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a b s t r a c t

In this note, we show that the calculation of statistics X2
F and FF in sections 4.5 and 4.6 of the paper (Fan

et al., 2017) is not correct. Also, based on the calculation of Critical Difference (CD) of Bonferroni–Dunn
test, we show that the conclusion on "significantly outperforming the compared algorithms", drawn
by the authors using the P-value test, is not convincing.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In [1], the authors proposed an entropy-based fuzzy support
vector machine (EFSVM) for class-imbalance problem. To vali-
date the effectiveness of EFSVM, experiments on 64 real-world
imbalanced datasets (categorized as low imbalanced, medium im-
balanced and high imbalanced) were conducted. Using Friedman
test they concluded that EFSVM significantly outperformed the
compared algorithms. We found incorrect calculations in Section
4, and obtained a different conclusion regarding the statistical
testing on the comparisons.

2. Incorrect calculation

In Sections 4.5 and 4.6 of paper [1], χ2
F and FF are calculated

according to Eqs. (11) and (12) based on the data in Tables 7
and 8. We find that the obtained results are not correct because
the authors take incorrect number of datasets n, number of al-
gorithms k and the values of Average Rank Rj in corresponding
tables. Let us show the details.
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2.1. Medium imbalanced datasets

In Section 4.5, counting the rows and columns of Table 7,
we have n = 33, k = 9, and Ri(i = 1, 2, . . . , 9) which
should be 2.39, 5.73, 3.64, 5.18, 4.17, 4.70, 4.79, 7.36 and 7.05
respectively, at the last row in Table 7. Replacing these values
into Eqs. (11) and (12), we obtain

χ2
F =

12 × 33
9 × (9 + 1)

[(2.392
+ 5.732

+ 3.642
+ 5.182

+ 4.172

+ 4.70 + 4.792
+ 7.362

+ 7.052) −
9 × (9 + 1)2

4
]

=
396
90

[244.9221 −
900
4

] = 87.66

and

FF =
(33 − 1) × 87.66

33 × (9 − 1) − 87.66
=

2805.12
176.34

= 15.91

FF is distributed according to the F distribution with (k−1) =

8 and (k−1)(n−1) = 256 degrees of freedom. The results on the
statistic in paper [1] are χ2

F = 104.20 and FF = 23.48.
Also, we recomputed the ‘‘Average rank’’ and ‘‘Difference’’

of compared algorithms on medium imbalanced datasets (see
Table 1).

2.2. High imbalanced datasets

In Section 4.6, we find that the values of the last row ‘‘Average
Rank’’ in Table 8 do not coincident with the values of the datasets
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Table 1
Ranks and AUC values (%) of the compared algorithms on medium imbalanced datasets (Im.Ratio 0.9 ≤ 20).
Data set Entropy FSVM FSVM SVM-SMOTE SVM-OSS SVM-RUS SVM EasyEnsemble AdaBoost 1-NN

Ecoli 0-2-3-4-vs-5 2 8 6 4 1 3 5 7 9
Yeast 0-3-5-9-vs-7–8 4 5 2 8 3 6.5 1 9 6.5
Ecoli 0-4-6-vs-5 4 1 3 5 6 2 7 8.5 8.5
Yeast 0-2-5-6-vs-3-7-8–9 2 7 1 3 6 5 4 9 8
Yeast 0-2-5-7-9-Vs-3-6–8 4 8 2 6 5 1 3 9 7
Ecoli 0-3-4-6-Vs-5 1 3 3 3 6 5 8 9 7
Ecoli 0-3-47-Vs-5–6 1 6 5 7 2 3 9 4 8
Ecoli 0-1-vs-2-3–5 1 5 2 6 4 3 7 9 8
Yeast 2-vs-4 2 7 4 3 5 6 1 9 8
Ecoli 0-6-7-Vs-3–5 1 4 5 2 6 3 7 9 8
Glass 0-4-Vs-5 1 4 7.5 9 2 3 6 7.5 5
Ecoli 0-2-6-7-Vs-3–5 1 7 6 3 2 4 5 9 8
Glass 0-1-5-Vs-2 2 5 1 8 4 9 3 7 6
Yeast 0-5-6-7-9-vs-4 1 5 3 4 2 7 6 9 8
Vowel 7 9 5 8 6 4 2 3 1
Ecoli 0-6-7-vs-5 1 2 3.5 3.5 5 6 7 9 8
Ecoli 0-1-4-7-Vs-2-3-5–6 1 2 6 5 4 3 7 8 9
Glass 0-1-6-Vs-2 2 5 4 3 1 7 6 9 8
Ecoli 0-1-vs-5 1 4.5 4.5 2 3 6 8 9 7
Led7digit 0-2-4-5-6-7-8-9-vs-1 3 2 1 6 5 4 7 8 9
Glass 0-6-Vs-5 4.5 7 3 9 8 1 6 2 4.5
Glass 0-1-4-6-Vs-2 2 9 3 6 4 5 1 7 8
Glass 2 1 5 2 6 4 7 3 8 9
Ecoli 0-1-4-7-vs-5–6 1 6 2 5 4 7 3 9 8
Cleveland 0-Vs-4 2 9 3 7 5 6 1 4 8
Ecoli 0-1-4-6-vs-5 3.5 3.5 2 1 5.5 5.5 7 9 8
Shuttle c0-vs-c4 4 4 4 4 4 7 1 9 8
Yeast 1-Vs-7 3 8 2 4 5 6 1 9 7
Ecoli 4 1 6 3 5 4 2 7 9 8
Glass 4 4 7 5 6 3 1 9 8 2
Pageblocks 1-3-Vs-4 4 8 5.5 5.5 9 7 2 1 3
Abalone 918 6 8 5 9 2 7 1 3 4
Glass 0-1-6-Vs-5 1 9 6 5 2 3 7 4 8

Ave. Rank 2.39 5.73 3.64 5.18 4.17 4.70 4.79 7.36 7.05

Difference N/A 3.34 1.25 2.79 1.78 2.31 2.4 4.97 4.66

in the same table. For example, the average rank of the second
column FSVM

R2 = 5.95

After checking one by one, we calculate the Average Rank us-
ing formula Rj =

1
n

∑n
i=1 r

j
i , obtain the values 2.2, 5.85, 2.3, 5.9,

3.1, 5.4, 4.65, 8.4, and 7.2 (in order from left to right of Table 8).
Accordingly,

χ2
F =

12 × 10
9 × (9 + 1)

[(2.22
+ 5.852

+ 2.32
+ 5.902

+ 3.102

+ 5.402
+ 4.652

+ 8.402
+ 7.202) −

9 × (9 + 1)2

4
]

=
120
90

[261.955 −
900
4

] = 49.27

and

FF =
(10 − 1) × 49.27

10 × (9 − 1) − 49.27
=

443.43
30.73

= 14.43

FF is distributed according to the F distribution with (k − 1) =

(9 − 1) = 8 and (k − 1)(n − 1) = (9 − 1)(10 − 1) = 72 degrees
of freedom. It is also different from the results given in paper [1],
i.e. χ2

F = 47.35 and FF = 22.34.
Moreover, we recomputed the ‘‘Average rank’’ and ‘‘Difference’’
on high imbalanced datasets (See Table 2).

3. Inappropriate conclusion

Due to the incorrect calculation on Friedman statistic, we need
to verify if the testing results are reliable.

3.1. Bonferroni–Dunn test

To the best of our knowledge, the Bonferroni–Dunn test [2–4]
is generally used for statistical testing. We use it on Tables 6, 7
and 8 separately, taking the critical difference (CD) given in [2,3],
i.e.

CD = qα

√
k(k + 1)

6n
. (1)

where critical values qα are given in [5].

3.1.1. Low imbalanced datasets
The critical value of F (8160) at α = 0.05 is 1.997. Because

FF = 7.19 > 1.997, the compared algorithms are not equivalent
at α = 0.05, then we can reject the null-hypothesis.

According to Table 6, the algorithmwith the best Average Rank
is EasyEnsemble. Taking qα = 2.724 [5], we have the critical
difference CD = 2.724

√
9(9+1)
6×21 = 2.30. Since the difference

between the average ranks of Entropy FSVM and SVM-SMOTE
(SVM-RUS respectively) is 4.50 − 3.02 = 1.48 (5.07 − 3.02 =

2.05 respectively) less than 2.30, therefore there is no significant
difference between Entropy FSVM and SVM-SMOTE (SVM-RUS
respectively). Moreover, the average rank of Entropy FSVM is
bigger than EasyEnsemble, i.e. 3.02 > 2.52, so we cannot conclude
that the Entropy FSVM method is significantly different with
EasyEnsemble.

3.1.2. Medium imbalanced datasets
The critical value of F (8256) at α = 0.05 is 1.975. Because

FF = 15.91 > 1.975, the compared algorithms are not equivalent
at α = 0.05; we can reject the null-hypothesis.
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Table 2
Ranks of the compared algorithms on high imbalanced datasets (Im.Ratio > 20)
Data set Entropy FSVM FSVM SVM-SMOTE SVM-OSS SVM-RUS SVM EasyEnsemble AdaBoost 1-NN

Yeast 1-4-5-8-Vs-7 1 7 2 5 3 6 4 9 8
Yeast 2-Vs-8 1 9 5 6 4 3 2 7 8
Glass 5 1 4 2 7 3 9 5 8 6
Shuttle c2-Vs-c4 3 6 3 7.5 3 3 7.5 9 3
Yeast 4 1 7 2 5 3 6 4 9 8
Yeast 1-2-8-9-Vs-7 4 6 2 5 1 7 3 8 9
Yeast 5 2 6.5 1 6.5 3 4 5 8 9
Yeast 6 4 5 1 6 2 3 7 9 8
Ecoli 0-1-3-7-vs-2–6 1 3 2 5 7 4 8 9 6
Abalone 19 4 5 3 6 2 9 1 8 7

Ave. Rank 2.2 5.85 2.3 5.9 3.1 5.4 4.65 8.4 7.2

Difference N/A 3.65 0.1 3.5 0.9 3.2 2.45 6.2 5

According to Table 7, the algorithm with the best Average
Rank is Entropy FSVM. We have the critical difference CD =

2.724
√

9(9+1)
6×33 = 1.84. Since the difference between the average

ranks of Entropy FSVM and SVM-SMOTE (SVM-RUS respectively)
is 3.64− 2.39 = 1.25 (4.17− 2.39 = 1.78 respectively) less than
1.84, therefore there is no significant difference between Entropy
FSVM and SVM-SMOTE (SVM-RUS respectively).

3.1.3. High imbalanced datasets
The critical value of F (8, 72) at α = 0.05 is 2.07. Because

FF = 14.43 > 2.07, the compared algorithms are not equivalent
at α = 0.05; we can reject the null-hypothesis.

According to Table 8, the algorithm with the best Average
Rank is Entropy FSVM. We have the critical difference CD =

2.724
√

9(9+1)
6×10 = 3.34. Since the difference between the average

ranks of Entropy FSVM and SVM-SMOTE (SVM-RUS, SVM, and
EasyEnsemble, respectively) is 2.3 − 2.2 = 0.1 (3.1 − 2.2 = 0.9,
5.4 − 2.2 = 3.2, and 4.65 − 2.2 = 2.45, respectively) less
than 3.34, therefore there is no significant difference between En-
tropy FSVM and SVM-SMOTE (SVM-RUS, SVM, and EasyEnsemble,
respectively).

3.2. Discussion

Paper [1] claimed that the p-values could be computed as
F (8160), F (8256) and F (8, 81) for the three categories of

imbalanced datasets respectively, and concluded that the Entropy
method outperformed the compared algorithms. In general, the
performances of the two classifiers are significantly different
if the corresponding average ranks are bigger than the critical
difference. As we have shown in Sections 3.1.1, 3.1.2, and 3.1.3,
Bonferroni–Dunn test is used to compare the best Entropy FSVM
with the other methods. The results show that Entropy FSVM is
not able to outperform the compared algorithms significantly.
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