ≤ )͠
i in the

inequality constraints which represent the monotonicity restrictions.
The number of columns in A is N͠ , which equals to the number of
hidden nodes. Suppose there are r r n(1 ≤ ≤ ) features that are
monotonically increasing or decreasing with the decision label, and
each of these features corresponds to N͠ constraints. So the number of
rows in matrix A is r N× ͠ . Suppose the ith feature xi of samples is
monotonically increasing with the decision label, that is > 0o

x
∂
∂ i

, where

i n1 ≤ ≤ , then the rows responding to this monotonicity constraint in
matrix A is

⎡
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w
w

w
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N i

1

2
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Similarly, if x i n(1 ≤ ≤ )i is monotonically decreasing with the
decision label, that is i n< 0 (1 ≤ ≤ )o

x
∂
∂ i

then the rows responding to

this monotonicity constraint in matrix A is
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2
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B is a matrix of which the elements are constant terms on the right
side of the ‘≤ ’ sign in the inequality constraints (18). In the mathema-
tical model of MCELM, B is a zero column vector because all the
constant terms in the monotonicity constraints are zero.

Mathematically, if the Hessian matrix of the cost function is
positive semidefinite, then the quadratic programming is convex
quadratic. In this situation, if there is at least one vector which satisfies
the constraints and has lower bound in the feasible region, then a
global minimum of the quadratic programming exists. If the Hessian
matrix is positive definite, then the quadratic programming is strictly
convex and the global minimum is unique. If the Hessian matrix is
indefinite, then the quadratic programming is nonconvex which is
more challenging to be solved because there are a few local minimum
points.

Therefore, in the mathematical model of MCELM, if the objective
function is strictly convex or convex, and the feasible region exists, then
the global optimal solution can be obtained. However, in this work, we
have not discussed the existing condition of the feasible region. The
solution of β in the quadratic programming model is solved by using
the tool box of Matlab, which can ensure the generated classifier
performs well with less classification error. On the other hand, the
classifier is monotonic due to the monotonicity constraints. Besides,
during the solving process of the quadratic programming, the gradient
descent method is not involved. All parameters of MCELM do not need
to be tuned iteratively, so MCELM is much faster than the monotonic
classification methods which are based on conventional artificial neural
networks. Moreover, MCELM does not require that the monotonic
relationships existing between features and the output are consistent,
which essentially relaxes the assumption of consistent monotonicity
used in most existing approaches to handling monotonic classification
problems.

3.3. The algorithm of MCELM

The MCELM learning algorithm described here is implemented by
using Matlab where there is a function called quadprog to solve
quadratic programming problem. The call format of function quadprog
is

X quadprog C f A B= ( , , , ), (26)

where C is the Hessian matrix of the cost function; f is a vector consists
of monomial coefficients in terms of β i N(1 ≤ ≤ )͠

i in the cost function;
A is a matrix consists of coefficients in terms of β i N(1 ≤ ≤ )͠

i in the
inequality constraints which represent the monotonicity restrictions; B
is a matrix of which the elements are constant terms on the right side of
the ‘≤ ’ sign in the inequality constraints. In the mathematical model of
MCELM, B is a zero vector because all the constant terms in the
monotonicity constraints are zero. All the values of parameters C, f, A,
B can be obtained based on their expressions which are proposed in the
above section.

The MCELM learning algorithm based on Matlab can be summar-
ized as follows:

• Input: training set t t i Nx x R Rℵ = {( , )| ∈ , ∈ , = 1,…, }i i i
n

i (R is a
set of real numbers), activation function g x( ), and hidden node
number N͠ .

• Output: parameters w, b and β.
– (Step-1: ) Randomly assign input weight wi and bias bi,

i N= 1,…, ͠ .
– (Step-2: ) Based on the expressions of C, f, A and B, obtain the

values of parameters C, f, A, B. Solve the quadratic programming
problem by using the quadprog function in Matlab and get the
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solution of β.
– (Step-3: ) Return w, b and β.

Remark 1. The activation function g x( ) in the MCELM algorithm is
sigmoidal function.

Remark 2. There is only one neuron in the output layer of MCELM,
and among the multiclass labels, the class label which is closest to the
output value is chosen as the predicted class label of the input data.

Remark 3. The algorithm of MCELM based on Matlab is designed
under the assumption that the feasible region of the quadratic
programming exists. If the feasible region exists, we can get the
global optimal solution which can minimize the cost function and
preserve the monotonicity between features and the decision label.

4. Performance evaluation

In this section, we will experimentally compare MCELM with CART
[20], Rank Tree [34], OLM [8], OSDL [58], REMT [36] and ELM [49]
based on both artificial datasets and real world datasets. OLM is an
ordinal learning model introduced by Ben-David et al., while OSDL is
an ordinal stochastic dominance learner based on associated cumula-
tive distribution [58].

In traditional classification problems, we usually use the misclassi-
fication rate (divide the number of misclassified samples by the number
of test samples) to measure the performance of a classifier. However, it
is not efficient in monotonic classification problems. In monotonic
classifications, the class labels are ordered, so the deviation of the
predicted output and the actual output should be emphasized, while,
the misclassification rate is not feasible from this point of view.

In this work, we use the Mean Absolute Error (MAE) to measure the
performance of classifiers. The expression of MAE is shown as follows:

∑MAE
N

y y= 1 − ,
i

N

i i
=1 (27)

where N is the number of samples in the test set; yi is the predicted
output of the ith sample and y i N( = 1, 2,…, )i is its actual output[36].
This criterion takes the deviation degree into account and thus it is
more suitable than the misclassification rate.

4.1. Artificial case

We use the following function to generate monotonic datasets:

f x x x x x( , ) = + 1
2

( − ),1 2 1 2
2

1
2

(28)

where x1 and x2 represent inputs which are randomly assigned from the
uniform distribution over the unit interval.

We split the unit interval [0, 1] into k sub intervals
k k k k k[0, 1/ ], (1/ , 2/ ],…, ( − 1)/ , 1], where k is the number of categories.

If the function value f x x( , )1 2 falls into the ith sub interval, then the
class label of sample x x( , )1 2 is set to be i i k(1 ≤ ≤ ).

According to the above approach, we generate several monotonic
datasets with different number of categories. Each dataset contains
1000 samples. Based on these datasets, we compare MCELM with
CART, Rank Tree, OLM, OSDL, REMT and ELM by using the measure
criterion of MAE.

First we evaluate the sensitivity of these algorithms to the number
of categories. We do the experiment based on the 5-fold cross
validation technique. The comparison result is represented in Fig. 1.

Generally for training classifiers, the larger the number of cate-
gories is, the bigger the classification error will be. Therefore, all the
curves in Fig. 1 tend to be ascending when the number of categories
continues to increase; however, the MCELM algorithm performs much
better than any other methods, which indicates that the MCELM can
ensure the generated classifier is a monotonic one with less classifica-

tion error.
Then we estimate the influence of the number of training samples

on the performances of the trained models. We first generate a data set
with 1000 samples belonging to 4 classes, then extract training samples
randomly from each class of the data set. The number of training
samples ranges from 4 to 36. The remaining samples are used as
testing samples to evaluate the performances of the trained models.
The curves of MAE varying with the number of training samples are
shown in Fig. 2.

Fig. 2 shows that no matter how many training samples are used,
MCELM is much more precise than CART, Rank Tree, REMT and
ELM, which is due to the classifier trained by MCELM is a monotonic
one with less classification error. The result shows that MCELM is not
sensitive to the number of training samples, so when the training set of
a monotonic classification task is small in size, we can adopt MCELM to
get a more precise classifier.

Fig. 1. MAE of CART, Rank Tree, REMT, OLM, OSDL, ELM and MCELM, where the
number of classes gradually increases.
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Fig. 2. MAE curves of CART, Rank Tree, REMT, ELM and MCELM, where the size of
training samples gradually increases.
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4.2. Real world data sets

We have verified the high validity of MCELM on the artificial data.
Next we will evaluate its performance on five real world datasets with
monotonicity constraints. Three of these datasets SWD, ESL and LEV
are obtained from the weka homepage (http://www.cs.waikato.ac.nz/
ml/weka/) provided by [8]. The other two datasets Car and Breast
cancer Wisconsin come from UCI repository [59]. The characteristics
of all the datasets are shown in Table 1. In the Breast cancer Wisconsin
dataset, there are 16 samples with missing attribute values, by
removing which, we process this dataset. We compare the
performances of REMT, Rank Tree, CART, ELM and MCELM on the
five datasets by using 5-fold cross validation technique. The measure
index is MAE. Results are shown in Fig. 3.

From Fig. 3 we know that MCELM performs much better than
REMT, Rank Tree, CART and ELM on the collected real datasets,
because the classifier generated by MCELM is a monotonic one with
less classification error.

From the experimental results presented in Sections 4.1 and 4.2, we
can see that MCELM performs much better than any other methods
mentioned in this paper for solving monotonic classification problems.
This phenomenon appears because in our MCELM model monotonic
constraints theoretically guarantee that the learned ELM can keep the
monotonicity in the whole domain. The other methodologies men-
tioned in this paper cannot analytically guarantee the monotonicity in
the whole domain. We think of that for building a monotonic classifier
the monotonicity condition should be first met, which is the essential
point of the learning. This conclusion is confirmed experimentally.
Training a regular ELM can be transferred into a non-constrained
optimization problem while our model for training an ordered ELM can
be transferred into a constrained optimization problem. Viewing our
model has an excellent performance, we can think of that the imposed
constrains play a critical role.

5. Concluding remarks

Monotonic classification essentially is an ordinal classification with
monotonicity constrains. The monotonicity between a feature and the

decision attribute may be increasing or decreasing. Several methods
have been proposed to solve monotonic classification problems, such as
Rank Tree, OLM and REMT. Although these methods enhance the
capability of extracting ordinal information, they suffer from many
shortcomings. Most of them cannot guarantee the generated classifiers
are monotonic ones with good classification performances. Moreover,
some of these algorithms get stuck in information loss and some suffer
from time consuming. In order to overcome those disadvantages, we
propose MCELM on which some comments are listed below.

1. MCELM can ensure the generated classifier is monotonic. Although
the existing methods such as Rank Tree and OLM can extract ordinal
information, they cannot ensure that a monotonic classifier is
obtained when the training data are monotonic. ELM is a single-
hidden layer feedforward neural network with fast training rate and
good generalization capability, but due to the existence of training
error, ELM cannot be directly used to handle monotonic classifica-
tion problems. However, the classifier generated under the restric-
tion of monotonicity constraints in MCELM is monotonic.

2. The classifier generated by MCELM performs well with very little
classification error. In the REMT [36] algorithm, the classification
error has not been considered. In comparison with REMT for
constructing a monotonic decision tree where the rank mutual
information is used as a heuristic, our MCELM model is a quadratic
programming problem which can take both monotonicity and the
classification error into account. MCELM shows an accuracy im-
provement.

3. MCELM basically avoids information loss. In some of the monotonic
classification methods, all the monotonicity constraints are limited
to be consistent, which means that all the monotonicity relationships
are either increasing or decreasing; otherwise the data have to be
transformed, which may cause information loss. In MCELM, the
monotonicity constraints are represented by restricting the signs of
the partial derivatives of the decision attribute with respect to the
features. It is not necessary to transform the data when using
MCELM.

4. MCELM is much faster than conventional artificial neural networks
which are based on the gradient-descent technique. Similar to ELM,
the input weights and hidden layer biases can be randomly assigned
when the activation functions are infinitely differentiable. The out-
put weights can be analytically determined. Different from the
conventional artificial neural networks, the gradient descent method
is not adopted in MCELM. All the parameters in MCELM do not
need to be tuned iteratively.

5. Experimental results have shown that MCELM has much better
generalization capability than other approaches when they are
applied to handling a monotonic classification problem.
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