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Abstract: In real life, it is a common phenomenon that different misclassification causes 
different cost. Given a misclassification cost matrix (MCM), cost-sensitive learning is aiming at 
decreasing the overall misclassification cost rather than simply reducing the misclassification 
rate. Weighted least squares (WLS) model is acknowledged as an effective way of cost sensitive 
learning. However, the weights in WLS model are generally unknown and finding these weights 
is usually difficult. In this paper, we put forward a new approach to learning these weights of 
WLS model from a given MCM based on a genetic algorithm. A comparative study shows that 
our proposed approach has an overall cost of misclassification significantly smaller than the 
existing cost-sensitive learning methods. 
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1 Introduction 
Classification is a basic task in machine learning and data 
mining. It exists in many fields of our real life, such as 
internet search (Sun et al., 2014), image processing (Russ 
and Neal, 2017) and handwriting recognition (Dastidar et 
al., 2015). Its working process contains two stages: firstly, 
train a classifier based on training samples whose class 
labels are marked; secondly, use the trained classifier to 
classify unseen samples. The commonly used methods to 
generate classifiers include support vector machine (Liu  
et al., 2018; Guo et al., 2018) decision tree (Quinlan, 1986), 

naive Bayes (Rish, 2001), K-nearest neighbor (Peterson, 
2009), neural network (Hagan et al., 2002) and so on. 

In general classification methods, there is an assumption 
that for a certain classification problem the costs of all the 
misclassifications are the same. The goal of these methods 
is to minimise the misclassification rate. While in real life, it 
is a common phenomenon that different misclassification 
leads to different cost. As an example, in medical diagnosis, 
in comparison with mistaking a healthy person as a patient, 
mistaking a patient as a healthy person will lead to more 
serious consequences even life-threatening. Similarly, in the 
credit card theft detection, missing misappropriation as 
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normal use will result in greater economic loss than 
discriminating normal use as misappropriation. 

In response to the above problems, cost-sensitive 
learning assigns different costs to different 
misclassifications. It aims to minimise the overall 
misclassification cost, rather than simply minimise the 
misclassification rate. As an emerging classification 
strategy, cost-sensitive learning has been deeply studied and 
explored. 

Kukar and Kononenko (1998) put forward a new 
backward propagation algorithm for neural networks, which 
can meet the requirements of cost-sensitive learning. 
Domingos (1999) proposed the MetaCost method which is a 
way to convert a general classification model into a cost-
sensitive model. Drummond and Holte (2000) studied cost-
sensitive learning decision trees and proposed a node 
splitting method. Bradford et al. (1998) studied how to 
prune decision trees under cost-sensitive conditions and 
made a conclusion that the pruning approach based on the 
Laplace method can achieve the best results. Wang et al. 
(2013) put forward a cost-sensitive Boosting algorithm 
named Ada-Cost. Geibel et al. (2014) proposed cost-
sensitive learning methods based on perceptron and support 
vector machines. It modifies the class marks of training 
samples through a ‘meta learning’ process and relearn a new 
model by using the modified training set. Based on the idea 
of cost-proportionate, Zadrozny et al. (2003) adjusted the 
weights of training data, which is similar to the Boosting 
algorithm in practical applications. It can be implemented 
by subsampling or adjusting the weights of classifiers. Abe 
et al. (2004) explored how to implement cost-sensitive 
learning in multi-class classification problems and proposed 
a new iterative learning method. In Zhai et al. (2017) and 
Mao et al. (2017), cost-sensitive learning methods based on 
extreme learning machine (ELM) were proposed. 

However, these cost-sensitive classifiers cannot 
guarantee the obtained final overall cost is the minimum. In 
order to overcome this defect, in this paper we proposed a 
weighted least squares (WLS) model whose weights are 
learned from the misclassification cost matrix (MCM) by 
using the genetic algorithm. WLS is acknowledged as an 
effective way of cost sensitive learning. It is based on the 
least squares model which is the essence of ELM. In this 
paper, we construct a weighted ELM as an specific form of 
the WLS method. 

ELM (Huang et al., 2006) is a single hidden layer feed-
forward neural network, which performs nonlinear 
transformation on the original data firstly and then 
optimises the parameters through the least squared method. 
ELM has attracted extensive attention from scholars since it 
was proposed. To expand the application scope of ELM, 
many extensions have been proposed, such as the domain 
space transfer ELM for domain adaptation (Chen et al., 
2018), the online kernelised and regularised ELM for 
wearable-based activity recognition (Hu et al., 2018). In 
Alshamiri et al. (2018) proposed two swarm intelligence 
approaches to improve the generalisation performance of 
ELM. In Zhao et al. (2018) studied the impact of the rank of 

input data matrix on the performance of ELM. In Luo et al. 
(2018) put forward the timeliness online regularised ELM. 
In Ding et al. (2017) proposed an unsupervised ELM with 
representational features. In Liu et al. (2017) introduced a 
semi-supervised low rank kernel learning algorithm via 
ELM. 

The main content of our work can be summarised as: 

1 We proposed a weight learning method for constructing 
a cost-sensitive classifier model of ELM. In the model, 
the loss function is a weighted sum of squared errors 
and the weights are obtained by minimising the overall 
misclassification cost through genetic algorithm. 

2 We completed the transition from the MCM to the 
weights in the weighted least square model. Usually, 
the weights are meaningless. In this paper, the weights 
are generated based on the MCM, which makes the 
weights interpretable. 

3 We conducted experiments to illustrate the 
effectiveness of our proposed model. Experimental 
results showed that in comparison with cost-sensitive 
ELM and cost-sensitive naive Bayes, our model can 
achieve the minimum overall cost, which means that 
our model has much better classification performance 
when handling cost-sensitive learning problems. 

This paper is organised as follows. Section 1 is the 
introduction. In Section 2 and Section 3, we separately 
reviewed the basic knowledge of cost-sensitive learning and 
the WLS model. In Section 4, we described the construction 
process of the WLS model of ELM based on genetic 
algorithm in detail. In Section 5, by conducting comparative 
experiments, we demonstrated the effectiveness of the 
proposed model. Section 6 is about the conclusion and the 
future work. 

2 Cost-sensitive learning 
Many scholars have proposed various cost-sensitive 
learning methods. According to the learning mechanisms of 
cost-sensitive learning methods, we can classify them into 
three categories. 

1 Some approaches focus on how to directly construct a 
cost-sensitive learning model based on traditional 
classifiers, such as decision trees (Drummond and 
Holte, 2000; Bradford et al., 1998), neural networks 
(Kukar and Kononenko, 1998; Zhai et al., 2017; Mao et 
al., 2017) and the Boosting algorithm (Wang et al., 
2013). 

2 Some other methods post-process the classification 
results (Bradford et al., 1998; Zadrozny et al., 2003). 

3 The other methods train cost-sensitive models by 
changing the distribution of the raw training data 
(Geibel et al., 2004). 
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In cost-sensitive learning, the misclassification costs are 
shown by the cost matrix (García-López et al., 2015) which 
is expressed as follows: 
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where m is the number of categories to which the training 
samples belong; cij represents the cost of misclassifying a 
sample of the ith class into the jth class (0 ≤ i, j ≤ m). 
Usually, for a certain problem the cost matrix is given by 
experts with expertise and rich experience. 

Following is a detailed description of the cost-sensitive 
ELM and the cost-sensitive naive Bayes. 

Cost-sensitive ELM is the product of the combination of 
cost-sensitive learning and ELM. It aims to minimise the 
cumulative error. When dealing with multi-classification 
problem with m categories, the model of ELM can be 
summarised as follows: 
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2

2
1

1 1|| ||
2 2

N
j jj

L C e w
=

= + β  (2.2) 

Subject to: 

( ) , 1, 2, ,T T
j j jh x t e j N= − =β  (2.3) 

According to the KKT theorem, the equivalent dual 
optimisation problem of formulas (2.2) and (2.3) is: 

( )( )

22

1

1

1 1
2 2

N
j jj

N
j j j jj

L C e w

γ h x t e

=

=

= +

− − +




β

β
 (2.4) 

where the Lagrange multiplier γj is a constant factor of 
sample xj. Let the partial derivatives of function (2.4) with 
respect to each variable β, ej, γj be 0, then we can obtain 
generated decision function: 

( ) ( )( )f x h x H T W+=  (2.5) 

where H is the hidden layer output matrix, which can be 
expressed as: 
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H+ is the Moore-Penrose generalised inverse of matrix H; 
h(xj) = [g(α1 · xj + b1), ··· , g(αÑ · x1 + bÑ)] is the hidden 
layer output matrix of the jth sample; ej is the jth column of 
the error matrix e. 

xj = [xj1, xj2, ···, xjn]T ∈ Rn is the feature vector of the jth 
sample; tj = [tj1, tj2, ···, tjm]T ∈ Rm is the target value vector 
of the jth sample; g(x) is the activation function;  
αj = [αj1, αj2, ···, αjn]T is the input weight vector connecting 
the jth hidden node with the input layer; βj = [βj1, βj2, ···, 

βjm]T is the output weight vector connecting the jth hidden 
node with the output layer; bj is the bias in the hidden layer; 
oi = [oi1, oi2, ···, oim]T is the output vector; N is the number 
of training samples; m is the number of categories to which 
the training samples belong; Ñ is the number of nodes in the 
hidden layer. 

Cost-sensitive naive Bayes is an improved naive Bayes, 
which can process cost-sensitive problems. Its cost function 
can be shown as: 
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where F(ci, cj) is the cost caused by misclassifying ci to cj; pi 
is the proportion of the samples belonging to ci in all the 
samples; pj corresponds to cj. 

The risk function of cost-sensitive naive Bayes is: 

( ) ( ) ( )| | ,i j j iR c x P c x F c c= ×  (2.8) 

where P(cj | x) can be obtained according to formula (2.9) to 
formula (2.11): 
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When the loss function is the 0~1function, we assign the 
sample x to category c in order to minimise the 
classification error. 
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Because for any i ∈ {1, 2, ···, l}, 
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formula (2.9) and formula (2.10), we can obtain: 
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Finally, we consider the category with the minimum risk as 
the class the sample x belonging to. 

3 WLS method 
WLS method is an extension of the least squares method 
which is a mathematical optimisation technique. Through 
minimising the sum of squared errors between output values 
and target values, the least squares method can approximate 
the function between the independent variables and the 
dependent variable. 

The least squares method can be mathematically 
described as follows: 
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For a given set consisting of N data points {(Xi, yi )} 
(i = 1, 2, ···, N), the least squares method aims to find out a 
function p(X) so that the sum of squared errors 

( )( )2
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N
i ii
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= −  attains its minimum value. 

Now we illustrate the process of the least squares 
method by approximating a linear function. Suppose the 
approximation function can be expressed as: 
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where n is the number of independent variables and N > n; 
βj is the unknown coefficient. 

By vectorising equation (3.1) we can obtain  
equation (3.2). 
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where y = [y1, y2, ···, yN]T. 
when ˆ=β β , E attains its minimum value, which can be 

marked as: 

ˆ arg min( )E=β  (3.4) 

By conducting the differentiation operation, we can obtain 
the following expression: 

ˆT TX X X y=β  (3.5) 

If XTX is a nonsingular matrix, then β̂  is a unique solution 
and can be expressed as: 

( ) 1ˆ T TX X X y−=β  (3.6) 

We call β̂  is a least squares solution of the linear system 
Xβ = y. 

The original least squares model treats each item in the 
loss function equally. In fact, the impact of each item on the 
loss function should be different. Therefore, a more 
reasonable way is to use a weighted method. 

The WLS method assigns a weight to each item in the 
loss function of the original least squares model. It aims to 
minimise the weighted loss function which can be expressed 
as follows: 
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where wi(i = 1, 2, ···, N) is the weight of the ith sample in the 
approximation model. 

Expression (3.7) can be derived into the following form: 
TE ε Wε=  (3.8) 

where ε = Xβ – y. 
W is the weight matrix which is symmetric positive 

definite and its scale is N × N. In order to ensure that E is a 
real number, W should be a Hermitian matrix. 

Let the partial derivative of function (3.8) with respect 
to β equal to 0, i.e. 

0E∂ =
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Then we can obtain the WLS solution 

( ) 1ˆ T TX WX X Wy−=β  (3.10) 

From expression (3.10) we can see that the solution varies 
with the change of weights, therefore, in order to find an 
optimal solution, we should analytically determine the value 
of weights. 

4 Our proposed weight learning from 
misclassification cost-matrix based on genetic 
algorithm 

In this paper, in order to generate a classifier which can 
achieve the minimum overall misclassification cost, we 
proposed a weight learning method for WLS model of 
ELM. By adopting genetic algorithm which aims to 
minimise the overall misclassification cost, this method 
assigns different weights to samples in different categories, 
that is the samples within the same category have the same 
weight. 

In the WLS model of ELM, the training objective is to 
minimise the weighted loss function: 
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where Nk(k = 1, 2, ···, m) represents the number of samples 

contained in each category and 
1

m
kk

N N
=

= ; wk is the 

weight of the samples in the kth category, which is generated 
by genetic algorithm. 

After the input weights and the biases are fixed, 
minimising the objective function (4.1) is equivalent to 
finding the optimal solution of the following expression: 
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which can be equivalently expressed as: 
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Then the output weight vector of the WLS model of ELM is 
analytically determined as: 
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where ‘+’ is the generalised inverse operator. 
The weights w1, w2, ···, wm can be generated by genetic 

algorithm which aims to minimise the training overall 
misclassification cost. Genetic algorithm can guarantee the 
obtained solution is the optimal one or an approximate 
optimal one. It consists of a series of genetic operations, 
such as selection, crossover and mutation. 

In comparison with traditional optimisation methods, 
genetic algorithm has the following advantages. 

1 It can find out the optimal solution. It searches from a 
cluster of potential solutions to another cluster, rather 
than from a single one to another one, which makes it 
can reduce the risk of falling into local optimal 
solutions. 

2 It can process potential solutions in parallel. 

3 It has the capability of self-organisation, self-adaptation 
and self-learning. When it uses the information 
obtained during the evolution process to organise the 
search by itself, the individuals with higher fitness have 
higher survival probability and obtain a more adaptive 
genetic structure. 

Following is a detailed description of the construction 
process of the WLS model based on genetic algorithm. 

1 Firstly, randomly assign input weights and biases to 
ELM and randomly generate a group of weight vectors 
which are considered as the individuals in an initial 
population. 

2 Secondly, for every weight vector, calculate the output 
weights β̂  according to expression (4.4), then we 
obtain the prediction model and prediction outputs for 

training samples, then according to the cost matrix, we 
can calculate the training overall misclassification cost 
which is considered as the fitness function used to 
evaluate the quality of individuals in genetic algorithm. 
Select weight vectors with satisfactory fitness values to 
perform the following genetic operations. 

3 Thirdly, encode the selected weight vectors to strings 
composed of characters just as chromosomes consisting 
of genes. 

4 Then apply crossover and mutation operators to the 
encoded individuals and obtain a superior generation. 

Crossover refers to the operation of replacing the partial 
structure of two parent individuals to generate new 
individuals, which randomly exchanges two individuals 
in the population according to the crossover rate and is 
able to generate new combinations of genes, hoping to 
combine the beneficial genes together. 

Mutation is to change the gene values at certain loci of 
individual strings in the population. 

5 Iterate Steps 2–4 until the termination condition is met. 
Decode the final string and obtain the optimal weight 
vector which has the minimum training overall 
misclassification cost. 

6 Lastly, calculate the final output weights according to 
expression (4.4), then we obtain the WLS model of 
ELM. 

The pseudo code of this algorithm is shown as follows: 
Algorithm 1 Algorithm for training a WLS model of ELM based 

on genetic algorithm 

Input: input data set {(xi, ti)}, i = 1, 2, ···, N, where xi ∈ Rn, ti ∈ 
Rm; the number of nodes in the hidden layer: Ñ; M: the scale of 
population; T: the maximum number of generations; Rc: 
crossover rate; Rm: mutation rate. 
Output: the weight of each category w1, w2, ···, wm; training 
overall cost; testing overall cost. 
1 Begin 
2  Initialise t = 0;  
3  Generate the first population P(0) randomly; 
4  Encode the individuals in P(0) to strings; 
5  while (t <= T) do  
6   Calculate the fitness of each individual in P(t); 
7   Select individuals from P(t) according to their 

fitness values; 
8   Perform crossover operation on the selected 

individuals according to Rc; 
9   Perform mutation operation on the selected 

individuals according to Rm; 
10   Generate a new population P(t + 1); 
11   t = t + 1; 
12  end while 
13  Decode the string with the maximum fitness in P(T) to 

a vector [w1, w2, ···, wm]T which is the optimal 
solution; 
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14  Generate the input weights and biases randomly; 
15  Calculate the output weights of the proposed model 

according to expression (4.4); 
16 end 
17 Return the weight of each category w1, w2, ····, wm; 

training overall cost; testing overall cost. 

5 Experimental validation 
In order to verify the effectiveness of the proposed method, 
we have done a lot of experiments conducted on various 
UCI datasets whose detailed information is shown in  
Table 1. 

The processor of the computer we used for experiments 
is Intel (R) Core (TM) i3-6100 with 16GB memory space. 
The programming software is MATLAB R2016a 9.0 with  
64 bits. 

In all the experiments, we use 70% of the samples in the 
dataset as training data and the rest as test data. The 
evaluation index is overall cost which is the sum of costs 
caused by all the misclassifications. Usually the cost matrix 
in an imbalanced classification problem is given by experts 
with professional knowledge and rich experience. 

In the course of experiments, we found that for a fixed 
dataset, the finally obtained overall cost is not a fixed value. 
Next, we will take the result of the Texture-r dataset as an 
example to illustrate this phenomenon. 

Table 1 Information of datasets 

Dateset Number of 
attributes 

Number of 
categories 

Number of 
instances 

autompg 5 3 392 
page 10 3 5,473 
Page (p10) 10 3 546 
segment 19 3 2,310 
Texture-r 21 3 5,500 
Thyroid (p10) 6 3 720 
vehicle 8 3 846 
vowel 10 3 528 
wineQR 11 3 1,599 
wineQW 11 3 4,898 
yeast 8 3 1,484 
cmc 9 3 1,473 
eb 4 3 4,210 
krkopt 6 3 2,902 
localisation 7 3 2,000 
page-blocks 3 3 490 
recognition 3 3 658 
sat 36 3 4,435 

 

 

Table 2 Result of the texture-r data set 

w1 w2 w3 overall cost 

0.9667 0.8425 0.0988 1,041 
0.4517 0.2935 0.2582 805 
0.7203 0.6660 0.0354 882 
0.6300 0.4053 0.1724 905 
0.7732 0.3178 0.2309 668 
0.0352 0.0156 0.0005 508 
0.8042 0.4649 0.3048 981 
0.6062 0.3223 0.1877 1,034 
0.5871 0.1276 0.0310 1,033 
0.6153 0.9212 0.8642 802 
0.7099 0.6654 0.3369 973 
0.8662 0.6599 0.0350 895 
0.9569 0.9051 0.6676 1,011 
0.9002 0.8150 0.6265 659 

In Table 2, w1, w2 and w3 are the weights of the samples in 
three categories respectively. From Table 2 we can see that 
the overall cost changes with the weights. Then we can say 
genetic algorithm has the characteristic of uncertainty. The 
reason is that in order to find out the global optimal solution 
in a large range and avoid falling into local optimal 
solutions, genetic algorithm adopts many random operations 
where the most representative ones are listed as follows: 

1 Use the roulette method which is random to select 
individuals for reproduction. 

2 Randomly select individuals and switching points for 
crossover. 

3 Randomly select individuals and variation points for 
mutation. 

In order to minimise the influence of uncertainty on the 
proposed model and ensure the fairness of experimental 
results, we use the average value of overall costs from 
multiple experimental results to evaluate the performance of 
a classifier. 

By conducting experiments, we compared the proposed 
model with the cost-sensitive ELM and the cost-sensitive 
naive Bayes model. The average overall cost on testing data 
are shown in Table 3. 

From the comparative experimental results we can see 
that the WLS model of ELM has obvious advantage in 
comparison with the other two methods. It can achieve 
much less overall misclassification cost. However, on the 
recognition dataset, the results of these three models are 
close to each other. The possible reasons may be the 
following ones. 

1 Genetic algorithm has strong global search ability. It 
can find out the global optimal solution. 

2 The dataset itself has an impact on the experimental 
results. Therefore, the proposed algorithm performs 
different on various datasets. 
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Table 3 Comparative average overall cost on testing data 

Dataset WLS model 
of ELM 

cost-sensitive 
ELM 

cost-sensitive 
naive Bayes 

autompg 639.354 3,281 1,108 
page 1,048.203 35,698 3,454 
Page(p10) 97.318 6,710 519 
segment 25.156 2,605 3,402 
Texture-r 349.643 6,055 8,688 
Thyroid(p10) 501.642 7,071 839 
vehicle 1,001.547 3,919 2,521 
vowel 38.547 845 894 
wineQR 870.317 3,693 1,534 
wineQW 2,694.500 12,853 5,581 
yeast 3,611.698 6,119 5,947 
cmc 5,864.314 8,995 7,663 
eb 1,960.417 4,245 2,125 
krkopt 246.167 18,241 469 
localisation 4,643.258 7,942 8,141 
page-blocks 1,905.617 6,922 7,106 
recognition 1,894.514 2,052 2,100 
sat 1,866.316 2,631 7,111 

6 Conclusions and future work 
6.1 Conclusions 
Usually in real life, for a classification problem, different 
misclassifications causes different costs. Cost-sensitive 
learning introduces the concept of misclassification cost into 
the design of classifiers. However, the existing cost-
sensitive classifiers cannot ensure the final overall cost 
achieves its minimum value. In order to overcome this 
defect, we did the following work in this paper. 

1 We proposed a weight learning method for constructing 
a WLS model of ELM where the weights of samples in 
each category are generated by using the genetic 
algorithm which aims to minimise the training overall 
misclassification cost. This model can make sure the 
generated classifier has the minimum overall cost. 

2 We completed the transition from the MCM to the 
weights in the weighted least square model. Usually, 
the weights are meaningless. In this paper, the weights 
are generated based on the MCM, which makes the 
weights interpretable. 

3 We conducted comparative experiments on 18 datasets. 
The results showed that in comparison with the  
cost-sensitive ELM and the cost-sensitive naive Bayes 
model, the weighted least square model of ELM based 
on genetic algorithm has much better performance. 

6.2 Future work 
Our research work can be further improved from the 
following aspects: 

1 In this paper, only the UCI datasets are used. In the 
later stage, the size of the dataset will be increased to 
adapt to the development trend of big data. 

2 In this paper, we only discussed the datasets with three 
categories. We will do further experiments on multi-
classification problems to verify the proposed method 
more comprehensively. 

3 At present, we only know that the weight assigned to 
each category depends on the cost matrix. In the 
follow-up work, we will explore the specific 
relationship between them. 

4 We have not explained the interpretable feature in 
detail. We will complete this work through experiment 
further. 
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