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a b s t r a c t

Both rough sets and concept lattices, which are two complementary tools in data analysis, are
analyzed based on binary relations. The relations between rough sets and concept lattices are
important research topic. In this paper, the methods of union reduction and intersection reduction
in covering approximation spaces based on concept lattice are discussed, and the relations between
union reduction of covering approximation spaces and concept lattices reduction are investigated. We
also discuss the relations of element characteristics between covering approximation spaces and the
concept lattices. Meanwhile, the connections between reduction of a covering approximation space
and that of its compliment space are revealed. The research results establish a bridge between the
rough sets and concept lattices and help one to gain much more insights into the two theories.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The theory of rough sets (RS), proposed by Pawlak [1,2], is a
mathematical tool to deal with the uncertainty and vagueness of
information tables. The basic operators in RS are lower and upper
approximations, by which certainty and probability rules hidden
in information tables can be reduced. RS has been successfully
applied in various domains in the last two decades [3–10].

The foundation of classical RS model is an equivalence relation
which divides the universe into disjoint subsets. However, in
most situations, the binary relations defined on the universe
are non-equivalence relations which limits its applications [11–
15]. Non-equivalence relation RS model has important applica-
tion in the field of classification and rule acquisition [16–19].
To address this problem, many generalizations to the classical
rough sets have been proposed. In general, there are two kinds
of generalizations. One is the relation-based rough sets model,
which is a replacement of equivalence relation with different
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binary relations, such as similarity relation, tolerance relation
and dominance relation [12,19–22]. The other is the covering-
based rough sets model. For instance, Zhu and Wang [14,15,
23,24] proposed seven types of covering rough sets in covering
approximation spaces (CA-space). Yao and Yao [13] proposed a
framework for the study of covering based rough sets approxi-
mations and summarized the existing approximation operators.
D’eer et al. [11] further studied twenty-four different neighbor-
hood operators based on coverings and discussed their equalities
and partial order relations. In recent years, interest in covering
rough sets has been booming [17,18,25–29].

Formal concept analysis (FCA), also called concept lattices,
originally proposed by Wille [30,31], is an useful tool to the
analysis and visualization of the data represented by an informa-
tion table object-attribute. Currently, FCA has been successfully
applied to information retrieval, rule extraction, data mining, ma-
chine learning, software engineering and other disciplines [32–
38].

One of the key issues of information processing is knowledge
reduction. As an important preprocessing technique, knowledge
reduction can greatly reduce the size of data, so that the repre-
sentation and discovery of knowledge will be more convenient
and efficient. The objective of reduction in rough sets is to re-
duce the redundant knowledge and keep the required properties
unchanged. Many reduction methods and algorithms have been
developed in various knowledge systems [16,39–44]. In terms of
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concept lattices, knowledge reduction is the search for a minimal
attribute subset that preserves original hierarchical structure of
lattices by deleting redundant attributes from formal contexts. In
recent years, there is a rapid growth of interest in the study of
concept lattices reduction [45–53].

The relations between RS and FCA are important research
topic, and many efforts have been made to compare and combine
the two theories [54–59]. Note that the reduction of covering
rough sets is to find a minimal subset of coverings that pre-
serves the same covering lower and upper approximations. Zhu
et al. [23] first formulated the reduction of covering approxima-
tion spaces for a type of covering rough sets, i.e. the union re-
duction of covering approximation spaces. Then, Yang and Li [28]
constructed a unified reduction theory for all types of cover-
ing rough sets by redefining the approximation space. Recently,
the relations between the reduction of covering rough sets and
the reduction of concept lattices have attracted more attention.
For instance, Wang and Zhang [60] discussed the relations be-
tween equivalent classes and the extents of formal concepts in an
anti-chain formal context. Wei and Qi [57] showed the relations
between concept lattice reduction and rough set reduction. Shao
et al. [61,62] further obtained the relations between granular
reducts and dominance reducts in formal contexts. In particular,
Tan et al. [26] showed the connections between covering-based
rough sets and concept lattices from the perspective of approxi-
mate operators. In the meantime, Chen et al. [25] discussed the
relations of reduction between covering generalized rough sets
and concept lattices.

Although many interesting results have been investigated be-
tween the relations of rough sets and FCA, there are still needs
to further study the interconnections of the two theories sys-
temically. Note that the reduction discussed in [25] is based
on the intersection reduction of covering approximation spaces.
This paper focuses on the relations between the union reduction
of covering approximation spaces and the reduction of concept
lattices, and attempts to reveal the connections between covering
approximation spaces and concept lattices. The remainder of this
paper is structured as follows. Some basic concepts of rough
sets and concept lattices are briefly reviewed in Section 2. In
Section 3, we propose a method of union reduction for covering
approximation spaces. The connections between union reduction
of CA-space and concept lattice reduction are revealed in Sec-
tion 4. Section 5 discusses relations between union reduction and
intersection reduction of CA-space. Section 6 concludes the paper
and outlines the future work.

2. Preliminaries

In this section we briefly recall some relevant notions related
to FCA and CA-space needed for our discussion (please refer
to [23,30] for further details).

Covering RS is an extension of the classical RS. In recent years,
many types of covering RS models are proposed. Among which,
Zhu presented a popular covering rough set model [23,24].

Definition 1 ([63]). Let C be a family of subsets of the universe
U . C is called a covering of U if none elements in C is empty and⋃

K∈ C K = U . The ordered pair (U, C) is said to be a covering
approximation space (CA-space).

In this paper, we assume that the CA-space (U, C) discussed is
regular, that is, U ̸∈ C.

Example 1. Let U = {x1, x2, x3, x4} and C = {K1, K2, K3, K4},
where K1 = {x1, x4}, K2 = {x1, x2, x4}, K3 = {x2} and K4 = {x3}.
It is easy to see that K1

⋃
K2

⋃
K3

⋃
K4 = U . Then, (U, C) is a

CA-space.

Table 1
A formal context (U, A, I).

a b c d e

x1 1 0 0 1 0
x2 0 1 0 0 1
x3 1 1 1 0 1
x4 0 0 0 1 0
x5 1 1 1 0 1

Let U be the universe of discourse. We denote by P(U) and X∼

the power sets of U and complement of X in U respectively.
Let (U, C) be a CA-space and x ∈ U . NC(x) =

⋂
{K ∈ C| x ∈ K }

is called the neighborhood of x. The family of all neighborhoods
with respect to C is defined as

NC = {NC(x)| x ∈ U}.

In recent years, many kinds of covering approximation oper-
ators are proposed based on different knowledge systems. We
recall the following two kinds of typical covering approximation
operators.

Definition 2 ([23]). Let (U, C) be a CA-space. The operations
SLC : P(U) → P(U) and SHC : P(U) → P(U) are defined as:
for any X ⊆ U ,

SLC(X) =

⋃
{K ∈ C| K ⊆ X}, SHC(X) =

⋃
{K ∈ C| K ∩ X ̸= ∅}.

SLC(X) and SHC(X) are called the i-model lower approximation
and the upper approximation.

Definition 3 ([14]). Let (U, C) be a CA-space. The operations
XLC : P(U) → P(U) and XHC : P(U) → P(U) are defined as:
for any X ⊆ U ,

XLC(X) = {x ∈ U | NC(x) ⊆ X}, XHC(X) = {x ∈ U | NC(x) ∩ X ̸= ∅}.

XLC(X) and XHC(X) are called the ii-model lower approximation
and the upper approximation.

A formal context is a triplet K = (U, A, I), where U is a
non-empty finite set of objects, A is a non-empty finite set of
attributes, and I is a relation between U and A. Here, (x, a) ∈ I
means that object x has attribute a or attribute a is possessed by
object x. For any X ⊆ U, B ⊆ A, the pair of set-theoretic operators
↑ and ↓ are defined by [30,31]

X↑
= {a ∈ A |∀x ∈ X, (x, a) ∈ I}, (1)

B↓
= {x ∈ U |∀a ∈ B, (x, a) ∈ I}. (2)

Especially, for any x ∈ U, a ∈ A, we have

x↑
= {a ∈ A | (x, a) ∈ I}, (3)

a↓
= {x ∈ U | (x, a) ∈ I}. (4)

Example 2. Table 1 depicts a formal context (U, A, I), where,
U = {x1, x2, x3, x4, x5}, A = {a, b, c, d, e}. In Table 1, 1 denotes
(x, a) ∈ I , 0 denotes (x, a) ̸∈ I .

A pair (X, B) of two sets X ⊆ U and B ⊆ A is called a formal
concept of (U, A, I) if X = B↓ and B = X↑, where X and B are
called the extent and the intent of the concept respectively. The
partial order ≤ is defined by

(X1, B1) ≤ (X2, B2) iff X1 ⊆ X2 (iff B1 ⊇ B2).

where, ≤ denotes the partial order between concepts and ⊆

denotes the inclusion relation for two subsets.
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The set of all formal concepts forms a complete lattice denoted
by L(U, A, I) with the meet and join of the concepts given by

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)↑↓, B1 ∩ B2)
(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)↓↑).

Let (U, A, I) be a formal context and X ⊆ U , a pair of operators,
□,♦ : 2U

→ 2A are defined by (see [58]):

X□
= {a ∈ A | a↓

⊆ X},

X♦
= {a ∈ A | a↓

∩ X ̸= ∅} =
⋃
x∈ X

x↑. (5)

Similarly, for any B ⊆ A, a pair of operators, □,♦ : 2A
→ 2U are

defined by:

B□
= {x ∈ U | x↑

⊆ B},
B♦

= {x ∈ U | x↑
∩ B ̸= ∅} =

⋃
b∈ B

b↓. (6)

Let (U, A, I) be a formal context. A pair (X, B), X ⊆ U, B ⊆ A, is
called an object oriented concept if X = B♦ and B = X□. For two
object oriented concepts (X1, B1) and (X2, B2), the partial order ≤

is defined by

(X1, B1) ≤ (X2, B2) iff X1 ⊆ X2 (iff B1 ⊆ B2).

The set of all object oriented concepts forms a complete lattice
denoted by Lo(U, A, I) with meet and join given by

(X1, B1) ∨ (X2, B2) = (X1 ∪ X2, (X1 ∪ X2)□)
= (X1 ∪ X2, (B1 ∪ B2)♦□),

(X1, B1) ∧ (X2, B2) = ((B1 ∩ B2)♦, X1 ∩ B2)
= ((X1 ∩ X2)□♦, B1 ∩ B2).

Let (U, A, I) be a formal context. Its sub-context is referred to
a formal context (U, C, IC ), where C ⊆ A and IC = I ∩ (U × C).
By LU (U, A, I) and LoU (U, A, I) we denote the set of extents of all
concepts in L(U, A, I) and the set of extents of all concepts in
Lo(U, A, I), respectively.

In general, the set of attributes that describe the characteristics
of different objects is very large, in which attributes have different
significance in classification. Some attributes are indispensable
for classification, and some others attributes are unnecessary. For
instance, we distinguish dogs and chickens with attributes of leg
and wing: wing is indispensable attribute and leg is unnecessary.

Definition 4. Let (U, A, I) be a formal context. An attribute set
C ⊆ A is called a consistent set of L(U, A, I) if LU (U, A, I) =

LU (U, C, IC ); furthermore, C is called an attribute reduct of
L(U, A, I) if ŁU (U, A, I) ̸= LU (U,D, ID) for any D ⊂ C .

Remark 1. The definition of consistent set in Definition 4 is a
little different from the definition proposed by Zhang et al. [53].
In Zhang et al.’s definition: an attribute set C ⊆ A is called
a consistent set of L(U, A, I) if L(U, A, I) ∼= L(U, C, IC ). Since
(Lu(U, A, I), ⊆) forms a complete lattice and is isomorphic with
lattice (L(U, A, I), ≤), thus the essence of the two definitions is
the same. Compared with Zhang et al.’s definition, Definition 4
has a simpler form and is easy to verify.

Definition 5. Let (U, A, I) be a formal context. An attribute set
C ⊆ A is called a consistent set of Lo(U, A, I) if LoU (U, A, I) =

LoU (U, C, IC ); furthermore, C is called an attribute reduct of
Lo(U, A, I) if ŁoU (U, A, I) ̸= LoU (U,D, ID) for any D ⊂ C .

In this paper, reduction means the process of deleting at-
tributes, and reduct represents the result of reduction.

We denote by Red(K) and Red(Ko) the set of all reducts of
L(U, A, I) and the set of all reducts of Lo(U, A, I), respectively.

Based on the attribute reducts of L(U, A, I), the attribute set A is
divided into three disjoint parts:

1. core attribute set Ck : Ck =
⋂

Red(K);
2. relatively necessary attribute set Kk : Kk =

⋃
Red(K) −⋂

Red(K);
3. unnecessary attribute set Ik : Ik = A −

⋃
Red(K).

Similarly, based on the attribute reducts of Lo(U, A, I), the
attribute set A is divided into three disjoint parts:

1. core attribute set Co
k : Co

k =
⋂

Red(Ko);
2. relatively necessary attribute set K o

k : K o
k =

⋃
Red(Ko) −⋂

Red(Ko);
3. unnecessary attribute set Iok : Iok = A −

⋃
Red(Ko).

Example 3. Continuing from Example 2, it is easy to verify that
C1 = {a, b, d} and C2 = {a, d, e} are two reducts of L(U, A, I),
i.e. Red(K) = {C1, C2}. Thus,

Ck =
⋂

Red(K) = C1
⋂

C2 = {a, d},

Kk =
⋃

Red(K) −
⋂

Red(K) = C1
⋃

C2 − C1
⋂

C2 = {b, e}

Ik = A −
⋃

Red(K) = A − C1
⋃

C2 = A − {a, b, d, e} = {c}.

Let K = (U, A, I) be a formal context. For any a ∈ A, G(a), E(a)
and H(a) are, respectively, defined by

G(a) = {b ∈ A| b↓
⊃ a↓

},

E(a) = {b ∈ A| b↓
⊂ a↓

},

H(a) = {b ∈ A − {a}| b↓
= a↓

},

where, b↓
⊃ a↓ means b↓

⊇ a↓ and b↓
̸= a↓, b↓

⊂ a↓ means
b↓

⊆ a↓ and b↓
̸= a↓.

According to the importance of the attributes, Zhang et al. [53]
provided a judging method to the characteristics of attribute in
L(U, A, I).

Proposition 1 ([53]). Let K = (U, A, I) be a formal context and
a ∈ A. Then,

(1) a is a core attribute of L(U, A, I) iff (a↓↑
− a)↓ ̸= a↓;

(2) a is a relative necessary attribute of L(U, A, I) iff (a↓↑
−a)↓ =

a↓ and G(a)↓ ̸= a↓;
(3) a is an unnecessary attribute of L(U, A, I) iff (a↓↑

− a)↓ = a↓

and G(a)↓ = a↓.

From Definition 4 and Proposition 1, we further obtain the
following Propositions 2 and 3.

Proposition 2. Let K = (U, A, I) be a formal context and a ∈ A.
Then,

(1) a is a core attribute of L(U, A, I) iff
⋂

b∈G(a) b
↓

̸= a↓ and
H(a) = ∅;

(2) a is a relative necessary attribute of L(U, A, I) iff
⋂

b∈G(a) b
↓

̸=

a↓ and H(a) ̸= ∅;
(3) a is an unnecessary attribute of L(U, A, I) iff

⋂
b∈G(a) b

↓
= a↓.

Proof. (1) (⇒) Assume that a is a core attribute of L(U, A, I), then
LU (U, A, I) ̸= LU (U, A − {a}, IA−{a}), that is, a↓

∈ LU (U, A, I) and
a↓ /∈ LU (U, A − {a}, IA−{a}). If ∃b ∈ A − {a} such that b↓

=

a↓, then we have LU (U, A, I) = LU (U, A − {a}, IA−{a}), which is
a contradiction to the assumption that a is a core attribute of
L(U, A, I). Hence, H(a) = ∅. If

⋂
b∈G(a) b

↓
= a↓, then LU (U, A, I) =

LU (U, A−{a}, IA−{a}), which contradicts the assumption. Therefore,⋂
b∈G(a) b

↓
̸= a↓.

(⇐) If
⋂

b∈G(a) b
↓

̸= a↓ and H(a) = ∅, then we have a↓ /∈
LU (U, A−{a}, IA−{a}), and from which we conclude that a is a core
attribute of L(U, A, I).

(2) (⇒) Suppose that a is a relative necessary attribute of
L(U, A, I). Since G(a)↓ =

⋂
b∈G(a) b

↓, from Proposition 1(2) we
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conclude that
⋂

b∈G(a) b
↓

̸= a↓. If H(a) = ∅, from Proposition 2(1)
we have that a is a core attribute of L(U, A, I), which contradicts
the assumption. Hence, H(a) ̸= ∅.

(⇐) Since H(a) ̸= ∅, then ∃b ∈ A − {a} such that b↓
= a↓,

which means that (a↓↑
−a)↓ = b↓

= a↓. On the other hand, since
G(a)↓ =

⋂
b∈G(a) b

↓, thus G(a)↓ ̸= a↓. From Proposition 1(2), we
conclude that a is a relative necessary attribute of L(U, A, I).

(3) (⇒) Assume that a is an unnecessary attribute of L(U, A, I).
From Proposition 1(3) we obtain that

⋂
b∈G(a) b

↓
= G(a)↓ = a↓.

(⇐) If
⋂

b∈G(a) b
↓

= a↓, by Proposition 3(1) and (2) we
conclude that a is neither a core attribute nor a relative nec-
essary attribute. Consequently, a is an unnecessary attribute of
L(U, A, I). □

Similarly, we have the following judging method to the char-
acteristics of attribute in Lo(U, A, I).

Proposition 3. Let K = (U, A, I) be a formal context and a ∈ A.
Then,

(1) a is a core attribute of Lo(U, A, I) iff
⋃

b∈E(a) b
↓

̸= a↓ and
H(a) = ∅;

(2) a is a relative necessary attribute of Lo(U, A, I) iff⋃
b∈E(a) b

↓
̸= a↓ and H(a) ̸= ∅;

(3) a is an unnecessary attribute of Lo(U, A, I) iff
⋃

b∈E(a) b
↓

= a↓.

Proof. It is similar to the proof of Proposition 2. □

3. Union reduction of covering approximation spaces

In some cases, two coverings C and C1 of U with C1 ⊂ C
generate the same covering lower and upper approximations,
which indicates that covering C contains redundant elements in
the sense of approximate. Based on this, Zhu and Wang first
proposed the union reduction theory of CA-space in [23].

Definition 6 ([23]). Let (U, C) be a CA-space and K ∈ C. K is called
a union reducible element of C if K is an union of some sets in
C − {K }; otherwise, K is called an union irreducible element of C.

Let C be a covering of U . C is called union irreducible if every
element of C is an union irreducible element; otherwise C is union
reducible. For a covering C of U , we can delete all union reducible
elements step by step. The obtained union irreducible covering is
called an union reduct of C and is denoted by CU .

Theorem 1. Let (U, C) be a CA-space and K ∈ C. We denote
Kα

= {N ∈ C| N ⊂ K }. Then, K is an union reducible element
of C iff

⋃
Kα

= K.

Proof. It follows immediately from Definition 6. □

Proposition 4. Let (U, C) be a CA-space and K ∈ C. Then, K is an
union irreducible element of C iff

⋃
Kα

̸= K.

Proof. It follows immediately from Theorem 1. □

Proposition 5. Let (U, C) be a CA-space, CU be union reduct of C
and X ⊆ U. Then the following statements hold.

(1) SLC(X) = XLCU (X), SHC(X) = XHCU (X);
(2) XLC(X) = XLCU (X), XHC(X) = XHCU (X).

Proof. (1) Since CU ⊆ C, then {K ∈ CU | K ⊆ X} ⊆ {K ∈ C| K ⊆ X}.
It follows that

⋃
{K ∈ CU | K ⊆ X} ⊆

⋃
{K ∈ C| K ⊆ X}, that

is, SLCU (X) ⊆ XLC(X). Assume that SLCU (X) ⊂ XLC(X). Then,
there exists x ∈ U such that x ∈ XLC(X) and x ̸∈ XLCU (X),

i.e. ∃K ∈ C such that K ̸∈ CU and x ∈ K . Since CU is the union
reduct of C, thus, by Theorem 1, there exists Kα

⊆ CU such that⋃
Kα

= K . It implies that there exists K1 ∈ Kα such that x ∈ K1,
i.e. x ∈ LCU (X), which contradicts the assumption. Consequently,
we conclude that SLC(X) = XLCU (X). By the similar proof, we have
SHC(X) = XHCU (X).

(2) Note that XLC(X) = {x ∈ U | NC(x) ⊆ X} and XLCU (X) = {x ∈

U | NCU (x) ⊆ X}. We only need to prove NC(x) = NCU (x) for any
x ∈ U . For any K ∈ (C − CU ), by Theorem 1, there exists Kα

⊆ CU
such that

⋃
Kα

= K . Thus, for any K ∈ (C − CU ) and x ∈ K , there
exists K1 ∈ CU such that x ∈ K1 and K1 ⊆ K . Hence,

NC(x) = (
⋂

{K ∈ CU | x ∈ K })
⋂

(
⋂

{K ∈ (C − CU )| x ∈ K })

=
⋂

{K ∈ CU | x ∈ K }

= NCU (x).

By the similar proof, we have XHC(X) = XHCU (X). □

By Theorem 1 and Proposition 4 we can employ deletion
method to obtain union reduct of C. By a deletion method, starts
with the entire set C, we delete a reducible element step by
step until we obtain an union irreducible element set. The ob-
tained union irreducible element set is the union reduct of C. The
computational procedure can be described as follows:

Algorithm 1.
Input: A CA-space (U, C).
Output: The union reduct CU of C.

(1) CU = C;N = C.
(2) While N ̸= ∅, select K ∈ N , there are two cases:

(2.1) If K = ∪Kα , then K is an union reducible element, let
CU = C − {K }, N = N − {K };
(2.2) If K ̸= ∪Kα , then K is an union irreducible element,
let CU = CU , N = N − {K }.

(3) Output CU .

We use symbol |·| to denote the cardinality of a set. Note
that the time complexity of step (2) is O(|C|). Steps (2.1) and
(2.2) need O(|U ∥ C|). Thus, the time complexity of Algorithm 1
is O(|U ∥ C|

2). The time complexities for computing union reduct
presented in [23] is O(|U ∥ 2||C|). Currently, there is no other
effective reduction method except Zhu’s [23] definition of union
reduction. One can see that the time complexity of Algorithm 1 is
lower than the method discussed in [23]. Figs. 1 and 2 show the
time complexity comparison of the two methods.

Example 4. In Example 1, since Kα
2 = {K1, K3} and K2 =

⋃
Kα
2 ,

then we conclude that K2 is an union reducible element. On the
other hand, since Kα

1 = Kα
3 = Kα

4 = ∅, thus K1, K3 and K4 are
union irreducible elements. Hence, {K1, K3, K4} is the union reduct
of C.

4. Connections between union reduction of CA-space and con-
cept lattices reduction

A CA-space (U, C) can be represented as a formal context, and
its reduction can be further obtained. In this section, we discuss
the relationship between CA-space reduction and concept lattice
reduction.

Definition 7 ([25]). Let (U, C) be a CA-space. Putting a binary
relation I on U × C : (x, K ) ∈ I if and only if x ∈ K , then the triple
(U, C, I) is called a formal context induced from C.

Remark 2. In Definition 7, the element K ∈ C in (U, C, I) can be
seen the label of K , and the element K ∈ C in (U, C) represents
the set K .
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Fig. 1. Time complexity comparison with |U | = 10.

Fig. 2. Time complexity comparison with |U | = 15.

Table 2
Formal context F = (U, C, I).
I K1 K2 K3 K4

x1 1 1 0 0
x2 0 1 1 0
x3 0 0 0 1
x4 1 1 0 0

Example 5. In Example 1, from Definition 7 we obtain a formal
context F = (U, C, I) shown in Table 2. The Hasse diagram of
concept lattice Lo(U, C, I) is represented by Fig. 3.

Proposition 6 ([25]). Let (U, C) be a CA-space and (U, C, I) be the
formal context induced from C. Then,

(1) x↑
= {K ∈ C| x ∈ K } for any x ∈ U;

(2) K↓
= K for any K ∈ C;

(3) X↑
= {K ∈ C| X ⊆ K } for any X ⊆ U;

(4) B↓
=

⋂
B for any B ⊆ C.

Fig. 3. Lo(U, C, I).

For equation K↓
= K in Proposition 6 (2), the K on the left

denotes the label of set K , and the K on the right indicates the
set K itself.

Proposition 7. Let (U, C) be a CA-space and (U, C, I) be the formal
context induced from C. Then,

(1) x♦
= {K ∈ C| x ∈ K } for any x ∈ U;

(2) K♦
= K for any K ∈ C;

(3) X□
= {K ∈ C| K↓

⊆ X} for any X ⊆ U;
(4) B□

= {x ∈ U | x↑
⊆ B} for any B ⊆ C;

(5) X♦
=

⋃
x∈ X x↑ for any X ⊆ U;

(6) B♦
=

⋃
B for any B ⊆ C.

Proof. It follows immediately from Eqs. (5), (6) and Proposi-
tion 6. □

Proposition 8. Let (U, C) be a CA-space, (U, C, I) be the formal
context induced from C and X ⊆ U. Then,

(1) SLC(X) =
⋃

K∈X□ K;
(2) SHC(X) =

⋃
K∈X♦ K .

Proof. From Definition 2, Propositions 6 and 7, we obtain

SLC(X) =
⋃

{K ∈ C| K ⊆ X}

=
⋃

{K ∈ C|K↓
⊆ X}

=
⋃

K∈X□ K .

from which (1) follows. Similarly we can justify (2). □

Since there are no duplicate elements in C, then there are not
relative necessary elements in CA-space (U, C).

Theorem 2. Let (U, C) be a CA-space and (U, C, I) be the for-
mal context induced from C. Then there are not relative necessary
attributes in Lo(U, C, I).

Proof. For any K ∈ C, since there are no duplicate elements in C,
then we have H(K ) = ∅. Thus, by Proposition 3(3), we conclude
that K is not a relative necessary attribute of Lo(U, C, I). □

Theorem 3. Let (U, C) be a CA-space, (U, C, I) be the formal context
induced from C and K ∈ C. Then, K is an union reducible element of
C iff K is an unnecessary attribute of Lo(U, C, I).
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Proof. (⇒) Assume that K is an union reducible element of C. By
Proposition 6(2), we have

Kα
= {N ∈ C| N ⊂ K } = {N ∈ C| N↓

⊂ K↓
} = E(K ).

Hence,⋃
b∈E(K )

b↓
=

⋃
b∈Kα

b↓

=

⋃
b∈Kα

b

= K .

Consequently, by Proposition 3(2), we conclude that K is an
unnecessary attribute of Lo(U, C, I)

(⇐) If K is an unnecessary attribute of Lo(U, C, I), then by
Proposition 3(2) and Proposition 6(2), we have⋃
b∈Kα

b =

⋃
b∈Kα

b↓

=

⋃
b∈E(K )

b↓

= K↓

= K .

Therefore, by Theorem 1, we conclude that K is an union re-
ducible element of C. □

Theorem 4. Let (U, C) be a CA-space, (U, C, I) be the formal context
induced from C and K ∈ C. Then, K is an union irreducible element
of C iff K is a core attribute of Lo(U, C, I).

Proof. (⇒) Suppose that K is an union irreducible element of C.
Note that Kα

= E(K ). Then by Proposition 4, we have⋃
b∈E(K )

b↓
=

⋃
b∈Kα

b↓

=

⋃
b∈Kα

b

̸= K ,

that is,
⋃

b∈E(K ) b
↓

̸= K↓.
On the other hand, we have H(K ) = ∅ since there are no

duplicate elements in C.
From the above discussion, by Proposition 3(1) we conclude

that K is a core attribute of Lo(U, C, I).
(⇐) If K is a core attribute of Lo(U, C, I), then

⋃
b∈E(K ) b

↓
̸= K↓.

By Proposition 6(2), we have
⋃

b∈E(K ) b ̸= K . Thus,
⋃

b∈Kα b ̸= K ,
then by Proposition 4 we conclude that K is an union irreducible
element of C. □

Proposition 9. Let (U, C) be a CA-space and (U, C, I) be a formal
context induced from C. Then the reduct of Lo(U, C, I) is unique.

Proof. It follows immediately from Theorem 2. □

Theorem 5. Let (U, C) be a CA-space, (U, C, I) be the formal context
induced from C and D ⊆ C. Then D is an union reduct of C iff D is
a reduct of Lo(U, C, I).

Proof. Note that there are not relative necessary elements and
attributes in (U, C) and Lo(U, C, I). From Theorems 3 and 4, we

have

D is an union reduct of C
⇔ ∀K1 ∈ D, ∀K2 ∈ (C − D), K1 is union reducible

and K2 is union irreducible in (U, C)
⇔ ∀K1 ∈ D, ∀K2 ∈ (C − D), K1 is a core attribute

and K2 is unnecessary in Lo(U, C, I)
⇔ D is an union reduct of Lo(U, C, I). □

Theorem 5 reveals the relationship between union reduction
of (U, C) and reduction of Lo(U , C, I). By Theorems 3, 4 and 5, one
can obtain the element characteristics and union reduct of (U, C)
via the element characteristics and reduct of Lo(U, C, I), and vice
versa. The computational procedure can be described as follows:

Algorithm 2.
Input: A CA-space (U, C).
Output: The union reduct CUof C.

(1) Computing formal context (U, C, I).
(2) In formal context (U, C, I), let CU = C,N = C.
(3) While N ̸= ∅, select K ∈ N , there are two cases:

(3.1) If
⋃

K1∈E(K ) K
↓

1 = K↓, then K is an unnecessary ele-
ment, let CU = C − {K }, N = N − {K };
(3.2) If

⋃
K1∈E(K ) K

↓

1 ̸= K↓ (H(K ) = ∅), then K is the core
element of Lo(U, C, I), let CU = CU , N = N − {K }.

(4) Output CU .

We know that the time complexity of step (1) is O(|U ∥ C|).
Step (3) needs O(|C|). Steps (3.1)and (3.2) need O(|U ∥ C|). Thus,
the total time complexity of Algorithm 2 is O(|U ∥ C|

2
+ |U ∥ C|).

Compared with Algorithms 1, 2 is more intuitive.

Example 6. Continuing from Example 5, since⋃
K∈E(K2)

K↓
= K↓

2 ,⋃
K∈E(K1)

K↓
̸= K↓

1 ,H(K1) = ∅,⋃
K∈E(K3)

K↓
̸= K↓

3 ,H(K3) = ∅,⋃
K∈E(K4)

K↓
̸= K↓

4 ,H(K4) = ∅,

by Proposition 3, we deduce that K2 is unnecessary element,
K1, K3 and K4 are core elements of Lo(U, C, I). Therefore,
{K1, K3, K4} is the reduct of Lo(U, C, I). The Hasse diagram of
concept lattice Lo(U, C − {K2}, IC−{K2}) is represented by Fig. 4.
Compared with the lattice structure in Fig. 3, the lattice structure
in Fig. 4 remains unchanged. On the other hand, from Example 3,
we know that K2 is an union unnecessary element, K1, K3, K4 are
union irreducible elements, and {K1, K3, K4} is the union reduct
of C.

Clearly, K2 is unnecessary in both (U, C) and Lo(U, C, I), K1, K3
and K4 are irreducible in both (U, C) and Lo(U, C, I). Meanwhile,
{K1, K3, K4} is the reduct of both (U, C) and Lo(U, C, I).

5. Relations between union reduction and intersection reduc-
tion of CA-space

The union reduct of a covering is the minimum covering
generating the same i-model lower and upper approximations
(A covering C is minimum if any of its proper subsets is not a
covering). However, for the union reduct of a covering, it may
contain other redundant elements to the ii-model lower and
upper approximations.
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Fig. 4. Lo(U, C, I).

Example 7. Let U = {x1, x2, x3, x4, x5}, C = {{x1, x2}, {x2, x3}
, {x2, x4}, {x3}, {x3, x5}, {x3, x4, x5}}, C1 ={{x1, x2}, {x2, x3}, {x2, x4},
{x3}, {x3, x5}}, and C2 = {{x1, x2}, {x2, x3}, {x2, x4}, {x3, x5}}. It is
easy to see that C1 is the union reduct of C. On the other hand,
we have

NC1 = {{x1, x2}, {x2}, {x3}, {x2, x4}, {x3, x5}},
NC2 = {{x1, x2}, {x2}, {x3}, {x2, x4}, {x3, x5}},

then, XLC1 (X) = XLC2 (X) and XHC1 (X) = XHC2 (X) for any X ⊆ U .
It is evident that C2 ⊂ C1. Hence, C1 contains redundant elements
for the ii-model lower and upper approximations.

Thus, Chen et al. [25] introduced the concept of intersection
reduction of a covering and proposed an approach of intersection
reduction of C.

Definition 8 ([25]). Let (U, C) be a CA-space.
(1) For any K ∈ C, if K is an intersection of some sets in C−{K },

we call K is an intersection reducible element of C; otherwise, we
call K an intersection irreducible element of C;

(2) C1 is called an intersection reduct of C if C1 is obtained by
deleting all the intersection reducible elements of C, and denoted
by CI .

Theorem 6. Let (U, C) be a CA-space and K ∈ C. We denote
Kβ

= {N ∈ C| K ⊂ N}. Then, K is an intersection reducible element
of C iff

⋂
Kβ

= K .

Proof. It follows immediately from Definition 8. □

Proposition 10. Let (U, C) be a CA-space and K ∈ C. Then, K is an
intersection irreducible element of C iff

⋂
Kβ

̸= K.

Proof. It follows immediately from Theorem 6. □

By Theorem 6 and Proposition 10, we can employ deletion
method to obtain intersection reduct of C. The computational
procedure can be described as follows:

Algorithm 3.
Input: A CA-space (U, C).
Output: The intersection reduct CIof C.

(1) CI = C;N = C.
(2) While N ̸= ∅, select K ∈ N , there are two cases:

(2.1) If K =
⋂

Kβ , then K is an intersection reducible
element, let CI = C − {K }, N = N − {K };

(2.2) If K ̸=
⋂

Kβ , then K is an intersection irreducible
element, let CI = CI , N = N − {K }.

(3) Output CI .

Note that the time complexity of step (2) is O(|C|). Steps (2.1)
and (2.2) need O(|U ∥ C|). Then, the total time complexity of
Algorithm 3 is O(|U ∥ C|

2).
Let (U, C) be a CA-space and (U, C, I) be the formal context

induced from C. Chen et al. [25] obtain the following interesting
results:

(1) The intersection reduct of C is the reduct of L(U, C, I).
(2) The characteristics of intersection element of C is identical

to attribute characteristics of L(U, C, I).
Let (U, C) be a CA-space. The complement of C is defined by

C∼
= {K∼

| K ∈ C}. (U, C∼) is referred to as the complement
covering approximation space (CCA-space) if

⋃
K∈ C∼ K = U .

Example 8. Continuing from Example 5, from C we have

∼ K1 = {x2, x3}, ∼ K2 = {x3}, ∼ K3 = {x1, x3, x4},
∼ K4 = {x1, x2, x4},

thus

∼ C = {∼ K1, ∼ K2, ∼ K3, ∼ K4} = {{x1, x2, x4}, {x1, x3, x4},
{x2, x3}, {x3}},

that is, (U, C∼) is the CCA-space of (U, C).

Theorem 7. Let (U, C) be a CA-space and (U, C∼) be its CCA-space.
For any K ∈ C, then K is an intersection reducible element of C iff
K∼ is an union reducible element of C∼.

Proof. (⇒) Assume that K is an intersection reducible element
of C. Then by Theorem 6, we have

⋂
Kβ

= K . It follows that
(
⋂

Kβ )∼ = K∼. By De Morgan’s laws, we obtain
⋃

(Kβ )∼ = K∼.
On the other hand, we have

(Kβ )∼ = {P∼
∈ C∼

| P ∈ Kβ
}

= {P∼
∈ C∼

| P ∈ C, P ⊃ K }

= {P∼
∈ C∼

| P∼
⊂ K∼

}

= (K∼)α.

Thus, we have
⋃

(K∼)α = K∼, and from which we conclude that
K∼ is an union reducible element of C∼.

(⇐) If K∼ is an union reducible element of C∼, then
⋃

(K∼)α =

K∼. It follows that (
⋃

(K∼)α)∼ = (K∼)∼, that is,
⋂

((K∼)α)∼ = K .
For expression ((K∼)α)∼, we have

((K∼)α)∼ = {P∼
∈ C∼

| P∼
⊂ K∼

}
∼

= {P ∈ C| P ⊃ K }

= Kβ .

Thus, we obtain
⋂

Kβ
= K . By Theorem 6, we consequently

conclude that K is an intersection reducible element of C. □

Theorem 8. Let (U, C) be a CA-space and (U, C∼) be its CCA-space.
For any K ∈ C, then K is an intersection irreducible element of C iff
K∼ is an union irreducible element of C∼.

Proof. (⇒) If K is an intersection reducible element of C, then we
have

⋂
Kβ

̸= K . Thus, (
⋂

Kβ )∼ ̸= K∼. By the proof of Theorem 7,
we obtain

(
⋂

Kβ )∼ =

⋃
(K∼)α,

from which we deduce that
⋃

(K∼)α ̸= K∼. Hence, by Proposi-
tion 4, we conclude that K∼ is an union irreducible element of
C∼.

(⇐) Suppose that K∼ is an union irreducible element of C∼.
Then by Proposition 4, we have

⋃
(K∼)α ̸= K∼. Since

⋃
(K∼)α =
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(
⋂

Kβ )∼, then (
⋂

Kβ )∼ ̸= K∼, that is,
⋂

Kβ
̸= K . By Propo-

sition 10, we consequently conclude that K is an intersection
irreducible element of C. □

By Theorems 7 and 8, we have the following theorem.

Theorem 9. Let (U, C) be a CA-space and (U, C∼) be its CCA-space.
For any D ⊆ C, then D is the intersection reduct of C iff D∼ is the
union reduct of C∼.

Theorem 9 shows the relationship between the intersection
reduct of C and the union reduct of C∼. From Theorems 7, 8 and 9,
we can obtain the element characteristics and reduct of (U, C) via
the element characteristics and reduct of (U, C∼), and vice versa.

Example 9. In Example 8, since ∼ K2 = (∼ K1)
⋃

(∼ K3), thus
∼ K2 is an intersection reducible element. On the other hand,
Kβ

1 = Kβ

3 = Kβ

4 = ∅, then ∼ K1, ∼ K3 and ∼ K4 are intersection
irreducible elements. Therefore, {∼ K1, ∼ K3, ∼ K4} is the inter-
section reduct of ∼ C. Simultaneously, from Example 3, we know
that K2 is union unnecessary, K1, K3, K4 are union irreducible, and
{K1, K3, K4} is the union reduct of C.

Obviously, K2 is union unnecessary in C and ∼ K2 is inter-
section unnecessary in ∼ C, K1, K3, K4 are union irreducible in
C and ∼ K1, ∼ K3, ∼ K4 are intersection irreducible in ∼ C.
At the same time, {K1, K3, K4} is the union reduct of (U, C) and
{∼ K1, ∼ K3, ∼ K4} is the intersection reduct of (U, ∼ C).

6. Applications

In this section we present two case-study to examine the pos-
sible practical applications of the proposed knowledge reduction
method.

Example 10. The set U represents the set of service offers of
office supplies business, the items including: s1: computers, s2:
computer peripherals, s3: consumables, s4: network products, s5:
printer/copy machines, s6: projectors, s7: stationery, s8: service
products, s9: type writers. Let C = {K1, K2, K3, K4, K5, K6, K7, K8},
where Ki denotes the service offers provided by itself, and K1 =

{s2, s4, s5, s7, s9}, K2 = {s1, s3, s8}, K3 = {s4, s5, s6, s9}, K4 =

{s4, s5, s9}, K5 = {s1, s3, s6, s7, s8}, K6 = {s1, s4}, K7 = {s2, s7, s9}
and K8 = {s1, s3, s4, s8}. It is easy to see that

K1 ∪ K2 ∪ K3 ∪ K4 ∪ K5 ∪ K6 ∪ K7 ∪ K8 = U .

Then, (U, C) is a CA-space.
In order to support small suppliers, choose as many small

suppliers as possible to provide the same service offers. Under
this restriction, if a supplier’s service offers can be covered by
the service offers of several smaller suppliers, then the supplier is
removed. By Theorem 1 and Proposition 4, we have Kα

1 = {K4, K7},
Kα
3 = {K4}, Kα

5 = {K2}, Kα
8 = {K2, K6}, K2 = K4 = K6 = K7 = ∅. It

can easily be verified that

K1 =

⋃
Kα
1 = K4

⋃
K7, K8 =

⋃
Kα
8 = K2

⋃
K6.

Thus, suppliers K1 and K8 are union reducible which can be
removed, and {K2, K3, K4, K5, K6, K7} is the collection of selected
suppliers. On the other hand, from the above CA-space (U, C), we
obtain a induced formal context (U, C, I) represented by Table 3.
According to Theorems 3, 4 and 5, it can be verified that K1, K8
are union reducible and {K2, K3, K4, K5, K6, K7} is the union reduct
of C. It is consistent with the above results.

Example 11. Continuing from Example 10. In order to ensure
the security of supply, choose as large a supplier as possible
to provide the same service offers. Under this condition, if a

Table 3
Formal context for service offers of office supplies business.
U K1 K2 K3 K4 K5 K6 K7 K8

s1 0 1 0 0 1 1 0 1
s2 1 0 0 0 0 0 1 0
s3 0 1 0 0 1 0 0 1
s4 1 0 1 1 0 1 0 1
s5 1 0 1 1 0 0 0 0
s6 0 0 1 0 1 0 0 0
s7 1 0 0 0 1 0 1 0
s8 0 1 0 0 1 0 0 1
s9 1 0 1 1 0 0 1 0

supplier’s service offers is contained in the service offers of more
than one supplier larger than it, then the supplier is removed. By
Theorem 6 and Proposition 10, we have Kβ

2 = {K5, K8}, K
β

4 =

{K1, K3}, K
β

6 = {K8}, K
β

7 = {K1}, K
β

1 = Kβ

3 = Kβ

5 = Kβ

8 = ∅. It is
easy to see that

K2 =

⋃
Kβ

2 = K5

⋂
K8, K4 =

⋃
Kβ

4 = K1

⋂
K3.

Hence, suppliers K2 and K4 are intersection reducible and can be
removed, and {K1, K3, K5, K6, K7, K8} is the collection of selected
suppliers.

7. Conclusion

Rough sets and concept lattices are two complementary tools
in data analysis. The relationships and interconnections between
CA-space and concept lattices are important research topic. In
this paper, we have proposed a method of union reduction for
CA-space. The relations between union reduction of CA-space and
concept lattices reduction are analyzed and derived. Meanwhile,
We have investigated the relations of element characteristics
between CA-space and concept lattices. Finally, the connections
between reduction of a CA-space and its compliment space are
revealed. By the assertions obtained, one can obtain all the CA-
space reduction and their attribute characteristics via the concept
lattices reduction and their attribute characteristics, and vice
versa.

The comparison and combination of CA-space and concept
lattices theory may provide new approaches to data analysis and
knowledge discovery. This paper attempts to establish a bridge
between RS and FCA, and the research results may help us to
gain much more insights into the two theories. The relations of
reduction between other types generalized approximation spaces
and concept lattices will be our further studies.
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