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Abstract Usage of fuzziness in the study of semi-super-

vised learning is relatively new. In this study, the divide-

and-conquer strategy is used to investigate the performance

of semi-supervised learning. To this end, testing dataset is

divided into three categories, namely low, medium and

high-fuzzy samples based on the magnitude of fuzziness of

each sample. It is experimentally confirmed that if the low-

fuzzy samples are added from the testing dataset to the

original training dataset and the model is retrained, then the

accuracy can be improved. To measure the amount of

fuzziness of each sample, four different fuzziness mea-

suring models are used in this study. Experimental results

support that improvement of accuracy is dependent on

which fuzziness measuring model is used to measure the

fuzziness of each sample. Wilcoxon signed-rank test shows

that choosing a specific fuzziness measuring model is

significant or not. Finally, from the Wilcoxon signed-rank

test, the best model is chosen, which can be used along

with semi-supervised learning to improve its performance.

Keywords Fuzziness � Semi-supervised learning � Divide-
and-conquer strategy � Measures of fuzziness � Fuzzy
classifier � Wilcoxon signed-rank test

1 Introduction

Semi-supervised learning (SSL) is a machine learning

paradigm. After the development of supervised and unsu-

pervised learning algorithms, machine learning researchers

realized that both types of algorithms have their own

advantages and disadvantages. Exploiting the advantages

of both supervised and unsupervised learning algorithms

and trying to remove their limitations, machine learning

researchers proposed a new type of learning algorithm

which is known as semi-supervised learning. Labeled data

are required to train a supervised learning algorithm. On

the other hand, unsupervised learning does not require

labeled data. In contrast to both supervised and unsuper-

vised algorithms, semi-supervised learning algorithm uses

both labeled and unlabeled data [1–3]. In most of the cases,

the type of data we encounter in our daily life activities is

of unlabeled data. Generally, unlabeled data are not

expensive because they do not require human expert to

process this type of data. On the other hand, labeled data

have some limitations: (1) It takes long time to process

such data, (2) labeled data are expensive, and (3) domain

information is needed to handle this type of data. So, semi-

supervised learning is very useful learning technique when

there are huge volume of unlabeled data and small amount

of labeled data [4].

Fuzziness is a common phenomenon in our daily life

activities because many events are not crisp in nature rather

they are fuzzy. The term fuzziness was first proposed by

Lotfi A. Zadeh in 1965 in association with his great

invention fuzzy set theory [5].

With the advent of fuzzy set theory, its usages have

become common in many fields such as machine learning,

data mining, pattern recognition. As the concept of fuzzy

set theory has been widely applied to many application
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areas, consequently researchers in this field felt the need

for measuring the amount of fuzziness in a fuzzy sets or

events. In this regard, many researchers proposed different

methods to measure the fuzziness of a fuzzy set and tried to

justify their methods by investigating some mathematical

properties.

During the last few decades, SSL has become very

popular as a learning method due to its potential advan-

tages and numerous diversified applications [6–8]. From

the literature, we find different techniques that were pro-

posed for semi-supervised learning, such as self-training,

co-training, generative model, graph-based model, trans-

ductive SVM. The existing semi-supervised learning

techniques usually do not use the concept of fuzziness in

the learning process [9, 10]. Therefore, the use and the

investigation of fuzziness in the learning process of semi-

supervised technique is very significant. The practice of the

concept of fuzziness in SSL is relatively new, and it is

gaining popularity among the machine learning researchers

because it helps to model more generalized semi-super-

vised learning algorithm than its counterparts. Ashfaq et al.

[11] showed how the fuzziness-based semi-supervised

learning can be used to detect intruder in a system. In their

study, they only used one fuzziness measuring model. As

an extension to this work, we use different fuzziness

measuring models and investigate how the selection of

specific fuzziness measuring model impacts on the learning

performance of fuzzy semi-supervised learning.

The purpose of this present work is to build a model to

perform a comprehensive analysis of the effect of using

various measures of fuzziness on the learning performance

of fuzzy semi-supervised learning.

Our main contributions in this paper are as follows:

(1) It is experimentally shown that in a SSL, we can

categorize the testing samples into three groups,

namely low-, medium- and high-fuzziness samples.

(2) It is also experimentally shown that if we add the

low-fuzzy instances from the test dataset to the

original training dataset, then its training and testing

accuracy can be improved.

(3) Improvement of training and testing accuracy is

dependent on which fuzziness measuring model is

used to measure the fuzziness of samples.

(4) Wilcoxon signed-rank test shows that whether it is

significant to choose a specific fuzziness measuring

model over others or not, and also helps to find the

best model which can be used with semi-supervised

learning to improve its performance.

This paper is arranged as follows. Section 1 is an intro-

duction. Section 2 gives an overview of various measures

of fuzziness. Section 3 introduces our proposed method to

study the effects of different fuzziness measures in a

fuzziness-based semi-supervised learning. Section 4

experimentally analyzes and discusses our results. Finally,

Sect. 5 concludes the paper.

2 Background

In this section, we first discuss the basic idea of fuzziness

and its mathematical properties. Then, we present several

measures of fuzziness. Later, we give a brief overview of

semi-supervised learning technique.

2.1 Fuzziness and Its Properties

In general, the term fuzziness means the quality of being

indistinct and without sharp outlines. It was first introduced

by Zadeh [5]. It describes the unclearness existing in an ill-

defined event. It is a type of cognitive uncertainty because

of the absence of exact boundaries of concepts. The con-

cept of fuzziness is discussed with fuzzy set theory. Luca

and Termini [12] described fuzziness as an uncertainty

[13, 14] connected with fuzzy sets and used non-proba-

bilistic entropy to measure the fuzziness associated with an

event. D. Sanzhez and E. Trillas used different measures of

fuzziness under different uses of fuzzy sets [15]. Ralescu

and Adams [16] used the fuzzy integral of a positive and

measurable function with respect to a fuzzy measure. Wang

[17] proved that a measure of fuzziness satisfying some

conditions can be represented as a fuzzy integral with

respect to some fuzzy measures. Farhadinia, Bahram and

Xu, Zeshui used different entropy measuring techniques for

hesitant fuzzy sets [18]. Here, we list out some potential

properties that satisfy while measuring the fuzziness of an

event [19, 20]. Different authors considered different

properties to measure the fuzziness.

Property 1: dðf Þ ¼ 0 if and only if f ðxÞ 2 f0; 1g for all

x 2 X. This property is called sharpness property, because

f(x) takes only crisp values instead of fractional values.

Property 2: d(f) is maximum if and only if f ðXÞ ¼ f0:5g.
This property is called maximality property, because it

describes the maximum value of a fuzzy set.

Property 3: dðf �Þ� dðf Þ, if f � is any sharpened version

of f, that is f ðx�Þ� f ðxÞ if f ðxÞ� 0:5 and is f ðx�Þ� f ðxÞ if
f ðxÞ� 0:5. This property is known as resolution property of

fuzzy set.

Property 4: dððf�Þ ¼ dðf Þ. The symmetrical property

tells the degree of fuzziness is symmetrical about 0.5 and

takes values across 0 to 1. For example, 0.4 and 0.6 have

the same degree of fuzziness.

Property 5: dðf [ gÞ þ dðf \ gÞ ¼ dðf Þ þ dðgÞ.
Property 6: There exist mappings s; t : ½0; 1� ! ½0;1Þ

such that: dðfxgÞ ¼ dðf Þ � tðPðgÞÞ þ dðgÞ � sðPðf ÞÞ For all
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f 2 ½0; 1�X and g 2 ½0; 1�Y , X and Y are any finite sets.

2.2 Various Measures of Fuzziness

Measures of fuzziness mean the degree of fuzziness of a

fuzzy set. In the literature, various approaches have been

proposed to measure the fuzziness of a fuzzy set. Most of

the approaches are influenced by the famous Shannon

entropy formula to measure the amount of information. In

this subsection, we give an overview of various measures

of fuzziness along with their properties.

In 1972, DeLuca and Termini proposed the following

model to measure the magnitude of fuzziness of a fuzzy

event [12].

dðf Þ ¼ �K �
XN

i¼1

f ðxiÞ � logðf ðxiÞÞ

þ ð1� f ðxiÞÞ � logð1� f ðxiÞÞ
ð1Þ

where N denotes the number of elements of f(x) and K is a

positive integer. Equation (1) satisfies the properties from 1

to 5, previously listed in Sect. 2.1:

In 1975, Kaufmann proposed the following models to

measure the magnitude of fuzziness of a fuzzy event,

where he used the generalized relative Hamming distance

and Euclidean distance, respectively, in Eqs. (2) and (3)

[21]. Equations (2) and (3) satisfy the properties from 1 to

5, previously listed in Sect. 2.1:

dðf Þ ¼ 2

N
�
XN

i¼1

jf ðxiÞ � f1
2
ðxiÞj ð2Þ

dðf Þ ¼ 2

N
1
2

XN

i¼1

ðf ðxiÞ � f1
2
ðxiÞÞ2

( )1
2

ð3Þ

Later in 1983, Ebanks proposed the following model to

measure the magnitude of fuzziness of a fuzzy set [22].

Equation (4) satisfies the properties from 1 to 6, previously

listed in Sect. 2.1:

dðf Þ ¼
XN

i¼1

f ðxiÞ � ð1� f ðxiÞÞ ð4Þ

where f 2 ½0; 1�X :

2.3 A Brief Overview of Semi-supervised Learning

Semi-supervised learning is a machine learning strategy. It

is considered as halfway between supervised and unsu-

pervised learning techniques which takes advantages of

both learning techniques. In 1965, H. J. Scuder first

introduced the concept of SSL [23]. We know that unla-

beled data are common and less expensive compared to

labeled data. As unlabeled data are available and labeled

data are rare, to deal with the situation machine learning

researchers tried to find some techniques. They found semi-

supervised learning can properly handle this problem. In

order to solve this problem, they train a classifier with

small amount of labeled data and using that classifier, they

classify huge amount of unlabeled data. Semi-supervised

learning has been effectively used to solve many real-world

problems from the beginning of its development [24–28].

Suppose, we have n number of samples; out of them

there are l number of labeled data and the rest are unlabeled

data. So, the labeled data are ðxl; ylÞ ¼ fx1:l; y1:lg and

unlabeled data are xu ¼ fxlþ1:ng. Then, a classifier function
is defined as f : x ! y to classify unlabeled data. Over the

last couple of decades, many SSL techniques were pro-

posed by many researchers, such as self-training, co-

training, multi-view learning, graph-based method, fuzzi-

ness-based semi-supervised learning.

2.3.1 Self-training

Self-training is perhaps the oldest type of semi-supervised

learning technique. In self-training, a classifier is built from

a small amount of labeled data. Then, this classifier is used

to classify huge volume of unlabeled data. Later, this newly

labeled data are added to the old trained data to form a new

training dataset and retrain the model as long as certain

criteria are fulfilled. The steps of self-training are as fol-

lows: (Algorithm 1)

Self-training algorithms is used to solve different types

of machine learning problems [29]. Wu et al. proposed a

self-training-based semi-supervised learning to classify

data based on density peaks [30]. Yarosky [31] used self-

training in some natural language processing (NLP) prob-

lems. Riloff et al. [32] proposed self-training algorithm to

find the subjective nouns from a document.
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2.3.2 Co-training

Co-training [33, 34] is another popular semi-supervised

learning technique. In some real situations, data have dif-

ferent views. For example, both an image and an HTML

text can describe the same item. When there are two views

of the same item, co-training can be used by two classifiers

to classify data. Steps of co-training algorithm are sum-

marized as follows: (Algorithm 2)

Maeireizo et al. [35] used co-training algorithm to pre-

dict emotions with spoken language data. Chawla et al. [3]

used co-training algorithm where they used both labeled

and unlabeled data.

2.3.3 Multi-view Learning

Multi-view learning [36, 37] is the extension of co-training

where more than two classifiers are trained with small

amount of labeled data and these classifiers are used to

provide labels to unlabeled data. For example, there are

three different views of the same item. For example, an

image, an HTML text and an audio all three can describe

the same item. So, multi-view learning can be used to

model this type of phenomenon. Three classifiers are

trained based on the three views of labeled data, and

unlabeled data are classified by using those three classi-

fiers. Zhou et al. [38] proposed tri-training to exploit

unlabeled data using three classifiers. D Kim et al. pro-

posed a multi-co-training for document classification using

various document representations [39].

2.3.4 Graph-Based Methods

Graph-based method [40, 41] is one of the important semi-

supervised learning methods. In this technique, a graph is

used to represent the problem where the set of vertices V

represents the training samples and the set of edges E

represents the connection between two samples and the

weight Wi;j represent the closeness of two sample i and

j. Zhou et al. [42] used directed graph to learn from labeled

and unlabeled data. Blum and Chawla [43] used graph

mincuts to learn from both labeled and unlabeled data.

2.3.5 Fuzziness-Based Semi-supervised Learning

Suppose there is a dataset D, and most of the samples of

D have no labels and a few of them have labels. A

classifier can be built from labeled samples, and this

classifier will be used to classify unlabeled samples. Wang

and He [44] proposed the fuzziness-based semi-supervised

learning algorithm which has the following steps: (Algo-

rithm 3)

Ashfaq et al. [11] proposed a fuzziness-based semi-su-

pervised learning technique to detect intruder in a system.

In their work, they demonstrated that when the low-

fuzziness samples from the testing dataset are added to the

training dataset, the classification rate for intruder detection

system (IDSs) is high and when the medium-fuzziness

samples are added, there is a higher risk of misclassifica-

tion. Patwary and Wang [45] analyzed the sensitivity of

initial classifier accuracy in a fuzziness-based semi-super-

vised learning.
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3 Effects of Different Measures of Fuzziness
on the Fuzziness-Based SSL

In this section, we first describe the fuzziness-based divide-

and-conquer strategy. Then, we briefly discuss about two

fuzzy classifiers and four different fuzziness measuring

methods that can be used along with our proposed fuzzi-

ness-based SSL to study the effect of different measures of

fuzziness on the learning performance of fuzzy SSL.

Finally, we describe the Wilcoxon signed-rank test to test

whether selecting a specific fuzziness measuring model is

statistically significant or not. Wilcoxon signed-rank test

helps to select the best model from all the models.

3.1 Fuzziness-Based Divide-and-Conquer Strategy

Wang et al. [46] proposed a divide-and-conquer strategy to

deal with fuzziness in a classification type of problem

where they divided the dataset into the training set and the

testing set. Then, based on the magnitude of fuzziness the

testing data are grouped into three categories, namely low-,

medium- and high-fuzziness groups. In their work, they

used one model to measure the fuzziness of fuzzy set. As

an extension of the work of Wang et al., we use four dif-

ferent fuzziness measuring models and proposed our new

algorithm to study the significance of using different

fuzziness measuring models in a fuzzy SSL (Algorithm 4).

There are many classifiers that give fuzzy vector output.

We randomly choose fuzzy KNN and non-iterative single

hidden layer feed-forward neural network, i.e., fuzzy ELM

to exhibit the effectiveness of our proposed algorithm.

3.1.1 Fuzzy KNN

Fuzzy KNN is the more generalized version of its coun-

terparts, that is, crisp KNN. Unlike crisp KNN algorithm, it

gives the output as a membership vector. Instead of giving

0 or 1 type of output, it gives output as fraction between 0

and 1 which says to what extent the instance belongs to a

specific class. The following formula provides the class

memberships to a given sample [47].

uiðxÞ ¼
PK

j¼1 uijð1=jjx� xjjj2=ðm�1ÞÞ
PK

j¼1ð1=jjx� xjjj2=ðm�1ÞÞ
ð5Þ

3.1.2 Non-iterative Single Hidden Layer Feed-Forward

Neural Network

This subsection briefly describes the non-iterative single

hidden layer feed-forward neural network, that is, extreme

learning machine (ELM) [48–51]. ELM consists of three

layers, namely input, output and hidden layers. Weights

between input and output layers are given randomly, and

weights between hidden and output layers are obtained
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analytically. For a training set @ ¼ fðxi; tiÞjxi 2 Rn; ti 2
Rm; i ¼ 1; 2; . . .;Ng Activation function h(x) and number of

hidden layer node M, ELM algorithm summarizes as

follows:

Step 1 Arbitrarily allocate the input weight wi and the

bias bi, where, i ¼ 1; 2; . . .;M

Step 2 Compute the hidden layer output matrix H.

Step 3 Compute the output weight b where,

b ¼ ðHTHÞ�1
HTT .

Using Algorithm 1, we can get the training and testing

accuracies, respectively, before and after adding low-

fuzziness samples from testing dataset to the original

training dataset. In this algorithm, we use 4 different

fuzziness measuring models. We want to compare the

performance of these 4 models. To this end, we use Wil-

coxon signed rank rest.

3.2 Wilcoxon Signed-Rank Test to Compare

Fuzziness Measuring Models

Wilcoxon signed-rank test is a nonparametric test which

does not follow any distribution. This test is applicable

when the sample size is very small. Suppose the sample

size is S. So, there are 2S data points. Data points are

denoted by x1;i and x2;i where i ¼ 1; 2; � � � ; S. In Wilcoxon

signed-rank test [52, 53], we have the following

hypotheses.

H0: New model does not lower the scores. H1: New

model lowers the scores.

4 Experimental Analysis and Discussion

To conduct the experiments, 12 standard datasets were

taken from UCI machine learning repository [54]. Datasets

were preprocessed before actual use. Description of the

datasets is given in Table 1. Two different experimental

setups were built to demonstrate the effectiveness of our

proposed algorithm. We used fuzzy KNN (FKNN) and

random weight non-iterative single layer feed-forward

neural network also called (FELM), respectively, in the

first and second experiments. In each of the experiment, we

use 4 different fuzziness measuring models to see the effect

of using each of the fuzziness measuring model on the

performance of fuzzy SSL. Tables 2 and 3 represent the

results of our proposed algorithm when FKNN and FELM

are, respectively, used as base classifiers.

The algorithms are implemented using Python 3 soft-

ware, and the experiments are conducted on a PC with

Windows 10 operating system, an Intel core i5-4590 CPU,

3.30 GHz and a 12 GB RAM.

Table 2 describes the first experimental results of our

proposed algorithm when FKNN is used as the base clas-

sifier. Column 2 and column 3 of Table 2 report the initial

training and testing accuracies when first (model-1) fuzzi-

ness measuring model is used to measure the fuzziness of

each sample. Then, the test samples are categorized into

three groups based on the magnitude of fuzziness and low-

fuzziness samples are added from the testing dataset to the

original training dataset. We retrain the model with new

training dataset. Then, both training and testing accuracies

are improved for all 12 datasets. And the improved training

and testing accuracies are represented in the column 4 and

column 5 of Table 2.

Column 6 and column 7 of Table 2 show the initial

training and testing accuracies when second (model-2)

fuzziness measuring model is used. After adding low-

fuzziness samples from the testing dataset to the training

dataset, the model is retrained. Then, new training and

testing accuracies are represented in the column 8 and

column 9 of Table 2. It is clear that training accuracy is

improved for all 12 datasets, but testing accuracy is

improved only for Blood Transfusion Service Center

(BTSCD) dataset and Pima-Indians-diabetes (PID) dataset

and for all other datasets testing accuracy is not improved.

The initial training and testing accuracies are repre-

sented in the column 10 and column 11 of Table 2 when
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third (model-3) fuzziness measuring model is used. The

model is retrained after adding low-fuzziness samples from

the testing dataset to the training dataset. Then, new

training and testing accuracies are given in the column 12

and column 13 of Table 2. It is obvious that training

accuracy is improved for all 12 datasets, but testing accu-

racy is improved for none of the datasets.

Column 14 and column 15 of Table 2 report the initial

training and testing accuracies when fourth (model-4)

fuzziness measuring model is used to measure the fuzzi-

ness of each sample. Then, the test samples are categorized

into three groups based on the magnitude of fuzziness and

low-fuzziness samples are added from the testing dataset to

the original training dataset. We retrain the model with new

training dataset. Then, both training and testing accuracies

are improved for all 12 datasets. And the improved training

and testing accuracies are represented in the column 16 and

column 17 of Table 2.

Table 3 shows the second experimental results of our

proposed algorithm where FELM is used as the base

classifier. Four fuzziness measuring models are used in this

experiment. It is noticeable that when we add the low-

fuzziness samples from the testing dataset to the original

training dataset and retrain the algorithm, the training

accuracy is improved for all 12 datasets, but testing accu-

racy is only improved for some of the datasets. For

example, if we consider Indian Liver Patient Dataset

(ILPD) and model-2 is used to measure the fuzziness of

samples, then although the training accuracy is improved,

testing accuracy is not improved.

Table 1 Dataset description No. Dataset # Instances # Features # Classes

1 Blood Transfusion Service Center dataset (BTSCD) 749 4 3

2 Indian Liver Patient dataset (ILPD) 582 10 2

3 Phishing dataset 1354 9 3

4 Pima-Indians-diabetes (PID) 769 8 2

5 Iris 150 4 3

6 Wine-quality-white (WQW) 4898 11 7

7 Yeast 1484 8 10

8 Vehicle 846 18 4

9 Ecoli 336 7 8

10 Sonar 208 60 2

11 Parkinson 195 22 2

12 Glass 214 9 6

Table 2 FKNN is used as base classifier with 4 fuzziness measuring models

Dataset Model-1 Model-2 Model-3 Model-4

Initial Improved Initial Improved Initial Improved Initial Improved

Tr_a Te_a Tr_a Te Tr_a Te_a Tr_a Te_a Tr_a Te_a Tr_a Te_a Tr_a Te_a Tr_a Te_a

BTSCD 0.933 0.713 0.934 0.760 0.921 0.713 0.934 0.730 0.933 0.680 0.935 0.640 0.923 0.647 0.929 0.680

ILPD 0.861 0.632 0.865 0.667 0.852 0.650 0.853 0.615 0.865 0.675 0.873 0.615 0.854 0.667 0.855 0.731

Phishing 0.930 0.856 0.936 0.922 0.933 0.867 0.938 0.817 0.924 0.867 0.934 0.811 0.937 0.882 0.939 0.950

PID 1.000 0.675 1.000 0.735 1.000 0.721 1.000 0.725 1.000 0.721 1.000 0.637 1.000 0.695 1.000 0.765

Iris 0.975 0.933 0.977 1.000 0.950 0.967 0.962 0.950 0.967 0.967 0.962 0.950 0.958 1.000 0.962 1.000

WQW 0.709 0.577 0.713 0.614 0.701 0.588 0.707 0.551 0.703 0.580 0.709 0.559 0.707 0.583 0.710 0.651

Yeast 0.741 0.569 0.741 0.657 0.734 0.576 0.738 0.530 0.738 0.582 0.745 0.500 0.749 0.559 0.750 0.576

Vehicle 0.818 0.659 0.827 0.761 0.808 0.653 0.822 0.549 0.821 0.688 0.831 0.593 0.818 0.747 0.829 0.832

Ecoli 0.892 0.912 0.897 0.978 0.888 0.809 0.890 0.711 0.881 0.868 0.886 0.822 0.896 0.824 0.900 0.889

Sonar 0.904 0.833 0.917 0.964 0.928 0.738 0.933 0.714 0.928 0.786 0.928 0.714 0.946 0.833 0.950 0.929

Parkinson 0.968 0.846 0.970 0.962 0.962 0.923 0.964 0.885 0.962 0.949 0.964 0.923 0.929 0.923 0.935 0.962

Glass 0.743 0.605 0.746 0.643 0.725 0.512 0.757 0.393 0.749 0.651 0.757 0.571 0.731 0.674 0.751 0.821

Average 0.873 0.734 0.877 0.805 0.867 0.726 0.875 0.681 0.872 0.751 0.877 0.695 0.871 0.753 0.876 0.815

Here, Tr_a and Te_a, respectively, indicate the training accuracy and the testing accuracy
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Both in the Figs. 1 and 2, the x� axis represents the

datasets and the y� axis represents the improvement of

accuracy. We find the improvement of accuracy by sub-

tracting the initial accuracy from the improved accuracy. In

our first and second experiments, FKNN and FELM are,

respectively, used as base classifiers and 4 fuzziness mea-

suring models are used along with them. When the low-

fuzziness samples are added from the testing dataset to the

original training dataset and retrain the model, both the

training and the testing accuracies may be improved. In

Figs. 1 and 2, for all 12 datasets, if we use, respectively,

model-1 and model-4 to measure the fuzziness of samples

then the training and the testing accuracies are improved.

But when we use, respectively, model-2 and model-3, then

only training accuracy is improved, but testing accuracy is

improved only for some datasets.

As in the case of model-1 and model-4, both the training

and the testing accuracies are improved and in the case of

Table 3 FELM is used as base classifier with 4 fuzziness measuring models

Dataset Model-1 Model-2 Model-3 Model-4

Initial Improved Initial Improved Initial Improved Initial Improved

Tr_a Te_a Tr_a Te Tr_a Te_a Tr_a Te_a Tr_a Te_a Tr_a Te_a Tr_a Te_a Tr_a Te_a

BTSCD 0.773 0.767 0.779 0.800 0.771 0.763 0.778 0.820 0.774 0.760 0.759 0.690 0.778 0.747 0.787 0.830

ILPD 0.749 0.735 0.766 0.833 0.760 0.684 0.768 0.628 0.758 0.726 0.758 0.577 0.747 0.752 0.770 0.846

Phishing 0.898 0.856 0.902 0.933 0.898 0.852 0.898 0.817 0.886 0.845 0.888 0.794 0.897 0.882 0.905 0.956

PID 0.788 0.734 0.798 0.814 0.781 0.734 0.785 0.676 0.787 0.734 0.782 0.657 0.787 0.792 0.798 0.843

Iris 0.942 0.933 0.954 1.000 0.942 0.917 0.954 0.900 0.942 1.000 0.946 1.000 0.958 0.933 0.962 0.950

WQW 0.566 0.555 0.574 0.613 0.574 0.549 0.575 0.554 0.572 0.540 0.573 0.519 0.577 0.536 0.578 0.570

Yeast 0.624 0.572 0.632 0.616 0.633 0.579 0.641 0.601 0.628 0.609 0.630 0.540 0.621 0.606 0.631 0.652

Vehicle 0.879 0.759 0.880 0.858 0.882 0.771 0.888 0.805 0.882 0.800 0.884 0.796 0.879 0.800 0.881 0.841

Ecoli 0.914 0.912 0.921 0.933 0.914 0.824 0.921 0.800 0.903 0.838 0.910 0.778 0.929 0.779 0.930 0.800

Sonar 0.831 0.571 0.833 0.571 0.837 0.667 0.839 0.821 0.831 0.714 0.856 0.536 0.843 0.643 0.844 0.679

Parkinson 0.981 0.872 0.988 0.923 0.962 0.949 0.964 0.923 0.961 0.897 0.976 0.846 0.968 0.897 0.970 1.000

Glass 0.760 0.674 0.778 0.679 0.758 0.535 0.762 0.429 0.725 0.767 0.730 0.679 0.749 0.698 0.762 0.699

Average 0.809 0.745 0.817 0.798 0.809 0.735 0.814 0.731 0.804 0.769 0.808 0.701 0.811 0.755 0.818 0.805

Here, Tr_a and Te_a, respectively, indicate the Training accuracy and the Testing accuracy

Fig. 1 Comparison of 4 fuzziness measuring models when used with FKNN as base classifier in fuzzy SSL
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model-2 and model-3, only the training accuracy is

improved, but the testing accuracy is not improved. So, we

can say that model-1 and model-4 are better than model-2

and model-3. Now, we need to check whether the differ-

ence between model-1 and model-4 is statistically signifi-

cant or not. To this end, we use Wilcoxon signed-rank test.

4.1 Wilcoxon Signed-Rank Test to Compare

Fuzziness Measuring Models

To compare among model-1, model-2, model-3 and model-

4 using Wilcoxon signed-rank test, we have the following

hypotheses:

H0 New model to measure the fuzziness does not lower

the scores.

H1 New model to measure the fuzziness lowers the

scores.

For example, if we want to compare between FKNN-

model-1 and FKNN-model-2 taking initial training accu-

racy into account (i.e., second and sixth columns of

Table 2), then the Wilcoxon signed-rank test results are

given in Table 4. In Table 4, the absolute value of the

positive sum of signed rank is 64 and the absolute value of

the negative sum of signed rank is 13. So the test statistic,

W ¼ 13. From the table of critical values for the Wilcoxon

test, the critical value is 11 (when level of significance is

0.05 and N ¼ 11). Since the test statistic is higher than the

critical value, that is, 13[ 11, the null hypothesis is

accepted and we can say that there is enough evidence to

support the claim that the new model (FKNN-model-2)

does not lower the score, i.e., when we use FKNN-model-2

to measure the fuzziness of samples, then the training

accuracy is not lower than that of FKNN-model-1. In the

same way, one can easily verify the results given in

Table 5 to compare among model-1, model-2, model-3 and

model-4 used with FKNN and FELM.

From Table 5, it is clear that if we compare between

model-1 and model-4 taking both training and testing

accuracies into account, for every case the null hypotheses

are accepted. Therefore, these two models are not statisti-

cally different. We can choose any one of the models to

measure the fuzziness of samples and use it with base

classifier to improve the performance of our proposed

semi-supervised learning algorithm.

4.2 Wilcoxon Signed-Rank Test to Compare Initial

Classifiers

To compare between FKNN and FELM, used with the

same four fuzziness measuring models, we use Wilcoxon

signed-rank test.

H0 New model to measure the fuzziness does not lower

the scores.

H1 New model to measure the fuzziness lowers the

scores.

For example, if we want to compare between FKNN-

model-1 and FELM-model-1 taking initial training accu-

racy into account (i.e., second column of Table 2 and

second column of Table 3), then the Wilcoxon signed-rank

test results are given in Table 6. In Table 6, the absolute

Fig. 2 Comparison of 4 fuzziness measuring models when used with FELM as base classifier in fuzzy SSL
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value of the positive sum of signed rank is 66 and the

absolute value of the negative sum of signed rank is 12. So

the test statistic, W ¼ 12. From the table of critical values

for the Wilcoxon test, the critical value is 14 (when level of

significance is 0.05 and N ¼ 12). Since the test statistic is

lower than the critical value, that is, 12\14, the null

Table 4 Wilcoxon signed-rank

test to compare between FKNN-

model-1 and FKNN-model-2

Dataset FKNN-model-1 FKNN-model-2 Sign Absolute value Signed rank

BTSCD 0.933110368 0.921404682 1 0.011705686 9

ILPD 0.860515021 0.85193133 1 0.008583691 7

Phishing 0.929759704 0.933456562 - 1 0.003696858 - 2

PID 1 1 0 0 0

Iris 0.975 0.95 1 0.025 12

WQW 0.708524758 0.700612557 1 0.0079122 6

Yeast 0.740522325 0.733782645 1 0.00673968 5

Vehicle 0.818047337 0.807692308 1 0.01035503 8

Ecoli 0.891791045 0.888059701 1 0.003731343 3

Sonar 0.903614458 0.927710843 - 1 0.024096386 - 11

Parkinson 0.967948718 0.961538462 1 0.006410256 4

Glass 0.742690058 0.725146199 1 0.01754386 10

Table 5 Wilcoxon signed-rank test for comparing among models

Old model New model |W| Critical value Decision

FKNN-model-1 (Tr_acc) FKNN-model-2 (Tr_acc) 13 11 Null hypothesis is accepted

FKNN-model-1 (Tr_acc) FKNN-model-3 (Tr_acc) 29 8 Null hypothesis is accepted

FKNN-model-1 (Tr_acc) FKNN-model-4 (Tr_acc) 29 8 Null hypothesis is accepted

FKNN-model-1 (Te_acc) FKNN-model-2 (Te_acc) 0 14 Null hypothesis is rejected

FKNN-model-1 (Te_acc) FKNN-model-3 (Te_acc) 0 14 Null hypothesis is rejected

FKNN-model-1 (Te_acc) FKNN-model-4 (Te_acc) 40 8 Null hypothesis is accepted

FELM-model-1 (Tr_acc) FELM-model-2 (Tr_acc) 29 6 Null hypothesis is accepted

FELM-model-1 (Tr_acc) FELM-model-3 (Tr_acc) 32 11 Null hypothesis is accepted

FELM-model-1 (Tr_acc) FELM-model-4 (Tr_acc) 32 11 Null hypothesis is accepted

FELM-model-1 (Te_acc) FELM-model-2 (Te_acc) 14 11 Null hypothesis is accepted

FELM-model-1 (Te_acc) FELM-model-3 (Te_acc) 0 8 Null hypothesis is rejected

FELM-model-1 (Te_acc) FELM-model-4 (Te_acc) 31 14 Null hypothesis is accepted

Table 6 Wilcoxon signed-rank

test to compare between FKNN-

model-1 and FELM-model-1

Dataset FKNN-model-1 FELM-model-1 Sign Absolute value Signed rank

BTSCD 0.933110368 0.772575 1 0.160535117 11

ILPD 0.860515021 0.748927 1 0.111587983 8

Phishing 0.929759704 0.898336 1 0.03142329 4

PID 1 0.788274 1 0.211726384 12

Iris 0.975 0.941667 1 0.033333333 5

WQW 0.708524758 0.565595 1 0.142930066 10

Yeast 0.740522325 0.624263 1 0.116259478 9

Vehicle 0.818047337 0.878698 - 1 0.060650888 - 6

Ecoli 0.891791045 0.914179 - 1 0.02238806 - 3

Sonar 0.903614458 0.831325 1 0.072289157 7

Parkinson 0.967948718 0.980769 - 1 0.012820513 - 1

Glass 0.742690058 0.760234 - 1 0.01754386 - 2
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hypothesis is rejected and we can say that there is enough

evidence to support the claim that new model (FELM-

model-1) lowers the score, i.e., when we use FELM-model-

1 to measure the fuzziness of samples, the training accu-

racy is lower than that of FKNN-model-1. In the same way,

one can easily compare between FKNN and FELM with

different fuzziness measuring models.

5 Conclusions and Future Works

In this study, the divide-and-conquer strategy was used to

investigate the performance of semi-supervised learning. In

order to improve the performance of semi-supervised

learning, testing dataset was categorized into three groups,

namely low-, medium- and high-fuzzy samples according

to the amount of fuzziness of each sample. It was experi-

mentally observed that adding the low-fuzzy samples from

the testing dataset to the original training dataset could

improve the accuracy of SSL. Four different fuzziness

measuring models were used in this study. Experimental

results confirmed that the improvement of accuracy of SSL

was largely dependent on which fuzziness measuring

model was used to measure the fuzziness of each sample.

Wilcoxon signed-rank test was used to compare among the

four different fuzziness measuring models, and it was

found that model 1 and model 4 were better than model 2

and model 3 and it was also found that model 1 and model

4 were not statistically different, so either of the two

models could be used with SSL to improve its perfor-

mance. In our proposed SSL technique, FKNN and FELM

were used as the base classifiers, and in our future work, we

will try to use different base classifiers to investigate

whether it is significant to select one base classifier on the

learning performance of SSL or not. The classifiers, used in

this study, have some parameters. For example, in FKNN

number of K is a parameter which can be changed and in

FELM the number of hidden layer nodes and biases are two

parameters which also can be changed. We think if we

change these parameters, then it will certainly have some

impacts on the learning performance of semi-supervised

learning. It is still needed to do some experiments to

investigate the impact which we will try to solve in our

future work. Although it is experimentally observed that

adding low-fuzziness samples from the testing dataset to

the original training dataset could improve the performance

of SSL, in our future work we will try to establish a strong

mathematical model to explain this phenomenon.
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