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a b s t r a c t

In this paper, we propose a new view for designing an evolutionary algorithm by using algebraic theory to
solve the combinatorial optimization problem. Using the addition, multiplication and inverse operation
of the direct product of rings, we first propose two evolution operators: the global exploration operator
(R-GEO) and the local development operator (R-LDO). Then, by utilizing the R-GEO and R-LDO to generate
individuals and applying the greedy selection strategy to generate a new population, we propose a new
algorithm – the Ring Theory-Based Evolutionary Algorithm (RTEA) – for the combinatorial optimization
problem.Moreover, we give a newmethod for solving the discounted { 0-1} knapsack problem (D{ 0–} KP)
by using the RTEA. To verify the performance of the RTEA, we use it and existing algorithms to solve four
kinds of large-scale instances of the D{ 0-1} KP. The computational results show that the RTEA performs
better than the others, and it is more suitable for solving the D{ 0-1} KP problem. Moreover, it indicates
that using algebraic theory to design evolutionary algorithms is feasible and effective.

© 2019 Published by Elsevier B.V.

1. Introduction

The discounted {0-1} knapsack problem (D{0-1}KP) is a novel
knapsack problemproposed by Guldan [1]. The ‘‘discount’’ thought
is a marketing approach in the field of business, which is a reason-
able explanation of international trade patterns and commercial
scale phenomena in real-world life. It can be applied to investment
decision-making, project selection, and budget control in the field.
Guldan [1] first studied the algorithm of the D{0-1}KP, and gave
a deterministic algorithm based on dynamic programming. Aiying
Rong et al. [2] proposed the definition of the alternative core for
the D{0-1}KP by imitating the core concept of the 0-1 knapsack
problem (0-1 KP), and combined dynamic programming with the
core of the D{0-1}KP to solve it. On the basis of the effective
methods for dealingwith infeasible solutions, He et al. [3] proposed
two efficient algorithms, FirEGA and SecEGA, based on the genetic
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algorithm (GA) to solve the D{0-1}KP. Recently, they [4] also had
a detailed study of the algorithms of the D{0-1}KP and proposed
a new deterministic algorithm and two approximation algorithms.
Especially, they advanced an efficient algorithm called PSO-GRDKP
(it is called GBPSO for short) by using discrete particle swarm
optimization [5]. It can effectively solve four kinds of D{0-1}KP
instances. In this paper, we advance a new idea by using algebraic
theory to design an evolutionary algorithm. Furthermore, we pro-
pose a new algorithm for solving the combinatorial optimization
problem: the Ring Theory-Based Evolutionary Algorithm (RTEA).
Moreover, we propose an effective method for solving the D{0-
1}KP using the RTEA. The comparison results of the RTEA, FirEGA,
SecEGA and GBPSO show that the RTEA is not only easy to imple-
ment but is also the most effective at solving the D{0-1}KP among
the four algorithms. This result also indicates that the new design
method based on the evolutionary algorithm using ring theory is
feasible and effective.

The remainder of the paper is organized as follows. In Section 2,
we briefly introduce the basic concepts of rings, the direct product
of rings, the residue class ring module m and the direct product of
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rings composed by it. Then, the definition andmathematicalmodel
of the D{0-1}KP are summarized. In Section 3, we propose an evo-
lutionary algorithm, the RTEA, by using the direct product of rings.
It can be used to solve the combinatorial optimization problem
whose feasible solution is an integer vector in {0, 1, . . . ,m1−1}×
. . . × {0, 1, . . . ,mn − 1}. In Section 4, by applying the NROA [3]
to handle the infeasible solutions, we propose a new method for
solving the D{0-1}KP using the RTEA. In Section 5, the reasonable
values of the parameter Pm in the RTEA are first determined. Then,
we use the RTEA, GBPSO, FirEGA and SecEGA to solve the four kinds
of large-scale D{0-1}KP instances, and show that the performance
of the RTEA is the best among the four algorithms. This shows that
the algebraic method for designing the evolutionary algorithm is
not only feasible but also effective. Finally, we summarize the full
text and state further research directions for the future.

2. Preliminaries

2.1. Ring and direct product of rings

A ring is an algebraic systemwith two binary operations, which
consists of an Abel group with an additive operation and a multi-
plicative semigroup. The direct product of rings is a special ring,
in which every element is an ordered m-tuple. The direct product
of rings can also be seen as a method of constructing a new ring
by using many rings. For describing the principle of the RTEA
algorithm, simple introductions of the ring and the product of rings
are given below, and for more details one can refer to [6] and [7].

Definition 1 ([6,7]). A ring ⟨R,+, •⟩ is a nonempty set R together
with two binary operations + and •, which we call addition and
multiplication, defined on R such that the following axioms hold:

(1) ∀a, b ∈ R, a+ b = b+ a;
(2) ∀a, b, c ∈ R, (a+ b)+ c = a+ (b+ c)
(3) ∃0 ∈ R such that ∀a ∈ R, a+ 0 = 0+ a, where 0 is called an

additive identity;
(4) ∀a ∈ R, ∃b ∈ R such that a+b = b+a = 0, where b is called

the inverse of a, and it is written as−a;
(5) ∀a, b, c ∈ R, (a • b) • c = a • (b • c); and
(6) ∀a, b, c ∈ R, a•(b+c) = a•b+a•c, (b+c)•a = b•a+c•a.

Let Zm = {[0], [1], . . . , [m−1]} be a collection of residue classes
of module m, where [j] = {x ∈ Z |x ≡ j(mod m)}, 0 ≤ j ≤ m − 1,
Z is the set of all integers, and m is an integer that is more than 1.
Define two binary operations

⨁
and

⨀
on Zm as following:

[i]
⨁
[j] = [(i+ j)mod m], [i]

⨀
[j] = [(ij)mod m],

∀[i], [j] ∈ Zm.

Thus, Zm is a ring with operations
⨁

and
⨀

, and it is said that
module m residues in the class ring. In Zm, the additive identity
is [0], and−[0]= [0],−[j] = [m− j], for j = 1, 2, . . . ,m− 1.

Definition 2 ([6,7]). If Ri are rings, i ∈ I = {1, 2, . . . , n}, then∏
i∈I Ri = R1 × R2 × · · · × Rn is a ring with operations defined by
⟨a1, a2, . . . , an⟩

⨁
⟨b1, b2, . . . , bn⟩ = ⟨a1+b1, a2+b2, . . . , an+bn⟩,

and ⟨a1, a2, . . . , an⟩
⨀
⟨b1, b2, . . . , bn⟩ = ⟨a1b1, a2b2, . . . , anbn⟩.

We call
∏

i∈I Ri as the direct product of Ri, i ∈ I .

Obviously,
∏n

i=1 Zmi = Zm1 × Zm2 ×· · ·× Zmn is a direct product
of rings by Definition 2, which is made up of n rings Zmi (1 ≤
i ≤ n). The additive identity is ⟨[0], [0], . . . , [0]⟩, and its inverse
is itself . For any nonzero element ⟨[a1], [a2], . . . , [an]⟩, its inverse
is ⟨−[a1],−[a2], . . . ,−[an]⟩. In fact, because ⟨[1], [1], . . . , [1]⟩

⨀
⟨[a1], [a2], . . . , [an]⟩ = ⟨[a1], [a2], . . . , [an]⟩

⨀
⟨[1], [1], . . . , [1]⟩

= ⟨[a1], [a2], . . . , [an]⟩, element ⟨[1], [1], . . . , [1]⟩ is the multi-
plicative identity of

∏n
i=1 Zmi .

2.2. Mathematical models of D{0-1}KP

Definition 3 ([2]). Given a set of n item groups, suppose that each
group i(i = 0, 1, . . . , n − 1) consists of three items: 3i, 3i + 1 and
3i + 2. The item 3i has weight w3i and profit p3i, and the item
3i + 1 has weight w3i+1 and profit p3i+1. The first two items 3i
and 3i + 1 are paired to derive the third item 3i + 2 with profit
p3i+2 = p3i+p3i+1 and the discountedweightw3i+2, which satisfies
w3i+2 < w3i + w3i+1, w3i < w3i+2 and w3i+1 < w3i+2. In each
group, atmost one of the three items can be selected to be placed in
the knapsack with capacity C . The problem is how to select items
loaded into the knapsack such that the total profit is maximized
under the condition that the total weight of the selected items does
not exceed C .

The first mathematical model of the D{0-1}KP come from [2],
and we will not repeat it here. Now, we introduce the second
mathematical models of the D{0-1}KP [3] as follows.

Without the loss of generality, let pj, wj(0 ≤ j ≤ 3n− 1) and C
be integers, and w3i+2 ≤ C(0 ≤ i ≤ n − 1),

∑n−1
i=0 w3i+2 > C . Let

X = (x0, x1, . . . , xn−1) ∈ {0, 1, 2, 3}n, where xi = 0(0 ≤ i ≤ n− 1)
denotes that no item of the ith group is loaded into the knapsack,
xi = 1 indicates that item 3i is put into the knapsack, xi = 2
denotes that item 3i + 1 is loaded into the knapsack, and xi = 3
indicates that item 3i + 2 is put into the knapsack. Let ⌈x⌉ be the
ceiling function, which is theminimum integer that is not less than
x. Hence, the secondmathematical model of D{0-1}KP is described
as follows:

max f (X) =
n−1∑
i=0

⌈xi/3⌉p3i+|xi−1| (1)

s.t.
n−1∑
i=0

⌈xi/3⌉w3i+|xi−1| ≤ C (2)

xi ∈ {0, 1, 2, 3}, i = 0, 1, . . . , n− 1. (3)

When solving the D{0-1}KP using the evolutionary algorithm
under the secondmathematical model, the encoding of an individ-
ual is an n-dimensional integer vector X = (x0, x1, . . . , xn−1) ∈
{0, 1, 2, 3}n. Consequently, any n-dimensional integer vector X ∈
{0, 1, 2, 3}n is a potential solution of the D{0-1}KP. Only when X
satisfies (2) is it a feasible solution, and otherwise it is an infeasible
solution.

3. Ring theory-based evolutionary algorithm

Note that there is a bijection H :
∏n

i=1 Zmi → Z[m1,m2, . . . ,

mn] from
∏n

i=1 Zmi to Z[m1,m2, . . . ,mn] = {0, 1, . . . ,m1 − 1} ×
{0, 1, . . . ,m2 − 1} × · · · × {0, 1, . . . ,mn − 1}, for any element
X̄ = ⟨[x1], [x2], . . . , [xn]⟩ ∈

∏n
i=1 Zmi , 0 ≤ xi ≤ mi − 1, such that

H(⟨[x1], [x2], . . . , [xn]⟩) = (x1, x2, . . . , xn) ∈ Z[m1,m2, . . . ,mn].

Here mi is an integer and large than 1, and i = 1, 2, . . . , n.
Therefore, we can use the element X̄ = ⟨[x1], [x2], . . . , [xn]⟩ in∏n

i=1 Zmi to denote the vectorX = (x1, x2, . . . , xn) in Z[m1,m2, . . . ,
mn]. Thus, by drawing support from the addition, multiplication
and inverse operations of

∏n
i=1 Zmi , we develop two evolutionary

operators on Z[m1,m2, . . . ,mn], and propose a new evolutionary
algorithm called the Ring Theory-Based Evolutionary Algorithm
(RTEA), which can be used to solve the combinatorial optimization
problemwhose feasible solution is ann-dimensional integer vector
in Z[m1,m2, . . . ,mn].

Let Y1 = (y11, y12, . . . , y1n), Y2 = (y21, y22, . . . , y2n), Y3 =

(y31, y32, . . . , y3n) and Y4 = (y41, y42, . . . , y4n) be four different
n-dimensional integer vectors randomly selected from Z[m1,m2,
. . . ,mn]. We can use Y1, Y2, Y3 and Y4 to generate new
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n-dimensional integer vectors X = (x1, x2, . . . , xn) ∈ Z[m1,m2,

. . . ,mn] using the following equation:

xi =
{
{y1i + y4i × [y2i + (mi − y3i)]}(mod mi), if rand(i) ≤ 0.5;
{y1i + [y2i + (mi − y3i)]}(mod mi), otherwise.

(4)

Here, i = 1, 2, . . . , n, rand(i) is a random real number in the
interval (0,1).

For example, suppose Y1 = (3, 1, 3, 2, 1), Y2 = (0, 2, 0, 1, 3),
Y3 = (1, 2, 3, 1, 1) and Y4 = (1, 2, 3, 2, 0) are four different integer
vectors randomly selected from Z[4, 4, 4, 4, 4] = {0, 1, 2, 3}5, and
rand(1) = 0.21, rand(2) = 0.74, rand(3) = 0.43, rand(4) = 0.18,
and rand(5) = 0.91. Then, we can generate a new 5-dimensional
integer vector X = (x1, x2, x3, x4, x5) = (2, 1, 2, 2, 3) by us-
ing Eq. (4), where

x1 = [y11 + y41 × (y21 + (4− y31))](mod 4)
= [3+ 1(0+ (4− 1))](mod 4) = 2;

x2 = [y12 + (y22 + (4− y32))](mod 4)
= [1+ (2+ (4− 2))](mod 4) = 1;

x3 = [y13 + y43 × (y23 + (4− y33))](mod 4)
= [3+ 3(0+ (4− 3))](mod 4) = 2;

x4 = [y14 + y44 × (y24 + (4− y34))](mod 4)
= [2+ 2(1+ (4− 1))](mod 4) = 2;

x5 = [y15 + (y25 + (4− y35))](mod 4)
= [1+ (3+ (4− 1))](mod 4) = 3.

In fact, using Eq. (4) to produce a new vector X is essen-
tially equivalent to the following process: First, generate T̄ =
⟨[t1], [t2], . . . , [tn]⟩ by using Ȳ4 = ⟨[y41], [y42], . . . , [y4n]⟩ which is
randomly selected from

∏n
i=1 Zmi and the multiplicative identity

1̄ = ⟨[1], [1], . . . , [1]⟩ of
∏n

i=1 Zmi , in which every component
[ti](1 ≤ i ≤ n) is randomly selected from {[y4i], [1]} with
equal probability. Second, according to the following Eq. (5), use
three randomly selected elements Ȳ1 = ⟨[y11], [y12], . . . , [y1n]⟩,
Ȳ2 = ⟨[y21], [y22], . . . , [y2n]⟩, Ȳ3 = ⟨[y31], [y32], . . . , [y3n]⟩ and T̄
to generate a new element X̄ = ⟨[x1], [x2], . . . , [xn]⟩ of

∏n
i=1 Zmi .

Finally, map X̄ to vector X = (x1, x2, . . . , xn) using the bijection H .

X̄ = Ȳ1

⨁
[T̄

⨀
(Ȳ2

⨁
−Ȳ3)] (5)

Because Y1, Y2, Y3 and Y4 are randomly selected from Z[m1,m2,

. . . ,mn] in Eq. (4), the procedure that generates a new
n-dimensional integer vector X by Eq. (4) is essentially a random
operator. On the other hand, the procedure generated new n-
dimensional integer vector X indicates that the vector X has the
ability of global learning. That is, it is generated by learning from
four different elements that are randomly selected from the whole
search space. Hence, we call this procedure the Ring-based Global
Exploration Operator (R-GEO), and represent it as X = R −
GEO(Y1, Y2, Y3, Y4) in the following. Obviously, R-GEO is a global
stochastic search operator in the discrete space Z[m1,m2, . . . ,mn].
It reflects the global exploration ability of the evolutionary algo-
rithm. However, only the global exploration ability is not enough,
but is must also have the local exploration ability in order to keep
the balance of the global search and local search in the evolutionary
algorithm [8]. Therefore, we give the following new evolutionary
operator based on the inverse operation to implement the local
exploration. The new operator is named the Ring-based Local
Development Operator (R-LDO).

Let X = (x1, x2, . . . , xn) ∈ Z[m1, . . . ,mn]. Pm is a given real
number in the interval (0,1), andwenamed it the local search prob-
ability. Then, the pseudo-code of R-LDO is described as follows:

Algorithm 1. R− LDO
Input: X = (x1, x2, . . . , xn) and Pm;
Output: X = (x1, x2, . . . , xn).
1 for i← 1 to n do
2 if (rand1 < Pm) then
3 if (rand2 < 0.5 and xi ̸= 0) then xi ← mi − xi;
4 else xi ← rand({0, 1, . . . ,mi − 1} − {xi});
5 end if
6 endif
7 end for

In R-LDO, rand1 and rand2 are two random real numbers in the
interval (0,1), respectively. The value of Pm is usually set in the
interval (0, 0.5]. rand({0, 1, . . . ,mi − 1} − {xi}) is an integer that
is generated randomly from the set {0, 1, . . . ,mi − 1} − {xi}. It is
easy to see that the essence of R-LDO is also a random operator,
and the time complexity of R-LDO is O(n).

In summary, we use R-GEO and R-LDO to generate new individ-
uals, and utilize the greedy selection strategy to select individuals
to form the new generation population. Hereby, we propose the
following algorithm RTEA based on the general framework of the
evolutionary algorithm [9] .

Let P(t) = {Xk(t)|1 ≤ k ≤ NP} be the tth generation population
of the RTEA and let Xk(t) = (xk1(t), . . . , xkn(t)) ∈ Z[m1, . . . ,mn]

be the kth individual in P(t), where 0 ≤ t ≤ MIT , MIT is the
maximum iterative number, and NP is the size of population. We
use Fit(Xk(t)) to denote the fitness value of individual Xk(t), and use
B = (b1, b2, . . . , bn) ∈ Z[m1, . . . ,mn] to denote the best individual
in the population P(MIT ). Then, for the combinatorial optimization
problem

∏
: max f (X), X ∈ Z[m1, . . . ,mn], the pseudo-code of the

RTEA is described as follows:

Algorithm 2. RTEA
Input: An instance of

∏
; parameters NP , MIT , and Pm;

Output: B and f (B).
1 Generate initial population P(0) = {Xk(0)|1 ≤ k ≤ NP}

randomly;
2 Compute Fit(Xk(0)), for 1 ≤ k ≤ NP;
3 for t ← 1 toMIT do
4 for k← 1 to NP do
5 Y ← R − GEO (Xp1(t − 1), Xp2(t − 1), Xp3(t − 1),

Xp4(t − 1));
6 Y ← R − LDO(Y , Pm);
7 if Fit(Y ) > Fit(Xk(t − 1)) then Xk(t)← Y else

Xk(t)← Xk(t − 1);
8 end for
9 end for
10 Determine B in P(MIT );
11 return(B, f (B)).

In the RTEA, Xp1(t − 1), Xp2(t − 1), Xp3(t − 1), and Xp4(t − 1)
are four different individuals randomly selected from population
P(t−1) in Step 5. Usually, the time complexity of computing Fit(X)
is O(n). Then, the time complexity of Step 1, Step 2 and Steps 4–8
are O(n ∗ NP). The time complexity of the RTEA is O(MIT ∗ n ∗ NP).
Note thatMIT andNP are both a linear function of n, and it indicates
that O(MIT ∗ n ∗ NP) = O(n3).

4. Using RTEA to solve D{0-1}KP

When we use the RTEA to solve the D{0-1}KP under the sec-
ond mathematical model, the encoding of the individual is an
n-dimensional integer vector X = (x0, x1, . . . , xn−1) ∈ Z[4, 4,
. . . , 4] = {0, 1, 2, 3}n. Since the D{0-1}KP is a constrained opti-
mization problem, many infeasible solutions would be inevitably
generated in the RTEA. This is not the beneficial to calculating the
fitness value of an individual, but it also reduces the efficiency
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Fig. 1. Box plot of 4 instances: (a) UDKP5, (b) WDKP5, (c) SDKP5, (d) IDKP5.

of the algorithm. Therefore, we use the algorithm NROA [3] (The
pseudo-code of NORA is given in Appendix) to repair and optimize
all individuals in the RTEA, and utilize the objective function
value of the feasible solution as the fitness value of the individual
corresponding to it. Accordingly, we present a new method for
solving D{0-1}KP using the RTEA.

Let H[0 . . . 3n− 1] be an array, which is used to store the index
of all items according to the descending order of pj

wj
, 0 ≤ j ≤ 3n−1.

That is, pH[0]
wH[0]
≥

pH[1]
wH[1]
≥ · · · ≥

pH[3n−1]
wH[3n−1]

. Let B = (b0, b1, . . . , bn−1) ∈

{0, 1, 2, 3}n denote the best individual in the population P(MIT ).
Then, the pseudo-code of the RTEA for the D{0-1}KP is illuminated
as follows:

Algorithm 3. RTEA for D{0− 1}KP
Input: An instance of D{0− 1}KP; parameters NP ,MIT , and
Pm;
Output: B and f (B).
1 Determine H[0 . . . 3n− 1]with pH[0]

wH[0]
≥

pH[1]
wH[1]
≥ . . .≥

pH[3n−1]
wH[3n−1]

;
2 Generate initial population P(0) = {Xk(0) = (xk0(0), . . . ,

xk,n−1(0))| xkj(0) ∈ {0, 1, 2, 3}, 1 ≤ k ≤ NP, 0 ≤ j ≤ n− 1}
randomly;

3 for k← 1 to NP do
4 (Xk(0), f (Xk(0)))← NROA(Xk(0),H[0 . . . 3n− 1]);
5 end for
6 for t ← 1 toMIT do
7 for k← 1 to NP do
8 Y ← R − GEO (Xp1(t − 1), Xp2(t − 1), Xp3(t − 1),

Xp4(t − 1));
9 Y ← R − LDO(Y , Pm);
10 (Y , f (Y ))← NROA (Y ,H[0 . . . 3n− 1]);
11 if f (Y ) > f (Xk(t − 1)) then Xk(t)← Y else

Xk(t)← Xk(t − 1);

12 end for
13 end for
14 Determine B in P(MIT );
15 return(B, f (B)).

Obviously, the time complexity of Algorithm 3. is O(nlogn) +
O(MIT ∗ n ∗ NP) = O(n3).

5. Computational experiments

For verifying the performance of the RTEA, we first determine
the optimal value of parameter Pm in the RTEA according to the
computational results of some D{0-1}KP instances. Then, we use
the RTEA, GBPSO, FirEGA and SecEGA to solve the four kinds of
large-scale D{0-1}KP instances [3] whose scale (3n) is from 300 to
3000 (URL: https://www.researchgate.net/project/Four-kinds-of-
D0-1-KP-instances), and evaluate the performance of the RTEA by
comparing it with their computational results.

All experiments are performed on anAcer Aspire E1-570Gnote-
book computer with an Intel(R) Core(TM) i5-3337U CPU-1.8 GHz
and 4 GB DDR3 memory (3.82 GB available). The operating sys-
tem is Microsoft Windows 8. All the algorithms are implemented
using Visual C++ 6.0, and use MATLAB7.10.0.499 (R2010a) for
drawing.

5.1. Determine the reasonable value of parameter Pm

To determine the reasonable value of parameter Pm of the
RTEA,we solve four groups of D{0-1}KP instances, including *DKP1,
*DKP3, *DKP5, *DKP7, and *DKP9 (where * represents symbol U,
W, S, and I, respectively ), when the value of parameter Pm is
respectively 0.001, 0.003, 0.005, and 0.008. For each given value of
Pm, every instance is calculated independently 100 times by using
the RTEA, and determine the reasonable value of Pm by comparing

https://www.researchgate.net/project/Four-kinds-of-D0-1-KP-instances
https://www.researchgate.net/project/Four-kinds-of-D0-1-KP-instances
https://www.researchgate.net/project/Four-kinds-of-D0-1-KP-instances
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Fig. 2. Fitting curves of Gap: (a) UDKP1–UDKP10, (b) WDKP1–WDKP10, (c) SDKP1–SDKP10, (d) IDKP1–IDKP10.

Table 1
The mean ranks obtained by Kruskal–Wallis test.
Pm 0.001 0.003 0.005 0.008

UDKP5’s mean ranks 251.3850 259.1150 241 50.5000
WDKP5’s mean ranks 196.2400 254.9900 289.6250 61.1450
SDKP5’s mean ranks 129.2450 289.6250 310.6800 72.4500
IDKP5’s mean ranks 128.7100 190.4900 223.8800 258.9200

Table 2
The value of parameters of all algorithms.
Algorithm Size of population Other parameters

RTEA NP = 20 Pm = 0.005
FirEGA NP = 50 Pc = 0.8, Pm = 1.0(UDKP), Pm = 0.01(Others)
SecEGA NP = 50 Pc = 0.8, Pm = 0.01
GBPSO NP = 20 w = 1.0, C1 = C2 = 2.0, [−A, A] = [−5.0, 5.0]

Table 3
Time upper bound for solving D{0-1}KP instances.
Instance *DKP1 *DKP2 *DKP3 *DKP4 *DKP5

Time (s) 0.5 1.5 3.5 6.0 10.5

Instance *DKP6 *DKP7 *DKP8 *DKP9 *DKP10

Time (s) 14.0 19.0 24.0 30.0 36.5

the computational results of those instances. To save space, we
only give the computational results of the four representative
instances UDKP5, WDKP5, SDKP5, and IDKP5, and use them to
illustrate what Pm values make RTEA the best performance. The
test results of Kruskal–Wallis test [10–12] that is used to compare
different Pm value are given in Table 1 and Fig. 1. In Table 1,
the mean rank of test data are given, and Fig. 1 displays box
plots of the 100 best results when Pm = 0.001, 0.003, 0.005, and
0.008. According to the above test results, Pm = 0.005 is the more
appropriate.

5.2. Computation and comparison

When computing the four kinds of large-scale D{0-1}KP in-
stances, parameters of the RTEA are set as: the size of population
is NP = 20, and the parameter Pm = 0.005. The parameters of the
FirEGA, SecEGA, and GBPSO come from [3] and [4] respectively. For
ease of comparison, the value of parameters of all algorithms are
listed in Table 2.

Because the operations in an iteration of the RTEA, FirEGA,
SecEGA, and GBPSO are different from each other, the cost of an
iteration of them are quite different. For example, the consumed
time of an iteration of GBPSO is 3 timesmore than that of the RTEA.
It is unfair to evaluate the performance of the four algorithmsbased
on the number of iterations. Therefore, on the premise that the per-
formance of each algorithm is fully exhibited, we set a reasonable
upper bound for the solution time (in seconds) of each instance.
They are listed in Table 3, in which the symbol ∗ represents the
letters U, W, S, and I, respectively.

Tables 4–7 summarize the comparison among the RTEA,FirEGA,
SecEGAandGBPSObasedon the five different performance criteria,
namely, the best result in the 100 independent calculations results
(BEST ), the average of the 100 results (Mean), theworst result of the
100 results (Worst), the standard deviation (StD) and the Gap [13]
between the Mean and OPT , where OPT is the optimal value
of instance. The formula of computing the Gap is the following
Eq. (6).

Gap =
|OPT −Mean|

OPT
× 100(%) (6)

From Tables 4–7, we can see that the Worst of the RTEA and
GBPSO are both better than the BEST of FirEGA and SecEGA except
for IDKP1 and IDKP2. Even for IDKP1 and IDKP2, the BEST , Mean
and Worst of the RTEA and GBPSO are better than those of FirEGA
and SecEGA. It shows that the performance of FirEGA and SecEGA
are far worse than those of the RTEA and GBPSO. It is unnecessary
to compare the performances of the RTEA and GBPSO with those
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Table 4
Comparison of RTEA, GBPSO, FirEGA and SecEGA for UDKP1–UDKP10.
Index Instance OPT Algorithm BEST Mean Worst StD Gap

1 UDKP1 85740 RTEA 85740 85661 85477 63.48 0.092
GBPSO 85740 85669 85459 67.51 0.082
FirEGA 80593 79103 77935 690.01 7.741
SecEGA 78287 76807 75156 798.95 10.418

2 UDKP2 163744 RTEA 163744 163710 163592 30.53 0.021
GBPSO 163744 163710 163566 33.08 0.021
FirEGA 155039 151662 149875 1044.95 7.379
SecGA 148043 145548 143833 883.43 11.112

3 UDKP3 269393 RTEA 269393 269273 269089 60.12 0.045
GBPSO 269340 269124 268504 129.52 0.100
FirEGA 246698 240886 237980 1491.97 10.582
SecEGA 228823 225492 222486 1353.58 16.296

4 UDKP4 347599 RTEA 347574 347507 347336 45.08 0.026
GBPSO 347541 347267 346786 147.99 0.096
FirEGA 321605 317319 314486 1426.85 8.712
SecEGA 305796 299978 297606 1435.46 13.700

5 UDKP5 442644 RTEA 442627 442499 442303 66.74 0.033
GBPSO 441693 440555 439151 464.36 0.472
FirEGA 405409 399620 395367 1692.23 9.720
SecEGA 376147 370808 367574 1611.71 16.230

6 UDKP6 536578 RTEA 536503 536067 534370 440.87 0.095
GBPSO 534571 532997 531429 707.31 0.667
FirEGA 486556 478726 474015 2233.61 10.782
SecGA 447438 442499 438809 1765.28 17.533

7 UDKP7 635860 RTEA 635481 634402 631836 614.55 0.229
GBPSO 632919 631497 629352 746.35 0.686
FirEGA 568119 560948 556938 2441.80 11.781
SecEGA 529753 521401 518407 1813.04 18.001

8 UDKP8 650206 RTEA 649514 647934 645934 659.77 0.349
GBPSO 646602 644282 641659 877.06 0.911
FirEGA 590137 585286 580684 2078.87 9.985
SecEGA 550645 546678 543836 1449.36 15.923

9 UDKP9 718532 RTEA 716760 714787 711259 903.15 0.521
GBPSO 712591 710039 707289 967.62 1.182
FirEGA 655172 649636 645012 2023.64 9.588
SecEGA 613581 602215 605835 2003.75 16.188

10 UDKP10 779460 RTEA 778692 777524 775519 573.73 0.248
GBPSO 773678 771246 768946 1027.40 1.054
FirEGA 712270 706575 701545 2013.43 9.351
SecEGA 665459 658908 655645 1723.80 15.466

of the FirEGA and SecEGA. Therefore, in the following we only
compare the performances of the RTEA and GBPSO.

Because the evolutionary algorithm is a class of stochastic ap-
proximation algorithm, one usually measures the performance of
two different algorithms by their average performance and stabil-
ity. For the former, the fitting curve of Gap is a simple and effective
method. As the fitting curve of Gap is closer to the horizontal
axis, the average performance of the algorithm is better. For the
stability, the StD value canwell reflect the stability of the algorithm.

Fig. 2 shows that the computational results of RTEA are bet-
ter than those of GBPSO for the instances of UDKP, WDKP, and
SDKP. Although the computational results of the RTEA for the IDKP
instances are worse than those of GBPSO, the disparity between
them is small. Therefore, for all instances of the D{0-1}KP, the
performance of the RTEA is better than that of GBPSO.

To clearly illustrate the stability of the algorithm, Fig. 3 shows
the StD histogram of the RTEA and GBPSO. For the instances of
WDKP, UDKP, and SDKP, the stability of the RTEA is better than
that of GBPSO. However, the stability of GBPSO is better than the
RTEA for the instances of IDKP.

In fact, from Tables 4–7 we also easily see that the maximum
value of Gap of the RTEA is 0.521, and for GBPSO it is 1.182. This
shows that the stability of the RTEA is better than that of GBPSO.

In order to further point out that RTEA more outperforms
than GBPSO for solving D{0-1}KP, we use the Wilcoxon rank sum
test [10–12] with the level of significance α = 0.005 to test

for differences between the RTEA and GBPSO. Table 8 reports
the results of rank sum tests of the instances UDKP1–UDKP10,
WDKP1–WDKP10, SDKP1–SDKP10, and IDKP1–IDKP10, respec-
tively. In
Tables 8, ‘‘1’’ indicates that RTEA is better than GBPAO at the 99.5%
confidence. On the contrary, it is represented as ‘‘−1’’. In addition,
‘‘0’’ shows that two algorithms have similar performance.

It is not difficult to see from Table 8 that RTEA outperforms
GBPSO for the 26 instances of D{0-1}KP, and they have no signif-
icant difference for the 3 instances of D{0-1}KP. RTEA is inferior
to GBPSO for the 11 instances of D{0-1}KP. Therefore, the perfor-
mance of RTEA is excellent than that of GBPSO for the D{0-1}KP
problem.

From the above comparison, it is not difficult to see that for the
D{0-1}KP problem the RTEA has the best performance, followed by
GBPSO, and they are far better than those of FirEGA and SecEGA.
This shows that the design method of evolutionary algorithms
based on ring theory is not only feasible but is also effective.

6. Conclusions and further works

In this paper, a new method for designing evolutionary algo-
rithms based on ring theory is advanced. By using the direct prod-
uct of rings, we proposed a new evolutionary algorithm called the
RTEA to solve the combinatorial optimization problemswhose fea-
sible solution is an n-dimensional integer vector in Z[m1, . . . ,mn].
To verify the performance of the RTEA, we use it to solve four
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Table 5
Comparison of RTEA, GBPSO, FirEGA and SecEGA for WDKP1–WDKP10.
Index Instance OPT Algorithm BEST Mean Worst StD Gap

1 WDKP1 83098 RTEA 83098 83085 83036 7.88 0.016
GBPSO 83098 83087 83058 6.85 0.014
FirEGA 82803 82693 82592 52.04 0.487
SecEGA 80014 79022 78096 473.67 4.905

2 WDKP2 138215 RTEA 138215 138195 138130 15.42 0.014
GBPSO 138215 138202 138133 18.26 0.009
FirEGA 137704 137584 137356 63.23 0.457
SecGA 133315 132276 131337 415.62 4.297

3 WDKP3 256616 RTEA 256616 256592 256523 15.87 0.009
GBPSO 256616 256573 256493 24.60 0.017
FirEGA 254120 253657 253307 173.01 1.153
SecEGA 238331 235721 234025 873.58 8.143

4 WDKP4 315657 RTEA 315655 315622 315566 18.44 0.011
GBPSO 315653 315605 315493 32.05 0.017
FirEGA 313966 312849 311998 484.76 0.890
SecEGA 293640 290851 288764 950.06 7.859

5 WDKP5 428490 RTEA 428485 428452 428377 18.22 0.009
GBPSO 428484 428419 428303 34.54 0.017
FirEGA 426311 424548 423058 798.53 0.920
SecEGA 393617 390014 387992 1059.83 8.980

6 WDKP6 466050 RTEA 466045 466023 465983 13.18 0.006
GBPSO 466019 465947 465828 45.22 0.022
FirEGA 463185 461672 457718 1107.57 0.940
SecGA 429208 425112 423269 1058.37 8.784

7 WDKP7 547683 RTEA 547682 547631 547553 23.03 0.009
GBPSO 547565 547355 547138 87.73 0.060
FirEGA 544019 541949 538126 1224.68 1.047
SecEGA 501557 496134 493845 1230.94 9.412

8 WDKP8 576959 RTEA 576946 576893 576813 25.77 0.011
GBPSO 576800 576597 576339 87.49 0.063
FirEGA 573427 571559 563253 1495.36 0.936
SecEGA 530971 523203 520350 2157.09 9.317

9 WDKP9 650660 RTEA 650646 650592 650391 39.17 0.010
GBPSO 650502 650259 649938 107.90 0.062
FirEGA 647477 644820 630086 2056.06 0.898
SecEGA 598343 586770 583854 2315.50 9.819

10 WDKP10 678967 RTEA 678957 678836 678500 78.57 0.019
GBPSO 678862 678662 678401 91.12 0.045
FirEGA 675452 673008 668239 1441.96 0.878
SecEGA 620230 606215 609964 3090.86 10.715

Fig. 3. The StD histogram: (a) UDKP1–UDKP10, (b) WDKP1–WDKP10, (c) SDKP1–SDKP10, (d) IDKP1–IDKP10.
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Table 6
Comparison of RTEA, GBPSO, FirEGA and SecEGA for SDKP1–SDKP10.
Index Instance OPT Algorithm BEST Mean Worst StD Gap

1 SDKP1 94459 RTEA 94449 94333 94132 67.88 0.134
GBPSO 94449 94261 93818 110.26 0.210
FirEGA 93235 93171 93070 42.15 1.364
SecEGA 89769 88832 87463 594.91 5.958

2 SDKP2 160805 RTEA 160786 160702 160588 45.52 0.064
GBPSO 160777 160607 160253 95.83 0.123
FirEGA 159159 159004 158859 61.54 1.120
SecGA 153821 152059 150753 489.39 5.439

3 SDKP3 238248 RTEA 238215 238133 237992 43.12 0.048
GBPSO 238158 237900 237606 99.13 0.146
FirEGA 235454 235241 235043 79.86 1.262
SecEGA 224997 223580 221918 543.38 6.157

4 SDKP4 340027 RTEA 339988 339918 339801 38.25 0.032
GBPSO 339830 339526 339156 131.69 0.147
FirEGA 336353 335963 335709 122.41 1.195
SecEGA 318510 315513 313747 851.14 7.209

5 SDKP5 463033 RTEA 462929 462766 462593 74.40 0.058
GBPSO 462107 461566 460906 260.87 0.317
FirEGA 452900 447587 444255 1974.99 3.336
SecEGA 420238 416964 413933 1291.65 9.950

6 SDKP6 466097 RTEA 466036 465903 465712 61.21 0.042
GBPSO 465378 464856 464171 222.96 0.266
FirEGA 459254 458893 458584 162.94 1.546
SecGA 430738 427304 425504 1031.12 8.323

7 SDKP7 620446 RTEA 620238 620048 619741 108.31 0.064
GBPSO 618753 617827 616602 342.71 0.422
FirEGA 599361 592279 579673 3949.03 4.540
SecEGA 561224 556083 552007 1926.26 10.3747

8 SDKP8 670697 RTEA 670431 670151 669702 151.77 0.081
GBPSO 668821 668107 667341 322.92 0.386
FirEGA 661276 660104 659367 426.06 1.579
SecEGA 611644 606263 603774 1446.94 9.607

9 SDKP9 739121 RTEA 738707 738162 737660 219.06 0.130
GBPSO 736589 735805 734871 349.52 0.449
FirEGA 729135 727544 727064 343.67 1.566
SecEGA 674885 667900 664580 1614.04 9.636

10 SDKP10 765317 RTEA 764821 764263 763665 236.47 0.138
GBPSO 762603 761980 761258 288.41 0.436
FirEGA 756205 753394 750757 985.46 1.558
SecEGA 708935 695557 691994 2956.08 9.115

kinds of large-scale D{0-1}KP instances. A comparison among the
calculation results of FirEGA, SecEGA and GBPSO indicates that the
RTEA not only is better than GBPSO but is also much better than
FirEGA and SecEGA. It indicates that the design method based on
the evolutionary algorithm based on ring theory is feasible and
effective.

Note that mi ∈ Z[m1, . . . ,mn] (1 ≤ i ≤ n) is greater than 1
and does not require them to be the same each other. The RTEA
can be used not only to solve the D{0-1}KP problem but can also
be used to solve other combinatorial optimization problems, such
as the set covering problem [14], the multiple-choice knapsack
problem [15], and the satisfiability problem [16]. Therefore, in the
future, we will search whether or not the evolution operators R-
GEO and R-LDO have the versatility and effectiveness for solving
other problems, whether or not the RTEA can be used to solve the
numerical optimization problem, and so on. All those problems are
worth discussing one by one in the future.
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Appendix

Let array H[0 . . . 3n − 1] satisfy pH[0]
wH[0]
≥

pH[1]
wH[1]
≥ · · · ≥

pH[3n−1]
wH[3n−1]

,

and X = (x0, x1, . . . , xn−1) ∈ Z[4, 4, . . . , 4] = {0, 1, 2, 3}n. Then,
the pseudo-code of NROA [3] is described as follows:

Algorithm 4. NROA
Input: Infeasible solution X = (x0, x1, . . . , xn−1) and
H[0 . . . 3n− 1];
Output: feasible solution X = (x0, x1, . . . , xn−1) and f (X).
1 fweight ← 0; f value← 0;
2 for i← 0 to 3n− 1 do
3 k← ⌊H[i]/3⌋; r ← H[i](mod 3);
4 if (xk = r + 1) and (fweight + wH[i] ≤ C) then
5 fweight ← fweight + wH[i];

f value← f value+ pH[i];
6 end if
7 if (xk = r + 1) and (fweight + wH[i] > C) then

xk ← 0;
8 end for
9 for i← 0 to 3n− 1 do
10 k← ⌊H[i]/3⌋; r ← H[i](mod 3);
11 if (xk = 0) and (fweight + wH[i] ≤ C) then
12 fweight ← fweight + wH[i];
13 f value← f value+ pH[i]; xk ← r + 1;
14 end if
15 end for
16 return(X , f value).
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Table 7
Comparison of RTEA, GBPSO, FirEGA and SecEGA for IDKP1–IDKP10.
Index Instance OPT Algorithm BEST Mean Worst StD Gap

1 IDKP1 70106 RTEA 70106 70082 70037 21.55 0.034
GBPSO 70106 70098 70077 6.68 0.011
FirEGA 70106 70099 70090 7.23 0.009
SecEGA 68663 68000 67369 328.44 3.004

2 IDKP2 118268 RTEA 118268 118235 118146 26.72 0.028
GBPSO 118268 118253 118202 15.69 0.013
FirEGA 118169 117869 117625 102.59 0.337
SecGA 114434 113385 112307 7446.67 4.129

3 IDKP3 234804 RTEA 234804 234770 234703 23.34 0.014
GBPSO 234804 234796 234759 9.20 0.003
FirEGA 234497 233997 233666 175.42 0.344
SecEGA 220096 217982 216313 835.83 7.164

4 IDKP4 282591 RTEA 282583 282557 282485 18.05 0.012
GBPSO 282591 282578 282554 9.55 0.005
FirEGA 282148 280695 278881 827.63 0.671
SecEGA 263238 260425 258922 933.40 7.844

5 IDKP5 335584 RTEA 335580 335528 335314 39.20 0.017
GBPSO 335584 335580 335546 7.34 0.001
FirEGA 335004 333484 329621 1173.90 0.626
SecEGA 309573 306878 304881 907.19 8.554

6 IDKP6 452463 RTEA 452450 452405 452311 32.80 0.013
GBPSO 452463 452452 452425 9.19 0.002
FirEGA 451680 449863 446704 1161.52 0.575
SecGA 414090 411367 408788 1099.31 9.083

7 IDKP7 489149 RTEA 489142 489102 488948 26.99 0.009
GBPSO 489149 489133 489105 8.27 0.003
FirEGA 488009 485592 476385 2294.28 0.727
SecEGA 451528 444316 442133 1280.31 9.166

8 IDKP8 533841 RTEA 533833 533800 533724 20.75 0.008
GBPSO 533839 533827 533808 6.25 0.003
FirEGA 533035 529984 514196 2308.11 0.723
SecEGA 490494 481831 478035 2215.66 9.743

9 IDKP9 528144 RTEA 528144 528099 528015 27.95 0.009
GBPSO 528140 528131 528094 9.47 0.002
FirEGA 526410 523982 511651 2216.13 0.788
SecEGA 489661 477001 471848 3656.22 9.684

10 IDKP10 581244 RTEA 581238 581197 581091 33.39 0.008
GBPSO 581244 581230 581194 10.61 0.002
FirEGA 578903 576772 568903 1905.18 0.769
SecEGA 535541 521604 516445 4265.07 10.261

Table 8
The results of Wilcoxon rank sum test with a level of significance α = 0.005.
Instance Result Instance Result Instance Result Instance Result

UDKP1 0 WDKP1 0 SDKP1 1 IDKP1 −1
UDKP2 0 WDKP2 −1 SDKP2 1 IDKP2 −1
UDKP3 1 WDKP3 1 SDKP3 1 IDKP3 −1
UDKP4 1 WDKP4 1 SDKP4 1 IDKP4 −1
UDKP5 1 WDKP5 1 SDKP5 1 IDKP5 −1
UDKP6 1 WDKP6 1 SDKP6 1 IDKP6 −1
UDKP7 1 WDKP7 1 SDKP7 1 IDKP7 −1
UDKP8 1 WDKP8 1 SDKP8 1 IDKP8 −1
UDKP9 1 WDKP9 1 SDKP9 1 IDKP9 −1
UDKP10 1 WDKP10 1 SDKP10 1 IDKP10 −1

‘‘1’’ 8 8 10 0
‘‘0’’ 2 1 0 0
‘‘−1’’ 0 1 0 10

Note that f value is the objective function value f (X) in the
secondmathematicalmodel of D{0-1}KP. Obviously, the time com-
plexity of NROA is O(n).
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