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a b s t r a c t 

A seemingly unrelated regression (SUR) system simultaneously studies the groups of samples that are 

related with each other through the covariance of decision attributes. Each group of samples is studied 

by a regression equation, and the error terms of the regression equations are correlated in SUR system. 

Extreme Learning Machine (ELM) is a training method for single-hidden layer feedforward neural net- 

work, it is widely used in many machine learning domains due to the good generalization capability 

and fast training speed. Since a single ELM ignores the correlated information among different groups 

of samples, it fails to solve the SUR problem effectively. This ineffectiveness becomes more obvious with 

the correlation among equations going up. In order to overcome this problem, an extended ELM model 

is proposed in this paper, described as Seemingly Unrelated ELM (SUELM). SUELM simultaneously learns 

multiple ELMs by sufficiently using the correlated information among different groups of samples, thus 

it can solve the SUR problem effectively. In comparison with a single ELM, SUELM significantly improves 

the performance. Simulation results show that SUELM performs better than the single ELM with respect 

to mean square error and generalization ability, especially when significant correlations exist among dif- 

ferent groups of samples. This paper provides an effective way for solving the SUR problem by adopting 

ELM as the learning model. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Seemingly unrelated regression (SUR) system, proposed by Zell-

ner [1] , studies the samples that are related with each other

through the covariance of decision attributes. Since sample correla-

tions widely exist in many real applications, SUR system has been

studied in a variety of fields including geography [2] , economics

[3] , biological sciences [4] and so on. Specifically, Hubert M [5] il-

lustrated the influence of SUR model on studying the relationship

between the foreign direct investment by multinational corpora-

tions and several macroeconomic variables. Fiebig D G [6] stud-

ied gasoline demand using a sample of data comprise 18 countries

each of which had 19 annual data points. They demonstrated that

SUR system could result in improvements in inferences if the pro-

cedures were applied to the t-ratios rather than to the standard

errors. 

Algebraically, the SUR model is 

Y i = X i βi + εi , (1)

E( εi ) = 0 , E( εi ε
′ 
j ) = σi j I T , i, j = 1 , . . . , N, 
∗ Corresponding author at: College of Computer Science and Software Engineer- 
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here X i is a T × L i -matrix with rank ( X i ) = L i , β i is a L i -vector of

nknown coefficients, εi is a T -vector of random errors, Y i is a T -

ector and I T is a T × T identity matrix. 

Many works have been proposed and devoted to the devel-

pment of SUR models. Zellner provided the pioneer work in

his area [7] , Srivastava and Giles reviewed the early literature in

heir book [8] , and Fiebig gave a survey on this topic [9] . More

pecifically, a feasible ridge estimator was studied by Roozbeh

t al. [10–12] to build up semiparametric SUR models; the highly

ccurate likelihood method was used by Fraser et al. [13] to ana-

yze the SUR model; a direct Monte Carlo approach was derived by

ellner and Ando [14] by using Bayesian analyses method; and the

est equivariant estimator was obtained by Kurata and Matsuura

15] with a symmetric error. However, when N is larger than T ,

he above estimation for regression coefficients are not available

ince the covariance matrix is no longer positive definite. With the

dvent of the era of big data, more and more information con-

erning a certain domain can be acquired easily, and therefore, a

ompany can use broader information to make decision. It implies

hat SUR model with large N will be common in practical. Zhao

t al. [16] proposed an improved two-stage conditional expectation

stimator, which does not need to compute the inverse of the

ovariance matrix. The improved two-stage conditional expecta-

ion estimator can be used in the situation of big N but it suffers
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rom high complex computation. In order to decrease the times

f iterations, Zhao and Xu [17] further proposed a generalized

anonical correlation variable improved estimator which only uses

he elements of the covariance matrix. It performs well when the

orrelation between the equations is not too small. 

It is worth noting that although the SUR problem has been

tudied already in many works, all of them focus on the corre-

ation coefficient analysis in statistics. Nowdays The study which

onnects together uncertainty and learning from data has aroused

ide attention [18] . To the best of our knowledge, using SUR

odel for machine learning has not been investigated yet. Since

ample correlation can also exist in machine learning data, how to

ombine SUR with machine learning models is a new problem that

as high research and practical values. The main purpose of com-

ining SUR with machine learning model is to enhance the pre-

iction performance of a learning system through mining relation-

hips among error terms. It is essentially a regression problem that

ims to minimize the regression errors and maximize the general-

zation capability based on correlated samples. 

On the other hand, neural network is a powerful supervised

earning technique that has shown great performance on various

egression problems with strong computing capability. In tradi-

ional feedforward neural networks, all parameters are adjusted it-

ratively by back propagation (BP) algorithm based on the gradient

escent technique [19] . In recent years some kinds of learning al-

orithms has been proposed [20–22] . ELM is a non-iterative train-

ng method for single-hidden layer feedforward neural networks.

he weight parameters connecting the hidden and input layers are

andomly chosen, and the weight parameters connecting the out-

ut and hidden layers are analytically solved [23] . Many scholars

ave made substantial efforts to further develop the ELM model

24,25] . Among the works, different theories and techniques have

een combined with ELM to improve its performance, such as Hap-

ic recognition [26] feature selection [27] naive Bayesian [28] active

earning [29] short-term load forecasting [30] . 

Traditional ELM gets the regression model by directly solving a

inear system. It does not take into account the correlated informa-

ion among samples, and therefore, cannot solve the SUR problem

ffectively. When strong correlation exists in the data, this ineffec-

iveness becomes more obvious. In order to solve this problem, this

aper tries to connect SUR with ELM and proposes an ELM-based

UR model, which is named Seemingly Unrelated ELM (SUELM). It

imultaneously trains a group of ELMs by incorporating the covari-

nce information of the data, which will finally be used for the

rediction. 

Since the SUELM model makes a sufficient use of the correlated

nformation in the data, it significantly improves the prediction

ccuracy in comparison with a single ELM, especially when one

roup of samples is correlated with another group. The improve-

ent is more significant if the correlation is stronger. It is worthy

f noting that the SUELM model will degenerate back to traditional

LM if the groups of samples are independent. 

The rest of this paper is structured as follows. The basic defini-

ions of SUR model and ELM will be introduced in Section 2 . The

ramework of the SUELM model will be proposed and some of its

haracters will be studied in Section 3 . Experimental results and an

pplication to air quality index prediction between cities are pre-

ented in Section 4 . Finally, conclusions and remarks are presented

n Section 5 . 

. Basic knowledge of SUR and ELM 

The basic knowledge of SUR and ELM will be introduced in this

ection. 
.1. Seemingly unrelated regression model 

SUR system consists of several individual equations. There is

o explicit connection such as one equation’s observation is an-

ther equation’s response, but there exists an implicit relation rep-

esented by correlated disturbances of response variables. 

The model (1) can be rewritten as 

 = X β + ε, (2) 

here 

 = 

⎡ 

⎢ ⎢ ⎣ 

Y 1 

Y 2 

. . . 
Y N 

⎤ 

⎥ ⎥ ⎦ 

, X = 

⎡ 

⎢ ⎢ ⎣ 

X 1 O . . . O 

O X 2 . . . O 

. . . 
. . . 

. . . 
O O . . . X N 

⎤ 

⎥ ⎥ ⎦ 

, 

nd 

= 

⎡ 

⎢ ⎢ ⎣ 

β1 

β2 

. . . 
βN 

⎤ 

⎥ ⎥ ⎦ 

, ε = 

⎡ 

⎢ ⎢ ⎣ 

ε1 

ε2 

. . . 
εN 

⎤ 

⎥ ⎥ ⎦ 

. 

he dimension of X i , Y i , βi , εi is the same as that in Eq. (1) . Hence

 is an NT × L -matrix, both Y and ε are NT -vectors, O represents

ero matrix with corresponding dimensions and β is L -vector,

here L = 

∑ N 
i =1 L i . The expectation of the error term ε is vector

 and the covariance matrix of it is 

OV ( ε) = � � I T , 

here � = (σi j ) N×N and the symbol � denotes Kronecker product

f two matrices. 

Different methods have been used to estimate the coefficients

f the regression equations. The least squares estimator of β is 

ˆ 
OLS = ( ̂  β

′ 
1 OLS , . . . , 

ˆ β
′ 
NOLS ) 

′ , 
here 

ˆ 
iOLS = ( X 

′ 
i X i ) 

−1 X 

′ 
i Y i , i = 1 , 2 , . . . , N. 

he residuals are 

ˆ i = Y i − X i ̂
 βiOLS � N i Y i , 

here N i = I T − X i ( X 

′ 
i X i ) 

−1 X i , i = 1 , 2 , . . . , N. 

When � is known, the generalized least squares estimator of β
s 

ˆ 
GLS = ( X 

′ ( �−1 
� I T ) X ) −1 X 

′ ( �−1 
� I T ) Y . (3)

Commonly, � is unknown, Zellner replaced � with its consis-

ent estimator ˆ � and got the Zellner’s two-stage estimator, that

s, 

ˆ 
F GLS = ( X 

′ ( ̂  �
−1 

� I T ) X ) −1 X 

′ ( ̂  �
−1 

� I T ) Y , 

here 

ˆ = (σi j ) (N ×N ) , σi j = 

1 

T 
ˆ ε
′ 
i ̂  ε j = 

1 

T 
Y 

′ 
i N i N j Y j . (4)

.2. Extreme learning machine 

ELM is a generalized single-hidden layer feedforward neural

etwork with random weights. Due to the non-iterative mech-

nism, it has a much faster training speed than traditional BP

ethods. Therefore, ELM has been widely used in many regres-

ion problems [31,32] . The basic framework of ELM is introduced

s follows. 

Suppose there is a training set that contains N random sam-

les 

 = { ( x i , t i ) } N ⊂ R 

n × R 

m , 
i =1 
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where x i = [ x i 1 , x i 2 , . . . , x in ] is the input feature vector that consists

of the conditional attributes, t i = [ t i 1 , t i 2 , . . . , t im 

] is the output vec-

tor that consists of the decision attributes. The number of condi-

tional attributes is n and the number of decision attributes is m .

The mathematical model of standard ELM with 

˜ N hidden nodes

and activation function g ( x ) is 

˜ N ∑ 

j=1 

β j g( w j · x i + b j ) = t i , i = 1 , . . . , N, (5)

where w j = [ w j1 , w j2 , . . . , w jn ] 
′ is a weight vector connecting the

input nodes and the jth hidden node, β j = [ β j1 , β j2 , . . . , β jm 

] ′ is

a weight vector connecting the output nodes and the j th hidden

node, and b j is the bias of the jth hidden node ( j = 1 , . . . , ˜ N ) ,

w j · x i means the inner product of w j and x i , and sigmoid func-

tion 

g(x ) = 

1 

1 + exp(−x ) 

is chosen as the activation function. 

Huang et al. in [33] rewritten (5) as 

H β = T , 

where H is the hidden layer output matrix, 

H ( w 1 , . . . , w ˜ N , b 1 , . . . , b ˜ N , x 1 , . . . , x N ) 

= 

⎛ 

⎝ 

g( w 1 · x 1 + b 1 ) . . . g( w ˜ N · x 1 + b ˜ N ) 
. . . 

. . . 
. . . 

g( w 1 · x N + b 1 ) . . . g( w ˜ N · x N + b ˜ N ) 

⎞ 

⎠ 

N× ˜ N 

, 

T is the decision attributes matrix denoted as 

T = 

⎛ 

⎝ 

t ′ 1 
. . . 

t ′ N 

⎞ 

⎠ 

N×m 

, 

and 

β = 

⎛ 

⎜ ⎝ 

β
′ 
1 

. . . 

β
′ 
˜ N 

⎞ 

⎟ ⎠ 

˜ N ×m 

. 

Conventionally, for the sake of training a single-hidden layer feed-

forward neural network, we expect to find specific ˆ w i , ̂
 b i , ̂

 β (i =
1 , . . . , ˜ N ) such that 

‖ H (( ̂  w 1 , . . . , ˆ w ˜ N , ̂
 b 1 , . . . , ̂  b ˜ N ) ̂

 β − T ‖ 

= min 

w i ,b i , β
‖ H ( w 1 , . . . , w ˜ N , b 1 , . . . , b ˜ N ) β − T ‖ 

which is amount to minimizing the cost function 

E = 

N ∑ 

i =1 

( 

˜ N ∑ 

j=1 

β j g( w j · x i + b j ) − t i 

) 2 

. (6)

The input weights w i and hidden layer biases b i are chosen ran-

domly in the ELM model. For given w i and b i , 1 ≤ i ≤ ˜ N , training

the ELM is amount to finding a least square estimation of linear

regression equation H β = T , i.e., 

‖ H ( w 1 , . . . , w ˜ N , b 1 , . . . , b ˜ N ) ̂
 β − T ‖ 

= min 

β
‖ H ( w 1 , . . . , w ˜ N , b 1 , . . . , b ˜ N ) β − T ‖ . (7)

From the literature [34] , the least-squares solution of (7) is β =
H 

† T , where H 

† is the Moore-Penrose generalized inverse matrix of

H . 

Since the parameters in ELM need not to be adjusted itera-

tively, the training speed of it is much faster than the conven-

tional gradient-based learning algorithms. Huang et al. [35] prove
hat when the number of hidden nodes is infinitely approximate

o the number of training samples, ELM can be infinitely close

o any given function. However, when significant correlations ex-

st among the groups of samples, a single ELM learned in iso-

ation may have bad generalization capability and serious over-

tting problem. Hence, it is expected to propose an improved ELM

ethod by making use of the correlated information in data. 

. Seemingly unrelated extreme learning machine 

The SUELM model will be proposed in this section, followed by

ome discussions on its framework, mathematical formulation, and

earning algorithm. 

.1. The framework of SUELM 

Seemingly unrelated samples refer to K groups of samples that

re correlated with each other through the decision attributes. The

onditional attributes of each group can be the same or different.

or example, group p can have conditional attributes 

 

p = [ x 1 , x 2 , x 3 , x 4 ] , 

hile group q can have conditional attributes 

 

q = [ x 2 , x 4 , x 5 , x 6 ] . 

t is highlighted that the relation among the K groups is reflected

y the covariance of decision attributes, not by the conditional at-

ributes. It is also the reason why we call it seemingly unrelated

amples. 

Suppose we have K groups of seemingly unrelated samples.

ach group has N independent observations, i.e., we have N × K dis-

inct samples 

 ( x 

p 
i 
, t p 

i 
) , i = 1 , 2 , . . . , N, p = 1 , 2 , . . . , K} , 

here x 
p 
i 

= [ x 
p 
i 1 

, x 
p 
i 2 

, . . . , x 
p 
in p 

] ∈ R 

n p , t 
p 
i 

∈ R 

1 , superscript p indicates

hich group the sample belongs to, and 

ov (t p , t q ) = σpq , p = 1 , . . . , K, q = 1 , . . . , K, 

here exist p � = q such that σ pq � = 0. When using ELM to solve this

roblem, traditional method is to train K independent ELMs re-

pectively based on the K groups of samples, without considering

he covariance information among different groups. In order to im-

rove the performance, we propose the SUELM model. It trains the

 ELMs at the same time, then optimizes the model by combining

he outputs of the K ELMs based on some correlation analyses. The

tructure of SUELM is shown in Fig. 1 . Similar to traditional model,

here are three layers in the pth ELM in SUELM. The first layer is

he input layer. The number of input nodes equals to the num-

er of conditional attributes used to describe samples. We sup-

ose that the input layer has n p nodes, and each node represents

he real input value of a conditional attribute. The second layer is

he hidden layer which contains ˜ N p nodes, and the last layer is the

utput layer that has only one node. 

The pth ELM in SUELM with activation function g ( x ) and 

˜ N p hid-

en nodes is given as 

˜ N p 
 

j=1 

β
p 
j g( w 

p 
j 
· x 

p 
i 

+ b p 
j 
) = t p 

i 
, i = 1 , . . . , N, (8)

here w 

p 
j 

= [ w 

p 
j1 

, w 

p 
j2 

, . . . , w 

p 
jn p 

] is the weight vector connecting

he jth hidden node and the input nodes; β
p 
j is the output weight

onnecting the jth hidden node and the output node; and b 
p 
j 

is the

ias of the jth hidden node, where 1 ≤ j ≤ ˜ N p . 
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Fig. 1. The SUELM. 
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.2. The mathematical model of SUELM 

Once the values of w i and b i are fixed, traditional method

s to estimate weights βp using least-squares estimation. How-

ver, it neglects the correlations of decision attributes among the

eemingly unrelated samples, thus the estimator for the individual

quation is usually sub-optimal. In the proposed SUELM, the least

quares estimator for the p th ELM is 

ˆ 
p 

ols = ( H 

′ 
p H p ) 

−1 H 

′ 
p T p 

here 

 p = 

⎛ 

⎜ ⎝ 

g( w 

p 
1 

· x 

p 
1 

+ b p 
1 
) . . . g( w 

p 
˜ N 
· x 

p 
1 

+ b p 
˜ N 
) 

. . . 
. . . 

. . . 

g( w 

p 
1 

· x 

p 
N 

+ b p 
1 
) . . . g( w 

p 
˜ N 
· x 

p 
N 

+ b p 
˜ N 
) 

⎞ 

⎟ ⎠ 

N× ˜ N 

, (9) 

nd 

 p = 

⎛ 

⎝ 

t p 
1 
. . . 

t p 
N 

⎞ 

⎠ 

N×1 

. 

t is worth noting that ˆ β
p 

ols minimizes the cost function 

 = 

N ∑ 

i =1 

˜ N ∑ 

j=1 

( β
p 
j g j ( w 

p 
j 
· x 

p 
i 

+ b p 
j 
) − t p 

i 
) 2 . (10)

bviously, the least squares estimator guarantees to minimize

he training error, but the testing error cannot be minimized.

n SUELM, we consider the correlation between the decision at-

ributes, and train the K ELMs at the same time. Let 

 = diag( H 1 , H 2 , . . . , H K ) N K×N K (11)

nd 

 = [ T 

′ 
1 , T 

′ 
2 , . . . , T 

′ 
K ] 

′ 
NK×1 

here 

ov ( T ) = �−1 
� I N , 
nd � = (σpq ) K×K . 

Based on Eq. (3) , we can get 

ˆ 
GLS = ( H 

′ (�−1 
� I N ) H ) −1 H 

′ ( �−1 
� I N ) T . 

n general, � is unknown, replace � with its consistent estimator
ˆ , we have 

ˆ 
F G = ( H 

′ ( ̂  �
−1 

� I N ) H ) −1 H 

′ ( ̂  �
−1 

� I N ) T , 

here ˆ � is based on the residuals of least squares solution 

ˆ β
p 

ols ,

.e., 

ˆ = ( ̂  σpq ) (K ×K ) , 

ˆ pq = 

1 

N 

( T p − H p ̂
 β
p 

ols ) 
′ ( T q − H q ̂

 β
q 

ols ) . 

e adjust the weight parameters ( ̂  β
1 ′ 
ols , ̂

 β
2 ′ 
ols , . . . , ̂

 β
K ′ 
ols ) 

′ to ˆ βF G . 

Finally, the training and testing processes of SUELM are de-

cribed in Algorithms 1 and 2 , respectively. In comparison with

Algorithm 1: The SUELM trainning algorithm. 

Input : 

Training set with K groups of samples, 

X = { ( x p 
i 
, t 

p 
i 
) | x p 

i 
∈ R 

n p , t ∈ R , i = 1 , . . . , N, p = 1 , . . . , K} 
where N is the number of training samples in each group, R 

is aset of real numbers; 

Activation function g(x ) ; 

Number of hidden neorons ˜ N p , p = 1 , . . . , K. 

Output : 

Parameters w , b and 

ˆ βF G . 

1 : Randomly choose input weight w 

p 
i 

and bias b 
p 
i 

for each 

ELM, i = 1 , . . . , ˜ N p , p = 1 , . . . , K. 

2 : Compute the hidden layer output matrix H p , p = 1 , . . . , K 

and H according to Eqs. (9) and (11). 

3 : Calculate the output weights beta for each ELM based on 

least squares method 

ˆ β
p 

ols = ( H 

′ 
p H p ) 

−1 H 

′ 
p T p , where p = 1 , 2 , . . . , K. 

4 : Compute the correlation between each group 

ˆ � = ( ̂  σpq ) (K ×K ) , 

ˆ σpq = 

1 

N 

( T p − H p ̂
 β
p 

ols ) 
′ ( T q − H q ̂

 β
p 

ols ) . (12) 

5 : Compute the general feasible output weight 

ˆ βF G = ( H 

′ ( ̂  �
−1 

� I N ) H ) −1 H 

′ ( ̂  �
−1 

� I N ) T . 

Algorithm 2: The SUELM testing algorithm. 

Input : 

Testing set with K groups of samples, 

X = { ( ̂ x 
p 
i 
) | ̂ x 

p 
i 

∈ R 

n p , i = 1 , . . . , N 

′ , p = 1 , . . . , K} where N 

′ is 

the number of testing samples in each group; 

Activation function g(x ) ; 

Number of hidden neorons ˜ N p , p = 1 , . . . , K; 

Parameters w , b and 

ˆ βF G . 

Output : 

Prediction result ˆ T . 

1 : Compute the hidden layer output matrix H p , p = 1 , . . . , K 

and H according to Eqs. (9) and (11). 

2 : Compute the output ˆ T = H ̂

 βF G . 
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the original ELM, SUELM additionally needs to calculate the corre-

lation, which has a very small amount of computation load. There-

fore our proposed model has a computational cost almost as same

as the standard ELM has. It mainly is to compute a generalized in-

verse of matrix. 

3.3. The characteristic of SUELM algorithm 

In this section, we investigate the main characteristic of SUELM,

and analyze its advantage in solving SUR problem. Considering the

weight parameters between hidden and output layers in ELM as a

random vector, in the following, we give a theoretical analysis on

the prediction error of SUELM. 

Theorem 1. For seemingly unrelated samples, in the class of linear

unbiased estimators of w j , if the covariance of the decision attribute

� is known, the SUELM can yield the minimal mean square prediction

error. 

Proof. Suppose X 

P 
i , p = 1 . . . K is an n p -dimensional vector of con-

ditional attributes in the pth group of samples, and t 
p 
i 

is the corre-

sponding decision attribute. The hidden layer output matrix of the

pth SUELM is H 

p 
o . And the output of it is ˆ t 

p 
o . Then the output of the

SUELM is 

ˆ T o = ( ̂ t 1 o , ̂  t 2 o , . . . ̂  t K o ) . 

Let H o = diag( H 

1 
o , H 

2 
o , . . . H 

k 
o ) . Consider the unbiased linear estima-

tor of weight say ˆ β = AT . 

Since AT is an unbiased estimator of β, we know that 

E( AT ) = β

According to T = H β, it follows that AH β = β. It leads to 

AH = I , (13)

and the expectation of ˆ T o is E( ̂ T o ) = E( H o AT ) = E( H o A H β) =
E( H o β) = E( T o ) . The prediction error can be written as 

e o = 

ˆ T o − T o = 

ˆ T o − E( ̂  T o ) + E( T o ) − ( T o ) = ( ̂  T o − E( ̂  T o )) 

− ( T o − E( T o )) = ( ̂  T o − E( ̂  T o )) − εo . 

where εo = T o − E( T o ) . 

The mean square prediction error is expressed as 

E( e ′ o e o ) = E [( ̂  T o − E ( ̂  T o )) − εo ] 
′ [( ̂  T o − E ( ̂  T o )) − εo ] 

= E ( ̂  T o − E ( ̂  T o )) 
′ ( ̂  T o − E ( ̂  T o )) + E εo 

′ εo 

= E( H o A T − H o β) ′ ( H o A T − H o β) + E εo 
′ εo 

= E( H o A T − H o A H β) ′ ( H o A T − H o AH β) + E εo 
′ εo 

= Etr( ε′ A 

′ H 

′ 
o H o A ε) + E( εo 

′ εo ) 

= Etr( A 

′ H 

′ 
o H o A εε′ ) + E( εo 

′ εo ) 

= t rA 

′ H 

′ 
o H o A � + t r �c . 

In order to find the minimum of E( e ′ o e o ) under the given constraint

conditions (13) , we let 

L ( A , M ) = t r A 

′ H 

′ 
o H o A � + t r �c + t r M 

′ ( AH − I ) , (14)

where M is a matrix of Lagrange multipliers. 

Taking the derivative of (14) with respect to A , we get 

∂L ( A , M ) 

∂( A ) 
= 2 H 

′ 
o H o A � − MH 

′ 
. 

Let 

2 H 

′ 
o H o A � − MH 

′ = 0 , (15)

and by multiplying from the right with �−1 H , we obtain that 

2 H 

′ 
o H o A ��−1 

H − MH 

′ �−1 
H = 0 . 
According to condition (13) , we have that 

 = 2 H 

′ 
o H o ( H 

′ �−1 
H ) −1 . (16)

ubstituting Eq. (16) into Eq. (15) , we have that 

 = ( H 

′ �−1 
H ) −1 H 

′ �−1 
. 

urthermore 

T = 

ˆ βGLS . 

hus we prove that the ˆ βGLS minimizes the mean-squared error of

orcast. �

From Theorem 1 , we can see that in the groups of seemingly

nrelated samples, when the covariance of the decision attributes

s known, the SUELM yields the minimal mean square prediction

rror. However, in practice, the covariance is hard to know, we

ave to estimate the unknown covariance based on the residuals.

n this case, SUELM is more efficient than ELM only when the sam-

les are highly correlated. 

. Performance evaluation 

The experimental comparisons between SUELM and ELM will

e given in this section. 

.1. Simulation data 

We first describe the data sets used for our simulations. Sup-

ose that our data sets are denoted as 

 ( x 

p 
i 
, t p 

i 
) } N i =1 ⊂ R 

n p × R , p = 1 , 2 , 

here p = 1 , 2 represents 2 groups and i = 1 , 2 , . . . , N represents

 observations for each group. For given i and p , the conditional

ttribute x 
p 
i 

is a K -dimensional vector which is sampled from a K -

ariate normal distribution denoted as N (0, I ), where the mean is

 K−dimensional zero vector and the variance is a K × K identity

atrix. We suppose that x 
p 
i 

(i = 1 , 2 , . . . , N) are independently and

dentically distributed (i.i.d.) for p = 1 and 2 . It is noted that, for

iven i and p , the decision attribute t 
p 
i 

is a real value. Furthermore,

e assume that the vector 

( t 1 1 , t 
1 
2 , . . . , t 

1 
N ) 

′ 

s correlated with 

( t 2 1 , t 
2 
2 , . . . , t 

2 
N ) 

′ , 

.e., the two output variables are related to each other. Then we

an generate the two vectors, i.e., the matrix ( t 1 i , t 
2 
i ) N×2 based on

he normal distribution N ( μ, �) with 

= 

[
0 

0 

]
and � = 

[
1 ρ
ρ 1 

]
, 

here ρ is a value in [0,1], representing the correlation between t 1 

nd t 2 . In summary, for give ρ ∈ [0, 1] we generate two real-valued

atrices with N rows and (K + 1) columns i.e., ( x 1 
i 
, t 1 i ) N×(K+1) and

( x 2 
i 
, t 2 i ) N×(K+1) . 

.2. Evaluation criterion 

The mean squared error (MSE) is used to evaluate the perfor-

ance of the SUELM and the single ELM. The MSE of a predictor

s given as follows: 

 SE = 

N ∑ 

i =1 

( ̂ t i − t i ) 
2 /N, 
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Fig. 2. The relation between the improvement of testing accuracy and the correla- 

tion among the groups of samples. 

Table 1 

Comparison of the SUELM and the single ELM with dif- 

ferent number of hidden nodes. 

˜ N Training MSE Testing MSE 

SUELM ELM SUELM ELM 

2 1.0948 1.0906 1.0975 1.1011 

3 1.0174 1.0087 1.0257 1.0416 

4 0.9496 0.9312 0.9493 0.9653 

5 1.1471 1.1060 1.1618 1.24 4 4 

6 1.0621 1.0184 1.0843 1.1181 

7 0.9123 0.8828 0.9299 1.0141 

8 1.0207 0.9979 1.0342 1.0 0 07 

9 0.9095 0.8845 0.9542 1.0458 

10 0.9574 0.9395 0.9770 0.9734 

11 1.0073 0.9701 1.0218 1.1217 

12 0.9078 0.8742 0.9688 1.0941 

13 0.9332 0.9004 0.9641 1.0837 

14 1.0555 1.0207 1.1706 1.3395 

15 0.8043 0.7835 0.8377 0.8622 

16 1.1921 1.1425 1.2381 1.3346 

17 0.9155 0.8524 0.9564 1.0315 

18 1.0489 0.9923 1.1308 1.2686 

19 1.0453 0.9791 1.1368 1.1954 

20 1.0260 0.9759 1.1542 1.2779 

30 0.7841 0.7282 0.9665 1.1038 

40 0.8823 0.7977 1.0878 1.4477 

50 0.7511 0.6775 1.2601 1.9249 

60 0.6854 0.6140 1.4021 1.8225 

70 0.7801 0.6951 2.0176 2.8577 

80 0.7769 0.6971 1.9623 3.2821 

90 0.6774 0.6048 2.6764 3.6927 

100 0.5457 0.4951 4.1142 4.9893 

110 0.4010 0.3764 4.6369 6.2599 

120 0.5349 0.4941 4.2913 5.5862 

130 0.2732 0.2603 8.2401 9.3262 

140 0.3143 0.3022 9.9592 11.3634 

150 0.2294 0.2178 8.3755 8.4308 

160 0.1745 0.1729 10.6489 10.8133 

170 0.1323 0.1285 27.9650 28.7373 

180 0.1303 0.1280 21.5275 22.3757 

190 0.0859 0.0831 61.7638 60.2691 

m  

s  

a  

r  

t  

d  

d  

t  
SE = 

N ∑ 

i =1 

(( ̂ y i − y i ) · ( ̂ y i − y i )) 

N 

, 

here ˆ t i is the n -dimensional vector predicted by the model and

 i is the ground truth vector. 

MSE corresponds to the expected value of the squared error

oss. Statistically, MSE of a predictor measures the average of the

quares of the errors, that is, the difference between the predicted

alue and its ground truth values. MSE is the second moment of

he error which is considered as a random variable. MSE combines

he variance of the predictor with its bias. When the estimator

s unbiased, MSE is the variance of the predictor. It is an easily

omputable quantity. The same as the variance, MSE has the same

easurement units as the square of the quantity being estimated. 

The root-mean-square error (RMSE) of a predictor is obtained

y taking the square root of MSE [36] , which is given as: 

M SE = 

√ 

N ∑ 

i =1 

( ̂ t i − t i ) 2 
/

N . 

 similar evaluation criterion is the mean absolute error (MAE) of

he predictor [37] , which is given as: 

AE = 

∑ N 
i =1 | ̂ t i − t i | 

N 

. 

.3. Experimental process 

According to Section 4.1 , we have two real-valued matrices with

 rows and (K + 1) columns for given ρ . We then select 50% sam-

les from each group to form 2 training sets, and the remaining

0% samples are taken as 2 testing sets. From each training set we

rain 2 individual ELM models. For convenience, we set the num-

er of nodes in the two ELMs in the same way. The input weights

nd hidden layer biases are chosen randomly. The number of input

odes equals to the number of conditional attributes. The number

f output nodes equals to the number of decision attributes. We

ry different number of hidden nodes, and find that, if the number

f hidden nodes is small, the training accuracy will be low. If the

umber of hidden nodes is large, the model will be overfitting. We

ist the training and testing accuracy for different numbers of hid-

en nodes, and then choose the optimal one. No other parameters

o tune. Then by using the correlated information we simultane-

usly train the two ELMs which form the SUELM. The degree of

orrelation is represented by ρ . 

First, we evaluate the relationship between data correlation and

he extent of improvement of SUELM to ELM. We set the num-

er of input nodes as 8, the number of hidden nodes as 15, and

he sigmoid activation function is employed. To illustrate that the

igher correlation the two groups have, the better the predic-

ion accuracy will be, ρ is chosen to be i 
20 , where i = 0 , 1 , . . . , 19 .

he improvement is evaluated by the relative mean square error

rMSE) 

M SE = 

M SE ELM 

− M SE SUELM 

M SE ELM 

. 

ig. 2 shows the simulation results. 

Then, we evaluate the effect of the hidden nodes number on

he performance of the trained models. The number of the in-

ut nodes in ELM is set as 8, and the correlation is set as 0.9.

e choose different number of hidden nodes, as ˜ N = 2 , 3 , . . . , 19

nd 20 , 30 , . . . , 200 . The training error and prediction error are dis-

layed in Table 1 and Fig. 3 . 

.4. Result and discussion 

In this section we conduct some statistical analyses of exper-

mental data. Fig. 2 describes the relation between the improve-
ent of testing accuracy and the correlation among the groups of

amples. By equally dividing the interval between the maximum

nd minimum absolute values of correlation coefficients, twenty

elevance levels are formed. For the sake of clarity, we only plot

he results with fixed number of input nodes and number of hid-

en nodes. As a notation, the same conclusion can be obtained for

ifferent numbers of input nodes and hidden nodes, i.e., when cer-

ain correlation exists among different groups of samples, SUELM
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Fig. 3. Comparison between the SUELM and the single ELM with different number of hidden nodes. 
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1 http://datacenter.mep.gov.cn/ . 
2 http://data.cma.cn . 
significantly improves the prediction accuracy in comparison with

a single ELM. The conclusion is consistent with Theorem 1 . 

Theorem 1 shows that SUELM performs very well when the

covariance matrix is known. However, the covariance matrix is

scarce knowledge in practice. Unknown � means efficiency loss

for SUELM, especially when ρ is small. Therefore, from Fig. 2 we

can see that when ρ is small the SUELM is not as good as ELM.

Zhao et al. [16] has proved that in SUR model 

Cov ( ̂  βF G ) = aσ11 ( X 

′ 
1 X 1 ) 

−1 (1 − bρ2 ) , (17)

where a > 0 and b > 0 are constants related to training samples.

Eq. (17) is a monotonically decreasing function of the square of

correlation coefficient ρ . The larger the correlation between the

samples the smaller the covarance of ˆ βF G . The covariance of ˆ βF G 

reaches to its maximum at ρ = 0 , and reaches to its minimum at

ρ2 = 1 . The covarance of ˆ T SUELM 

has the same changing rule as the

covarance of ˆ βF G . As both of ˆ t ELM 

and 

ˆ T SUELM 

are unbiased, the

smaller the covariance the higher the improvement of prediction

precision. Fig. 2 shows that the improvement is more significant if

the correlation is higher. The simulation results are in accord with

the theoretical analysis, which demonstrates that the SUELM is ap-

plicable for samples with high correlations. 

From Table 1 and Fig. 3 we can see that ELM is better than

SUELM in the training set, but SUELM is better than ELM in the

testing set. In fact, the performance of a model to predict unseen

data, which can be measured by generalization error [38] , is more

important. Let C = { ( x , t ) } be a finite space of samples. We wish to

learn a function 

h ( x ) : x → t . 

Suppose there is a joint probability distribution P ( x , t ) on x

and t , and the training set contains m i.i.d. instances S =
{ ( x 1 , t 1 ) , ( x 2 , t 2 ) . . . , ( x m 

, t m 

) } sampled from P ( x , t ) . The hypothe-

sis of a joint probability distribution enables us to model the un-

certainty in predictions. A non-negative real-valued loss function

L ( ̂ t , t ) is also used to measure how different the prediction 

ˆ t of

a hypothesis is from the true outcome t . The risk associated with

hypothesis h ( x ) is then defined as the expectation of the loss func-

tion: 

R (h ) = E [ L (h ( x ) , t )] = 

∫ 
L (h ( x ) , t ) dP ( x , t ) . 

Ordinarily, the risk function R ( h ) can not be calculated since the

joint distribution P ( x , t ) is unknown to the learning algorithm.
owever, by averaging the loss function on the training set we can

et the empirical risk as an approximation: 

 emp (h ) = 

1 

m 

m ∑ 

i =1 

L (h ( x i ) , t i ) . 

UELM has a generalization ability better than single ELM. The rea-

on is that the SUELM focuses on the general risk which is the ex-

ectation of the loss function. It is a global concept that represents

he predictive power of the model for all samples. However the op-

imization goal of the single ELM is to minimize the training mean

quared error which is referred to as empirical risk. 

Table 1 and Fig. 3 display the changing trend of the training

nd testing MSE along with the hidden nodes number. The train-

ng MSE goes down with the increase of the hidden nodes num-

er, while the testing MSE goes up with the increase of the hidden

odes number. 

For fixed N , training error decreases with the increasing amount

f ˜ N . This conclusion is corresponding with Huang et al. [23] . How-

ver, the prediction error on testing set increases with the increas-

ng amount of ˜ N , which demonstrates an over-fitting problem. The

oncepts of over-fitting and generalization error are closely con-

ected. Over-fitting occurs when the learned function h ( x ) be-

omes sensitive to the noise in the testing samples. Therefore, the

unction can have high training accuracy but the performance will

e bad on unseen data from the joint probability distribution of x

nd t . In general, the more overfitting occurs, the larger the gener-

lization error will be. 

.5. A Real application to air quality index prediction between cities 

In this section we illustrate that how the proposed SUELM can

e applied to air quality index prediction between cities. The pre-

iction accuracy can be improved by using correlated information. 

The air quality monitoring data and the related meteorologi-

al data from February 1, 2017 to December 31, 2017 are collected

rom three monitoring sites, i.e., Beijing, Tianjin, and Guangzhou,

espectively. All the air quality data are collected from Data center

f the Ministry of Ecology and Environment of China. 1 And all the

eteorological data are collected from China Meteorological Data

ervice Center. 2 
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Table 2 

Air quality and meteorological day data. 

City Data TEMP PRESS HUMD WS AQI 

Beijing 2017/02/01 −7 10,329 20 23 55 

2017/02/02 −31 10,270 34 12 108 

� � � � � �

2017/12/30 4 10,254 76 15 145 

2017/12/31 −19 10,222 61 15 64 

Tianjin 2017/02/01 −26 10,367 20 19 52 

2017/02/02 −25 10,310 34 17 109 

� � � � � �

2017/12/30 −4 10,291 76 17 242 

2017/12/31 −24 10,261 61 10 203 

Guangzhou 2017/02/01 163 10,136 72 27 32 

2017/02/02 154 10,144 72 23 43 

� � � � � �

2017/12/30 169 10,144 81 40 83 

2017/12/31 150 10,146 65 41 64 

Table 3 

Comparison of the SUELM and the single ELM with the data from 

Beijing and Tianjin monitoring sites. 

Beijing 

Training set Test set 

SUELM ELM SUELM ELM 

Average MSE 0.0084 0.0077 0.0087 0.0104 

SD of MSE 0.0 0 05 0.0 0 04 0.0032 0.0053 

Tianjin 

Training set Test set 

SUELM ELM SUELM ELM 

Average MSE 0.0086 0.0081 0.0090 0.0104 

SD of MSE 0.0 0 07 0.0 0 07 0.0039 0.0059 
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Table 4 

Comparison of the SUELM and the single ELM with the data from 

Beijing and Guangzhou monitoring sites. 

Beijing 

Training set Testing set 

SUELM ELM SUELM ELM 

Average MSE 0.0086 0.0086 0.0087 0.0087 

SD of MSE 0.0 0 03 0.0 0 03 0.0016 0.0016 

Guangzhou 

training set testing set 

SUELM ELM SUELM ELM 

Average MSE 0.0125 0.0125 0.0135 0.0135 

SD of MSE 0.0 0 07 0.0 0 07 0.0011 0.0011 
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The air quality monitoring data consists of the air quality in-

ex abbreviated as AQI, the meteorological data consists of tem-

erature abbreviated as TEMP, atmosphere pressure abbreviated as

RESS, humidity abbreviated as HUMD and wind speed abbrevi-

ted as WS. All data are collected day by day as show in Table 2 .

hrough the Pearson correlation analysis, it was found that the air

uality index of Beijing is highly correlated with that of Tianjin,

here the Pearson correlation coefficent is 0.877, while the corre-

ation of air quality indices in Beijing and Guangzhou are very low,

here the Pearson correlation coefficent is 0.03. 

The data sets from Beijing-Tianjin, and Beijing-Guangzhou are

sed to train both the SUELM and ELM model. In practice, we nor-

alize the input data into interval [0, 1] by Eq. (18) , and the output

ata are anti-normalized by Eq. (19) , i.e., 

 

′ 
i = 

x i − x imin 

x imax − x imin 

, (18) 

 = y ′ ( y max − y min ) + y min , (19)

here x i is the i th component value of the input vector x , x imin 

s the minimum value of the input vector component in training

ample space, x imax is the maximum value of the input vector com-

onent in training sample space, and x ′ 
i 

is the component value of

ormalization of x i . y 
′ is the component value of normalization of

 , y min is the minimum component value of the output vector y

n training sample space, and y max is the maximum value of the

utput vector y in training sample space. 

It is noteworthy that owing to the random assignment mech-

nism of the input weights, the results of each run may be dif-

erent. We carried out 10 0 0 experimental trials for each data set.

n each trial, 70% data are randomly picked as training set, and

he remaining 30% data are used as the testing set. The results of
ach trial are different, and we compare the mean and standard

eviation of the MSE based on the 10 0 0 trial results. Table 3 illus-

rates that the average MSE and the standard deviation of SUELM

re smaller than those of ELM on testing set based on the data

ollected from Beijing and Tianjin. The reason can be easily found

rom the Pearson correlation analysis, i.e., the data from Beijing

nd Tianjin are highly correlated. Table 4 illustrates that the per-

ormance of SUELM is almost as the same as ELM when the corre-

ation between the two sets of data is small. 

. Concluding remarks 

This paper aims at developing a new approach to efficient

earning in random-weight neural networks. Using the correlation

nformation we connect SUR with ELM together to propose an

UELM. It simultaneously trains a group of ELMs by incorporat-

ng the covariance information of the data. When the samples are

ncorrelated, the SUELM is equvilent to ELM. Theoretically, it has

een proved that the SUELM can yield a minimal mean squared er-

or when the correlation is known. And simulation results indicate

hat SUELM has a generalization capability much better than ELM,

specially when the two groups of samples are highly correlated

o each other. 

There are two limitations of the proposed model. The first is

hat the model can be used only when the data in one group is

oming from the same population, which seriously limits the mod-

ls applicability. The second is that we have not yet a mathemat-

cal formulation to describe the models generalization capability.

vercoming the two limitations and then proposing an improved

odel is our further study on this topic. 
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