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In this article we propose a case-base maintenance methodology based on the idea of transferring
knowledge between knowledge containers in a case-based reasoning (CBR) system. A machine-learning
technique, fuzzy decision-tree induction, is used to transform the case knowledge to adaptation knowl-
edge. By learning the more sophisticated fuzzy adaptation knowledge, many of the redundant cases can
be removed. This approach is particularly useful when the case base consists of a large number of redun-
dant cases and the retrieval efficiency becomes a real concern of the user. The method of maintaining a
case base from scratch, as proposed in this article, consists of four steps. First, an approach to learning
feature weights automatically is used to evaluate the importance of different features in a given case
base. Second, clustering of cases is carried out to identify different concepts in the case base using the
acquired feature-weights knowledge. Third, adaptation rules are mined for each concept using fuzzy
decision trees. Fourth, a selection strategy based on the concepts of case coverage and reachability is
used to select representative cases. In order to demonstrate the effectiveness of this approach as well
as to examine the relationship between compactness and performance of a CBR system, experimental
testing is carried out using the Traveling and the Rice Taste data sets. The results show that the testing
case bases can be reduced by 36 and 39 percent, respectively, if we complement the remaining cases by
the adaptation rules discovered using our approach. The overall accuracies of the two smaller case bases
are 94 and 90 percent, respectively, of the originals.
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1. INTRODUCTION

The growing use of case-based reasoning (CBR) applications has brought with it
increased awareness of the importance of case-base maintenance (CBM). According to
Leake and Wilson (1998), “Case-base maintenance is the process of refining a CBR
system’s case base to improve the system’s performance.” That is, “case base main-
tenance implements policies for revising the organization or contents (representation,
domain content, accounting information, or implementation) of the case base in order
to facilitate future reasoning for a particular set of performance objectives.” At present,
large-scale CBR systems are becoming more prevalent, with case-library sizes ranging
from thousands (Kitano and Shimazu 1996; Cheetham and Graf 1997) to millions of
cases (Deangdej et al. 1996). Large case-library sizes raise concerns about the utility
problem for case retrieval, and various case-deletion policies have been proposed to
control case-base growth (Smyth and Keane 1995; Anand et al. 1998).

In the past, researchers have attempted to address various aspects of the CBM
problem. To provide maintenance support at the case level, Smyth and Keane (1995)
suggested a competence-preserving deletion approach. Competence (or coverage) is the
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range of target problems that a given system can solve and is also a fundamental evalu-
ation criterion of CBR system performance. Smyth and McKenna (1998) also presented
a new model of case competence and demonstrated a way in which the proposed model
of competence can be used to assist case authors. Anand et al. (1998) proposed to use
data-mining techniques in a novel role of a back-end technology for CBR systems, i.e.,
the acquisition of cases and discovery of adaptation knowledge. Hanney and Keane
(1996) presented an inductive learning algorithm to extract adaptation knowledge from
the cases in the case base. Their algorithm builds pairs of cases and uses the feature
differences of these case pairs to build adaptation rules that are very useful in CBM.
The approach of Hanney and Keane is based on the assumption that the differences
occurring between cases in the case base are representative of the differences that will
occur between future problems and the case base.

Apart from these investigations, Basak et al. (1998) used advanced artificial intelli-
gence (AI) techniques, neural networks, and fuzzy methods to acquire features’ impor-
tance and eliminate irrelevant features in a given data set. One important thing in the
CBR community is to distinguish the salient features from all the features in the data
set; feature-selection methods can reduce the task’s dimensionality when they eliminate
irrelevant features (Wettscherck and Aha 1995). The unsupervised approach in Basak
et al. (1998) is very useful in dealing with data sets in a knowledge-poor domain and in
helping to reduce the dimension size of the case bases.

Recently, Richter (1995, 1998) proposed the notion of knowledge containers, and
it quickly became the standard paradigm for representation of the structural elements
in CBR systems. The four knowledge containers are the vocabulary (index) used, the
similarity measures, the solution transformation (adaptation knowledge), and the case
base. The knowledge in the first three containers is compiled, while the knowledge in
the cases is used at run time. According to Richter, each container can carry almost all
knowledge available, and the manipulations on one container have little consequences
on the others. However, there are no systematic evaluations of the relationship between
this compiled and run-time knowledge. In this article, we try to establish a methodol-
ogy that could be used to transfer case knowledge to adaptation knowledge. We further
argue that by shifting knowledge from the case base to another container, we can sig-
nificantly improve the retrieval efficiency of the system. The methodology, as proposed
in this article, integrates identifying salient features, distinguishing different concepts,
learning adaptation knowledge, computing case competence, and selecting seed cases
together into a framework of CBM. Here we assume that the cases in the case base
are a representative sample of the target problems, and the problem space is a regular
one; namely, similar problems should have similar solutions. Our methodology focuses
on balancing case-retrieval efficiency and competence for a large-size case base. The
methodology is mainly based on the idea that a large case library is transformed to a
small case library, together with a group of adaptation rules that are generated by fuzzy
decision trees. These adaptation rules play the role of complementing the reduction of
cases. As a result, a smaller case base is constructed to represent the original.

The details of the maintaining methodology consist of four steps. First, an approach
to learning feature weights automatically is used to evaluate the importance of different
features in a given case base. Second, clustering of cases is carried out to identify differ-
ent concepts in the case base using the acquired feature knowledge. Third, adaptation
rules are mined for each concept using fuzzy decision trees. Finally, a selection strat-
egy based on the concepts of coverage and reachability is used to select representative
cases. In order to demonstrate the effectiveness of this approach as well as to exam-
ine the relationship between the compactness and the performance of a CBR system,
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experimental testing is carried out using the Traveling and the Rice Taste data sets. The
results show that the testing case bases can be reduced by 36 and 39 percent, respec-
tively, if we complement the remaining cases by adaptation rules discovered using our
approach. The overall accuracies of the two smaller case bases are 94 and 90 percent,
respectively, of the originals. This article is structured as follows: Section 2 describes
the methodology in detail. Section 3 explains the experimental analysis and findings.
Section 4 discusses the complexity issue of our approach. Finally, the article concludes
the contribution of our approach and provides the plan of our future work.

2. METHODOLOGY FOR MAINTAINING THE CASE BASE

Throughout this section we consider a case library in which all features are supposed
to take on real-numbered values. We first introduce a weighted distance metric d�w�pq and
a similarity measure SM�w�

pq that will be used throughout the article.
Let CL = �e1
 e2
 � � � 
 eN� denote our discussed case library. Each case in the

library can be identified by an index of corresponding features. In addition, each case has
an associated action. More formally, we use a collection of features �Fj �j = 1
 � � � 
 n��
to index the cases and a variable V to denote the action. The ith case ei in the library can
be represented as an n+1-dimensional vector, i.e., ei = �xi1
 xi2
 � � � 
 xin
 vi�, where xij
corresponds to the value of feature Fj �1 ≤ j ≤ n� and vi corresponds to the action
�i = 1
 � � � 
N�.

Suppose that for each j �1 ≤ j ≤ n�, a weight wj �wj ∈ 	0
 1
� has been assigned to
the jth feature to indicate the importance of the feature. Then, for any pair of cases ep
and eq in the library, a weighted distance metric can be defined as

d
�w�
pq = d�w��ep
 eq� =

( n∑
j=1

w2j �xpj − xqj�2
)1/2

=
( n∑
j=1

w2j �
2
j

)1/2
(1)

where �2j = �xpj−xqj�2. When all the weights are equal to 1, the distance metric defined
above degenerates to the Euclidean measure, denoted by d�1�pq , in short, denoted by dpq.

Using the weighted distance, a similarity measure between two cases SM�w�
pq can be

defined as

SM
�w�
pq = 1

1+ �d
�w�
pq

(2)

where � is a positive parameter. When all the weights take value 1, the similarity mea-
sure is denoted by SM�1�

pq .
It should be noted that the real-value features discussed above could, without dif-

ficulty, be extended to the features that take values in a normed vector space. For
example, assume that for each feature, a distance measure has been defined already.
The distance measure for the jth feature is denoted by �j; i.e., �j is a mapping from
Fj × Fj to 	0
∞� (where Fj denotes the range of the jth feature) with properties
(a) �j�a
 b� = 0 if and only if a = b
(b) �j�a
 b� = �j�b
 a�
(c) �j�a
 b� ≤ �j�a
 c� + �j�c
 b��
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Figure 1. Four phases of CBM.

Some typical formula of distance measure such as the following could be used for
nonnumerical features:

(a) �j�a
 b� = |a− b| if a and b are real numbers
(b) �j�A
B� = maxa∈A
b∈B |a− b| if A and B are intervals

(c) �j�a
 b� =
{
1 if a �= b

0 if a = b
if a and b are symbols.

and the distance between two cases x and y can be computed by

Distance�x
 y� =
√√√√ n∑

j=1
w2j �

2
j �xj
 yj��

Let us now give the paradigm for maintaining case libraries, with a brief explanation.
Our proposed methodology for case maintenance contains four phases, as shown in
Figure 1. Phase 1 is the preliminary to phase 2, and its purpose is to assign a weight
to each feature. These weights will play an important role in the clustering of the
next phase. Phase 2 aims to partition the case library into several clusters using the
weighted distance metric with the weights learned in phase 1. To some extent, phase
1 guarantees that the performance of clustering using the weighted distance metric is
better than that using the Euclidean metric. Each cluster is considered to have several
representative cases, and a nonrepresentative case in the cluster is considered as a
perturbation of certain representative cases. The perturbation can be approximated
by a group of adaptation rules. Phase 3 aims to mine these adaptation rules, which
could be regarded as a kind of adaptation knowledge of the representative cases. This
is the most important phase, since the quality of the adaptation knowledge heavily
affects the selection of representative cases. Moreover, this phase can be regarded as
an integration of the strengths of both the case-based and rule-based methods. We
adopt fuzzy decision-tree induction to mine these adaptation rules. Phase 4 is to select
several representative cases from each cluster according to the adaptation rules mined in
phase 3. Consequently, the representative cases and the adaptation rules, which have the
same competence as the original library, become an alternative to the original library.



Transferring Case Knowledge to Adaptation Knowledge 299

The proposed methodology is particularly useful when a case base has a lot of
redundancy that is not caused simply by repeated cases but rather by the interaction
among features. This type of redundancy will seriously affect the quality of the problem-
solving ability of a CBR system. By learning the feature weights of the cases, this type
of redundancy can be illuminated. For example, two of the following three cases can be
regarded as redundant:

Feature weights 1 0 0
Case 1 a * *
Case 2 a * *
Case 3 a * *

where a is a specific value and * is any value.
If a small loss of solution accuracy is acceptable, this approach will be very useful

in situations where the user is facing a very large case base and the retrieval efficiency
becomes a real concern because of high usage of the system or too many concurrent
users.

One of the drawbacks of our approach is the difficulty in determining the balance
between solution quality and retrieval efficiency. This is so because we have to define
the tolerable range for solution quality before carrying out the knowledge transfer.
However, this tolerable range may vary and depend very much on the problem domains
and the characteristics of users. Therefore, partial or complete restructuring of the
knowledge containers may be necessary if expectation of the solution accuracy has been
changed.

2.1. Learning Feature Weights

In this section, a feature-evaluation function (in which the feature weights are
regarded as the variables) is defined. The smaller the evaluation value, the better are
the corresponding features. Thus we would like to find the weights so that the evalua-
tion function attains its minimum. The task of minimization of the evaluation function
with respect to weights is performed using a gradient-descent technique. We formulate
this optimization problem as follows.

For a given collection of feature weights wj �wj ∈ 	0
 1

 j = 1
 � � � 
 n� and a pair of
cases ep and eq, Equation (1) defines a weighted distance measure d

�w�
pq , and Equation (2)

defines a similarity measure SM�w�
pq . When all weights take value 1, d

�w�
pq and SM

�w�
pq

degenerate to the Euclidean distance d�1�pq and SM
�1�
pq . A feature-evaluation index E is

defined as

E�w� =
2
{∑

p

∑
q�q<p�

[
SM

�w�
pq

(
1− SM

�1�
pq

)+ SM
�1�
pq

(
1− SM

�w�
pq

)]}
N
(
N − 1) (3)

where N is the number of cases in the case base.
Noting that the feature-evaluation function E�w� will gradually become zero when

SM
�w�
pq → 0 or 1, we hope to find a collection of weights so that the feature-evaluation

function attains its minimum.
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To minimize Equation (3), we use a gradient-descent technique. The change in wj
(i.e.,  wj) is computed as

 wj = −! "E
"wj

(4)

for j = 1
 � � � 
 n, where ! is the learning rate. For the computation of "E/"wj , the
following expressions are used

"E�w�
"wj

=
2
[∑

p

∑
q�q<p�

(
1− 2SM�1�

pq

)
"SM

�w�
pq

"d
�w�
pq

"d
�w�
pq

"wj

]
N�N − 1� (5)

"SM
�w�
pq

"d
�w�
pq

= −�(
1+ �d

�w�
pq

)2 (6)

"d
�w�
pq

"wj
= wj�

2
j(∑n

j=1w
2
j �

2
j

)1/2 (7)

Algorithm 1: Training Algorithm

Step 1. Select the parameter � and the learning rate !.
Step 2. Initialize wj with random values in [0, 1].
Step 3. Compute  wj for each j using Equation (4).
Step 4. Update wj with wj +  wj for each j.
Step 5. Repeat steps 3 and 4 until convergence, i.e., until the value of E becomes less

than or equal to a given threshold or until the number of iterations exceeds a
certain predefined number.

After training, the function E�w� attains a local minimum. We expect that, on
average, the similarity values �SM�w�

pq 
p=1
 � � � 
N
q<p� with trained weights are closer to 0

or 1 than those without trained weights, such as �SM�1�
pq 
p=1
 � � � 
N
q<p �.

2.2. Partitioning the Case Base into Several Clusters

Motivated by the idea that a cluster of cases describing the same concept should
have one (or more) representative case(s), we attempt to partition the case library into
several clusters using the weighted distance metric with the weights learned in phase 1.
Since the considered features are real-valued, many methods, such as C-mean clustering
(Bezdek 1981) and Kohonen’s self-organized network (Kohonen 1988), can be used to
partition the case library. However, we adopt a typical approach to clustering, i.e., the
similarity matrix (Fu 1992), which uses only the information of similarity between cases.
This approach first transforms the similarity matrix to an equivalent matrix and then
considers the cases that are equivalent to each other as one cluster.
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Algorithm 2: Clustering Algorithm

Step 1. Give a significant level (threshold) # ∈ �0
 1
.
Step 2. Determine the similarity matrix SM = �SM�w�

pq � according to Equations (2) and
(1).

Step 3. Compute SM1 = SM ◦ SM = �spq�, where spq = maxk
[
min�SM�W �

pk 
 SM
�w�
kq �].

Step 4. If SM1 ⊂ SM , then go to step 5; else, replace SM with SM1 and go to step 3.
Step 5. Determine several clusters based on the rule “case p and case q belong to the

same cluster if and only if spq ≥ #.”

It is worth noting that the result of clustering depends strongly on the feature
weights that are used in the computation of similarity between two cases. We expect
the performance of clustering with the feature weights trained in phase 1 to be better
than the performance without trained feature weights. We evaluate the performance of
clustering by the following three indexes:

(a) Intrasimilarity. For a given cluster L, the intrasimilarity of L is defined as

SM
�w�
L = 2

r�r − 1�
∑

p
 q∈L�p<q�
SM

�W �
pq (8)

where r is the number of cases in the cluster L. For a clustering with m clusters
�L1
 L2
 � � � 
 Lm�, the intrasimilarity is defined as the average of all its cluster
intrasimilarities, i.e.,

SM
�w�
int ra =

1
m

m∑
j=1

SM
�w�
Lj

(9)

It is clear that the value of SM�w�
int ra is in [0, 1]. The bigger the value of SM

�w�
int ra,

the better the performance of the clustering.
(b) Intersimilarity. For a pair of clusters L1 and L2, the intersimilarity is defined as

SM
�w�
L1
 L2

= 1
r1r2

∑
p∈L1
 q∈L2

SM
�w�
pq (10)

where r1 and r2 are numbers of cases in L1 and L2, respectively. For a clustering
with m clusters �L1
 L2
 � � � 
 Lm�, the intersimilarity is defined as the average of
all pairs of intersimilarities, i.e.,

SM
�w�
int er =

2
m�m− 1�

∑
1≤i<j≤m

SM
�w�
Li
Lj

(11)

Obviously, the value of SM�w�
int er is in [0, 1]. The smaller the value of SM

�w�
int er , the

better the performance of the clustering.
(c) Number of clusters. Under an acceptable accuracy, the intrasimilarity of clustering

is bigger than or equal to a threshold (>0.5) and the intersimilarity of clustering
is smaller than or equal to a threshold (< 0.5).
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As a result of phase 2, the original case base is partitioned into m clusters. For a new
case whose action (solution) remains to be determined, one cluster to which the new
case belongs should be obtained first by retrieval. Since the clustering result of phase
2 is crisp (not fuzzy), we require the clustering with m clusters �L1
 L2
 � � � 
 Lm� to
satisfy the following property:

min
q∈Li
q �=p

SM
�w�
pq > max

i≤j≤m
 j �=i
(
max
q∈Lj

SM
�w�
pq

)
(12)

for any i �1 ≤ i ≤ m� and any case p ∈ Li.
Equation (12) describes such a situation that the similarity between a case and the

cluster to which the case belongs is greater than the similarity between the case and any
other cluster. This property can be satisfied if the number of clusters is selected to be
appropriate and there exists no noise case that is defined to have all the same feature
values as certain existing cases but does not have the same action (solution).

2.3. Mining Adaptation Rules by Fuzzy Decision Trees

After phase 2, the original case base is partitioned into several clusters. In this
article, we consider that each cluster has one or more representative cases and that a
nonrepresentative case in the cluster is considered as a perturbation of certain repre-
sentative cases. The perturbation is handled by a group of adaptation rules. In detail,
let p be a representative case and q be a nonrepresentative case in some cluster; we
expect that the solution of q can be approximately obtained by an appropriate adap-
tation (adjustment) of the solution of p according to adaptation rules. In other words,
the solution adjustment is conducted according to an adaptation rule. For example, if a
representative case and a nonrepresentative case are, respectively, p = �1
 2
 3
 4� and
q = �0�9
 2
 3
 4�01�, in which the first three components are feature values and the
last component is the solution, an adaptation rule is “IF the change of first feature is
negatively small, THEN the adjustment of the solution is very positively small,” and then
q’s solution can be considered to be obtained by p’s solution with an adjustment based
on the adaptation rule. This phase investigates how to find these adaptation rules.

A machine-learning technique, fuzzy decision-tree induction, is used to mine the
adaptation knowledge. One popular and powerful heuristic algorithm for generating
crisp decision trees is called ID3. The earlier version of ID3, which is based on minimum
information entropy to select expanded attributes, was proposed by Quinlan (1986).
Subsequently, a fuzzy version of ID3 based on minimum fuzzy entropy was suggested
by several authors (Umanol et al. 1994; Ichihashi 1996; Jeng 1997). Due to its many
advantages, such as robustness and comprehensibility, we adopt this technique.

For each cluster L = �e1
 e2
 � � � 
 em� obtained from phase 2, we denote each case
in the form of ei = �xi1
 xi2
 � � � 
 xin
 vi�, where xij corresponds to the value of feature
Fj �1 ≤ j ≤ n� and vi corresponds to the action �i = 1
 � � � 
m�. Arbitrarily taking a case
ek�1 ≤ k ≤ m�in the cluster L, a set of vectors, namely, �fi|fi ∈ Rn+1
 i = 1
 2
 � � � 
m�,
can be given in the following way:

fi = ei − ek = �xi1 − xk1
 xi2 − xk2
 � � � 
 xin − xkn
 vi − vk� = �yi1
 yi2
 � � � 
 yin
 ui�
We attempt to find several adaptation rules with respect to the case ek �1 ≤ k ≤ m�
from the set of vectors �fi|fi ∈ Rn+1
 i = 1
 2
 � � � 
m� by fuzzy decision tree.

Consider a problem of learning from examples in which there are n + 1 numeri-
cal attributes �A�1�
A�2�
 � � � 
A�n�
A�n+1���A�n+1� is the classification attribute). Then
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Figure 2. Five membership functions.

�fi|i = 1
 2
 � � � 
m� can be regarded as m examples described by the n + 1 attributes.
We first fuzzify these n+ 1 numerical attributes into linguistic terms.

The number of linguistic terms for each attribute is assumed to be five (which
can be enlarged or reduced if needed in a real problem). These five linguistic terms
are Negative Big, Negative Small, Zero, Positive Small, and Positive Big, in short, NB,
NS, ZE, PS, and PB, respectively. Their membership functions are supposed to have
triangular form and are shown in Figure 2. For each attribute (the kth attribute A�k�,
1 ≤ k ≤ n + 1) with the attribute values Range�A�k�� = �y1k
 y2k
 � � � 
 ymk�, the two
parameters in Figure 2, a and b, are defined by

a = ∑
y∈N

y/Card�N� and b = ∑
y∈P

y/Card�P� (13)

in which N = �y|y ∈ Range�A�k��
 y < 0�, P = Range�A�k��−N , and Card�E� denotes
the cardinality of a crisp set E.

After this fuzzification, each example can be regarded as a 5× �n+ 1�-dimensional
vector of membership degree. By putting the m vectors together, a matrix with m rows
and 5 × �n + 1� columns is formed. According to this matrix, we propose our fuzzy
decision-tree generation procedure—fuzzy ID3. In comparison with the existing versions
of fuzzy ID3, our proposed version is founded on the viewpoint that each linguistic term
of attributes and each node in the tree are considered to be a fuzzy set defined on the
example-label space �1
 2
 � � � 
m�.

To avoid confusion of notations, we denote the five linguistic terms of the kth
attribute by Lk = �A�k�

1 
 � � � 
A
�k�
5 � for each k �1 ≤ k ≤ n� and Ln+1 = �C1
 � � � 
 C5�.

Let N be an arbitrary node of a given fuzzy decision tree. The relative frequency of the
node N with respect to the cluster Cl ∈ Ln+1 is defined as

fl�N� = M
(
N ∩ C1

)
M�N� (14)

where M�A� denotes the sigma count (the sum of all membership degrees) of a fuzzy
set A. Usually, fl�N� is regarded as the subsethood of N in Cl and is interpreted as
the degree of truth for the fuzzy rule IF N THEN Cl. The fuzzy entropy of the node N
with respect to the clusters Cl �l = 1
 2
 � � � 
 5� is defined as

FE�N� =
5∑
l=1
fl�N�	1− fl�N�
 (15)

Consider a nonleaf node S and n attributes A�1�
 � � � 
A�n� to be selected. For each
k �1 ≤ k ≤ n�, the attribute A�k� takes five values of the fuzzy subsets A�k�

1 
 � � � 
A
�k�
5 .
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Hence, for the attribute A�k�, five son nodes of S, S ∩ A�k�
1 
 � � � 
 S ∩ A�k�

5 , will result.
The information gain of the attribute A�k� at the node S is defined as

Gain
(
A�k�
 S

) = FE�S� −
5∑
i=1

M
(
S ∩A�k�

i

)
∑5

j=1M
(
S ∩A�k�

j

)FE(S ∩A�k�
i

)
(16)

Algorithm 3: Fuzzy ID3 Heuristic Algorithm. Consider the whole training set as the
first candidate node. Given a leaf standard of frequency 1,WHILE there exist candidate
nodes, DO

Step 1. Randomly choose one candidate node S with n attributes A�1�
 � � � 
A�n� to be
selected.

Step 2. If the frequency of some cluster exceeds 1 at the node S, then regard the node
S as a leaf and go to step 6.

Step 3. Compute Gain�A�k�
 S� �k = 1
 2
 � � � 
 n�.
Step 4. Select k0 such that Gaink0�S� = max1≤k≤n Gain�A�k�
 S�.
Step 5. If Gaink0�S� ≤ 0, then regard the node S as a leaf. If Gaink0�S� > 0, then

select the k0th attribute as the expanded attribute, generate the son nodes of
S, and regard these son nodes as new candidate nodes.

Step 6. Label node S, which is no longer a candidate node.

The key points of the fuzzy ID3 heuristic are that (1) the nonpositive Gain is
regarded as a leaf standard and (2) the positive maximum Gain is the expanded attribute
standard.

After generating the fuzzy decision tree, a set of adaptation rules can be extracted
from the tree. The extraction is straightforward; i.e., each path from the root to a leaf
is converted into an adaptation rule (fuzzy production rule). Thus the number of leaves
is just the number of adaptation rules. With respect to the extracted adaptation rules,
we need a reasoning mechanism to predict the amount of adjustment for the solution
of nonrepresentative cases. We propose our fuzzy reasoning mechanism as follows:

Suppose that there have been L extracted adaptation rules, denoted by �Pi
 i =
1
 2
 � � � 
 L�. The ith adaptation rule Pi �1 ≤ i ≤ L� is represented in the following
form:

IF 	A�1� = V i
1 
 AND 	A�2� = V i

2 
 AND · · · AND 	A�n� = V i
n 
 THEN 	U = V i

n+1
 (17)

in which A�j��j = 1
 � � � 
 n� and U are variables (attributes), and their value V i
j can

be one of the five fuzzy sets defined in Figure 2 or empty. It should be noted that
V i
j �1 ≤ j ≤ n� being empty means that the proposition 	A�j� = V i

j 
 does not appear in
rule (17).

Let e = �y1
 y2
 � � � 
 yn
 u� be an example remaining to be tested; i.e., the attribute
values yj �1 ≤ j ≤ n� are known, but the adjustment u is unknown. The value of u is
determined by the following procedure:

1. For each production rule Pi �1 ≤ i ≤ L� and its every proposition 	A�j� = V i
j 
 with

V i
j �= empty �1 ≤ j ≤ n�, compute MD�i�

j , which denotes the membership degree of
yj ∈ Vj

2. Compute the overall similarity SM�i� by

SM�i� = min
j

(
MD

�i�
j

)
(18)



Transferring Case Knowledge to Adaptation Knowledge 305

3. Compute xk �k = 1
 2
 � � � 
 5� by

xk = max
i

{
SM�i�|V i

n+1 = CLASSk
}

(19)

where CLASSk�k = 1
 2
 3
 4
 5� are the five fuzzy sets NB, NS, ZE, PS, and
PB defined in Figure 2. This results in a fuzzy set �x1
 x2
 � � � 
 x5� defined on
�NB
NS
ZE
PS
 PB�.

4. The adjustment amount u is obtained by the following defuzzification formula:

u = 2ax1 + ax2 + bx4 + 2bx5
x1 + x2 + · · · + x5

(20)

where parameters a and b are given by Equation (13).

It is worth noting that the operations min and max used in Equations (18) and (19)
can be extended, respectively, to T-norm and S-norm represented by

T = 1− [�1− x�p + �1− y�p + �1− x�p�1− y�p]1/p and

S = �xp + yp + xpyp�1/p �p ≥ 0� (21)

where p is a parameter.
As a result of this phase, for each case of a considered cluster, a set of adaptation

rules (fuzzy production rules) is generated, and a reasoning mechanism for this set of
fuzzy rules is given.

2.4. Selecting Representative Cases

This phase aims to select representative cases from each cluster according to the
adaptation rules obtained in phase 3. Our selection strategy is based on a 6-coverage
concept. Before introducing this concept, we review some related works for case
deletion.

Smyth and Keane (1995) described a technique for measuring the local coverage of
individual cases with respect to a system’s retrieval and adaptation characteristics. They
also suggested deleting cases based on their coverage and reachability. They defined
the coverage of a case as “the set of target problems that it can be used to solve,” and
the reachability of a target problem “is the set of cases that can be used to provide
a solution for the target.” Based on these measures, Smyth and Keane classified cases
within the case base into four groups: Pivotal (if its reachability is a singleton consisting
of itself), Auxiliary (if its coverage is subsumed by the coverage of a case to which
it is reachable), Spanning (if its coverage space links regions covered by other cases),
and Support (groups of cases having the same coverage). The deletion policy (footprint
policy) suggested by Smyth and Keane (1995) was to delete auxiliary cases first, then
support cases, then spanning cases, and finally pivotal cases. If more than one case
is a candidate for deletion, substrategies are formulated when deciding on which case
to delete. The disadvantage of the footprint deletion policy is that the coverage and
reachability of a case depend on the adaptation knowledge available.

Instead of the deletion, we propose a selection strategy that makes use of concepts
proposed by Smyth and Keane with our modification (called 6-coverage and 6-reach-
ability, respectively). Compared with the preceding deletion strategy, the meaning of
our proposed selection strategy is very clear.
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Let L be a cluster in which each case e is accompanied with a set of adaptation
rules AR�e�, 6 be a small positive number, and ep = �xp1
 xp2
 � � � 
 xpn
 7p� and eq =
�xq1
 xq2
 � � � 
 xpn
 7q� and eq = �xq1
 xq2
 � � � 
 xpn
 vq� be two cases in the cluster L.
According to the reasoning mechanism established in phase 3, an adjustment amount
 of the solution for case eq can be obtained by matching �xq1 − xp1
 � � � 
 xqn − xpn�
against AR�ep�. If vq +  ∈ �vp − 6
 vp + 6�, then ep is said to 6-cover with eq. The
6-coverage and 6-reachability of the case ep are defined by

Coverage�ep� =
{
e|e ∈ L
 e is 6-covered by ep

}
(22)

and

Reachability�ep� =
{
e|e ∈ L
 e 6-covers with ep

}
(23)

respectively.
The 6-coverage of a case e represents the generalization capability of this case. The

bigger the number of cases in the 6-coverage, the more representative is the selected
case e. As a kind of rule extraction, it is a commonsense application of Occam’s razor.
On the other hand, the 6-reachability of a case e represents the degree to which e can
be replaced by another case. The smaller the number of cases in the 6-reachability, the
more important is the selected case e. As an index of evaluation of selected cases, to a
great extent it reflects the difference between the rule-based and case-based approaches.
Our proposed selection procedure integrates these two approaches.

For the cluster L and its one subset S, S is said to have the same competence as the
cluster L under an error standard 6 if each case in the cluster L can be 6-covered by
a certain case in S. Usually, subset S is composed of several representative cases of L.
One key point of our selection strategy is to guarantee that the selected cases have the
same competence as the original case library.

Another key point of our selection strategy is to consider the number of selected
cases. There is always a tradeoff between the number of cases to be stored in the case
library of a case-based expert system and the performance of retrieval efficiency. The
larger the case library, the more the problem space is covered; however, it also would
downgrade the system performance if the number of cases grows to an unacceptably
high level. Naturally, we expect the number of selected representatives to be as small
as possible.

Considering the preceding key points, we formulate our selection strategy as an
optimization problem, as described below:

For a given cluster obtained in phase 3, find its one subset so that the subset has
the same competence as the original cluster and the number of cases in the subset is
minimum. Noting that ep ∈ Coverage�ep� holds for each ep in the cluster, one can easily
see that the preceding optimization problem is equivalent to the following optimal set
cover (OSC) problem:

OSC Problem. Let T be a finite set and F = �S1
 S2
 � � � 
 Sp� be a family of subsets
of T . We say F is a cover of T if ∪pi=1Si ⊃ T . We say |F∗| is an optimal cover of T if
F∗ is a cover of T and |F∗| ≤ |F | for an arbitrary cover of T , F , where || denotes the
number of elements of a set. The problem of finding F∗ is called the OSC problem.

Unfortunately, the OSC problem was proven to be NP-hard by Johnson (1973).
Thus, finding the exact solution for our proposed optimization problem of selecting
representative cases is not realistic. An intuitive and powerful heuristic algorithm is
designed below to find the approximate solution.
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Algorithm 4: Case-Selection Algorithm. Given a cluster L and error-standard 6, R
is initialized to be an empty set.

Step 1. For each case e in L, determine Coverage�e� by a set of adaptation rules
associated with the case e, AR�e�.

Step 2. Find case e∗ such that |Coverage�e∗�| = maxe∈L |Coverage�e�|. If there exists
more than one case, so that the maximum is reached, select a case e∗∗ from
them so that |Reachability�e∗∗�| = min |Reachability�e∗�|. If there exists more
than one case, so that the minimum is reached, select one randomly as case e∗.

Step 3. Put R = R∪ �e∗� and L = L−Coverage�e∗�, if |L| = 0, then stop; else, go to
step 2.

Consequently, the set R is regarded as an approximate solution of the optimization
problem.

3. EXPERIMENTAL ANALYSIS

Our CBM methodology has been described. In this section we try to demonstrate
the effectiveness of this approach as well as to examine the relationship between the
compactness and the performance of a CBR system. Two standard data sets are used
in this study. The first one is a case base of 1024 cases from the Travel domain. Each
case consists of 11 attributes such as type of vacation, length of stay, holiday type, hotel,
etc. This case base is available from the URL http//www.ai-cbr.org. The second data set
is adopted from the Nozaki et al. (1997) Rice Taste problem. Each case consists of five
inputs and a single output whose values are associated with subjective evaluations of the
flavor, appearance, taste, stickiness, toughness, and overall evaluation of 105 different
kinds of rice. The experiments are carried out using a Pentium III machine, and the
programs are written in Microsoft Visual C++.

3.1. Travel Case Base

Size and Accuracy of the Transformed Case Base. Table 1 shows a sample record of
the Travel case base. We use “Holiday Type,” “Number of Persons,” “Region,” “Trans-
portation,” “Duration,” “Season,” “Accommodation,” and “Hotel” as the problem fea-
tures, and “Price” as the solution feature.

After applying the learning feature-weights algorithm mentioned in Section 2.1 to
these cases, the feature-weight results shown in Table 2 are obtained (learning itera-
tions = 100 cycles, � = 0�157, and ! = 10).

The clustering of cases is carried out both with and without the feature-weights
information. The results are shown in Table 3. When feature-weights information is
used to guide the clustering of cases, much better results are obtained. The user can
specify a particular significant level # for further learning of adaptation rules.

In our experiment we have chosen # = 0�96 as the significant level. As a result, the
cases are partitioned into 55 classes. Some of these classes are shown in Table 4. We
label classes with less than 10 records as Odd classes and the rest Not-odd classes. The
learning of fuzzy adaptation rules is carried out on the Not-odd classes.

In the mining of fuzzy adaptation rules, we fuzzify the numeric features (see Table 1)
into five linguistic variables, i.e., Negative Big, Negative Small, Zero, Positive Small, and
Positive Big. The symbolic features are used directly in the mining process.
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Table 1. A Sample Record of the Travel Case Base

Name Data Type Example

Case Symbolic Journey1021
Journey Code Numeric 1021
Holiday Type Symbolic Recreation
Number Of Persons Numeric 6
Region Symbolic France
Transportation Symbolic Car
Duration Numeric 14
Season Symbolic January
Accommodation Symbolic Holiday Flat
Hotel Symbolic H. Flat Cheval Blanc, France
Price Numeric 1728

The general form of a fuzzy adaptation rule generated from the fuzzy decision tree
is as follows:

IF the change of X1 is [Small | Medium | Big | Symbolic Values]

[AND the change of X2 is [Small | Medium | Big | Symbolic Values]
[AND the change of X3 is [Small | Medium | Big | Symbolic Values]]]

THEN the change of Price is [Negative Big | Negative Small | Zero | Positive Small
| Positive Big].

where X = �Holiday Type, Number of Persons, Region, Transportation, Duration,
Season, Accommodation, and Hotel�. The maximum number of antecedents of each
fuzzy rule is limited to two in this experiment. For example, in cluster 7, which consists
of 13 cases, one of the adaptation rules is

Rule1: IF Holiday Type is changed from “Education” to “City”

THEN the change of Price is Positive Small.
The rule’s confidence is 0.89.

According to the case-selecting strategy defined in Section 2.4, we select cases
�2
 10
 9
 12
 1� as the representative cases in this cluster 7 (see Table 5). As a result
of this selection, a total of 25 fuzzy adaptation rules are also selected (i.e., each case
has 5 adaptation rules on average). A specific 6 is selected for each Not-odd cluster by
controlling the relative solution error to be less than 15 percent. The overall selection
results of the Not-odd clusters are shown in Table 6.

Table 2. Feature Weights of the Problem Features

Holiday Number of
Type Persons Region Transportation Duration Season Accommodation Hotel

0.1374 0.0891 0.0662 0.3691 1.0000 0.0440 0.3443 0.0503
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Table 3. Clustering of Cases With and Without Feature Weights

Without Feature-Weight Information With Feature-Weight Information
No. of No. of
Classes Cases in Classes Cases in
Which the First Which the First
Contain Five Largest Contain Five Largest

Significant No. of Only One Classes No. Of Only One Classes
Level (#) Classes Case Record (%) Classes Case Record (%)

0�92 1022 1020 0�68 9 2 99�12
0�93 1022 1020 0�68 10 2 98�83
0�94 1022 1020 0�68 12 3 98�63
0�95 1022 1020 0�68 54 13 55�37
0�96 1022 1020 0�68 55 14 55�37

Therefore, the total number of deleted cases is 365. After removing these deleted
cases, we want to evaluate how much knowledge we have lost by transferring them to
adaptation knowledge (i.e., the fuzzy adaptation rules). Therefore, we use them to test
the solution accuracy of the smaller case base with the adaptation rules. The average
relative error of the solution in each cluster is shown in the last column of Table 6.
We defined relative error = (real value − adapted value)/real value ∗ 100%. The
adapted value is generated from the smaller case base together with the fuzzy adaptation
rules.

Table 4. Clusters of the Travel Case Base

Cluster No. Number of Cases Odd or Not-odd Class

1 40 Not-odd
2 10 Not-odd
3 31 Not-odd
4 76 Not-odd
5 53 Not-odd
6 18 Not-odd
7 13 Not-odd
8 2 Odd
9 32 Not-odd
10 69 Not-odd
11 78 Not-odd
12 116 Not-odd
13 228 Not-odd
���

���
���

53 3 Odd
54 1 Odd
55 2 Odd
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Table 5. Reachability and Coverage of Each Case in Cluster 7 of the Travel Case Base

Case Number of Cases The Actual Cases No. of
Number Which Are Covered Which Are Covered Adaptation
(x) by Case(x) by Case(x) Rules

1 3 5, 8, 13 2
2 8 3, 4, 5, 6, 7, 8, 11, 13 6
3 4 1, 4, 6, 7 4
4 4 1, 3, 5, 7 7
5 2 1, 7 3
6 2 1, 5 4
7 2 3, 6 5
8 5 1, 3, 4, 5, 6 5
9 5 3, 4, 6, 7, 13 4
10 6 3, 4, 5, 6, 11, 13 6
11 1 1 4
12 5 3, 4, 5, 7, 13 7
13 5 1, 3, 4, 5, 7 7

The result shows that the Travel case-base size can be reduced by 36 percent if we
complement the remaining cases by the adaptation rules discovered using our approach.
The overall accuracy of the smaller case base is 94 percent of the original.

We randomly select 80 percent of the cases (820 cases) from Travel Agent case
base as the training data set and the other 20 percent cases (204) as the testing data
set. � = 0�155 and ! = 10, # = 0�96.

Problem-Solving Ability of the Transformed Case Base. In order to evaluate the
problem-solving ability of the transformed case base to new cases, we divided the test-
ing Travel case base into training cases (80 percent) and testing cases (20 percent),
respectively. After applying Algorithm 1 in Section 2.1 to the 820 training cases, the
feature-weight results shown in Table 7 are obtained (learning iterations = 100 cycles,
� = 0�155, and ! = 10).

Using # = 0�96, the cases are divided into 8 Not-odd clusters (with 792 cases) and
10 Odd clusters (with 28 cases). After learning the fuzzy adaptation rules and carrying
out the selection process, 254 cases are deleted, representing a 31 percent reduction.
The average number of adaptation rules for each remaining representative case is 4,
and the maximum number of antecedents of each fuzzy rule is 2. We then apply the
204 new cases to test this transformed case base’s problem-solving ability. This ability is
calculated using the relative error concept, i.e., relative error = (real value − adapted
value)/real value ∗ 100%. We compare our approach with the traditional k-nearest
neighbors approach. The result is shown in Table 8. It can be seen that the retrieval
efficiency has been much improved using our approach.

3.2. Rice Taste Case Base

Using an experimental approach similar to the one described earlier, the Rice Taste
data set is partitioned successfully into 14 clusters, with 3 clusters having more than 12
cases. Learning of fuzzy adaptation rules is carried out to these three clusters, and a
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Table 6. Selection of Representative Cases in All the Not-odd Clusters and the Relative Errors

No. of No. of Average Relative
Representative Deleted Cases Error of

Cluster No. Number of Cases Cases Deleted Cases

1 40 18 22 5�91%
2 10 4 6 1�85%
3 31 18 13 6�41%
4 76 47 29 5�87%
5 53 31 22 6�22%
6 18 14 4 3�15%
7 13 5 8 2�35%
9 32 18 14 4�79%
10 69 53 16 5�73%
11 78 57 21 6�70%
12 116 70 46 6�72%
13 228 140 88 8�48%
17 30 12 18 5�59%
19 12 4 8 6�81%
20 12 7 5 1�73%
23 24 15 9 4�70%
25 41 29 12 5�99%
28 26 18 8 3�46%
31 13 5 8 2�25%
33 11 3 8 3�80%

Total 933 Total 659 Total 365 Overall Average 6.22%

Table 7. Feature Weights of the Problem Features

Htype Npersons Region Transport Duration Season Accommodation Hotel

0.0384 0 0.0341 0.4614 1 0.0148 0.1292 0

representative case-selection strategy is used with 6 = 0�15
 6 = 0�1, and 6 = 0�15,
respectively, for these three Not-odd clusters. The result shows that the Rice Taste
case-base size can be reduced by 39 percent and that the overall accuracy of the smaller
case base is 90 percent of the original.

4. COMPLEXITY ISSUES

In our approach, the main idea is to transfer case knowledge to adaptation knowl-
edge for the benefit of better retrieval performance. Therefore, the time and space
complexity of our approach is solely dependent on the complexity of generating the
fuzzy adaptation rules and selecting the representative cases (see Section 2). First, we
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Table 8. Relative Error and Solution Seeking Times Comparison

Our Approach k-Nearest Neighbors

Average relative error 38�51% 46�35%
Average solution
seeking times 194 820

discuss the time complexity of our approach as follows:
The time complexity is equal to the sum of the “multiplication,” “division,” “max,”

and “min” operations required. In the first phase (i.e., learning feature weights; see
Section 2.1), the mining function (Equation 3) is differentiable (smooth) and the search
technique is gradient descent, and it can be guaranteed that the training algorithm
(Algorithm 1; see Section 2.1) is convergent if the learning rate is appropriately small.
Our experiments show that it converges even when we use a large learning rate (we use
10 as the learning rate in the Travel case base). By using a larger learning rate, we can
reduce the number of epochs to a fixed value (e.g., 50 to 100). From Equations (1) to
(7), we can easily see that the time complexity of Algorithm 1 for one epoch is equal
to O�N2�, where N is the number of cases in the case base. Therefore, the total time
complexity of our training algorithm is O�N2�.

In the second phase (i.e., partitioning cases into clusters; see Section 2.2), the par-
titioning algorithm (Algorithm 2) mainly involves the multiplication of two similarity
matrices (i.e., step 3 of Algorithm 2); therefore, the time complexity is equal to O�N2�.

In the third phase (i.e., fuzzy decision-tree generation; see Section 2.3), the time
complexity of this phase is equal to the generation of the fuzzy decision trees using the
fuzzy ID3 heuristic algorithm (Algorithm 3). From Equation (15), the time complexity
for generating one fuzzy decision tree is O(N). Therefore, the time complexity of gen-
erating the decision tree for each case in all the Not-odd clusters is less than O�N2�.

In the fourth phase (i.e., selecting representative cases; see Section 2.4), Algorithm
4 requires two major computations. The first step involves computing the case coverage
in each cluster; on average, this requires �N/k��N/k− 1�rp operations, where N is the
number of cases, k is the number of clusters, r is the average number of fuzzy adaptation
rules for each case, and p is the average number of antecedents in each rule. Since r and
p are very small compared with N , the complexity of step 1 in Algorithm 4 is O�N2�.
Steps 2 and 3 involve sorting the cases according to their coverage ability, and the
computation complexity will not exceed O�N2�. Therefore, the overall computational
complexity of Algorithm 4 is also bounded by O�N2�.

After the analysis of the time complexity of our approach, the space complexity is
much simpler. The space complexity is determined by the size of the case base and the
temporary storage required in each of the four phases described in Section 2. Among
the four phases, the multiplication of the two matrices in phase 2 requires the largest
amount of memory (i.e., N2). Since hardware and memory cost has been reduced sig-
nificantly recently, we believe that memory space is not a critical concern when using
our approach. However, we would like to carry out more study on this in our future
work.



Transferring Case Knowledge to Adaptation Knowledge 313

5. SUMMARY AND FUTURE WORK

In this article we have proposed a CBM methodology that was based on the idea
of transferring knowledge between knowledge containers in a CBR system. The main
idea is to transform a large case library to a small case library together with a group of
adaptation rules that are generated by fuzzy decision trees. These adaptation rules play
the role of complementing the reduction of cases. Our approach has four major steps,
i.e., learning feature weights, clustering cases, mining adaptation rules, and represen-
tative case selection. Experimental testing is carried out using the Traveling and Rice
Taste data sets. The experimental analysis of our method showed promising results. Our
future work includes (1) developing different selection policies based on ideas such as
subsumption, conflict, and ambiguity that exist among cases, (2) investigating the imple-
mentation issues of our approach for on-line or periodic updates, (3) evaluating what
will be the effects if features are not independent, and (4) exploring the effects of other
techniques such as rough sets theory on the CBM work.
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LIST OF SYMBOLS

ep
 eq two cases, p and q

d
�w�
pq weighted distance metric
d
�1�
pq weighted distance metric with all weights taking value 1
SM

�w�
pq similarity measure

SM
�1�
pq similarity measure with all weights taking value 1

� positive parameter
! learning rate
E�w� feature evaluation index
wj weight assigned to the jth feature of a case
 wj change in weight wj
# threshold value
SM

�w�
int ra intrasimilarity

SM
�w�
int er intersimilarity

FE�N� fuzzy entropy of the node N
6 error standard
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