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In this paper, we firstly study two pairs of covering-based fuzzy rough set models and pro-
pose the TOPSIS-WAA method based on a covering-based fuzzy rough set. Subsequently,
we design a rating scheme based on a multi-criteria decision-making method in a finite
fuzzy covering approximation space. The rating scheme is implemented based on the pre-
set subjective ratio and the calculated objective ranking of all alternatives. Furthermore, we
use the relevant data of some customers of Industrial and Commercial Bank of China (ICBC)
to illustrate the feasibility of our method. At the same time, two test rules are used to verify
the validity of the proposed method. Moreover, we compare five different decision-making
methods with our method to demonstrate the superiority of our method. Finally, the per-
formance of our method is verified from the perspectives of the best alternative and the
optimal ranking.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

The data in the information era presents large and complex features. The complexity of these data has caused a lot of
problems for researchers. In order to deal with these problems, some scholars have proposed various processing methods
[2,7,26]. In this paper, we focus on how to study new multi-criteria decision-making (MCDM) methods to cope with increas-
ingly complex practical problems. In general, MCDM information mainly involves three aspects, namely, objects, criteria and
evaluation values. The quantity information of objects and criteria determines the volume of data. This means that as the
number of objects and criteria increases, the capacity of data that can be collected also increases. The diversities of evalua-
tion value information determine the diversities of processable and analyzable data. This means we need to use different
decision-making methods to solve problems in different environments. This paper considers the rating problem in a finite
fuzzy covering approximation space (FCAS).

In real life, some businesses or companies often provide some special services to their new and regular customers. For
example, banks provide some customers with preferential services. However, due to the limited resources, the number of
customer groups enjoying these preferential services will also be limited. Moreover, the level of preferential services enjoyed
by these customers will also be different. In other words, these customers can get the preferential services of businesses or
companies, but the level of available service is different, that is, the differential treatment of the services. For example, sup-
pose a bank has 1,000 preferential services that will be provided to customers who register within a certain period of time.
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But the level of these services can be divided into several levels and there are certain differences in quantity. In short, these
1,000 customers will enjoy different levels of preferential services, that is, these customers will enjoy different treatment. In
fact, we can also regard this differential treatment as a priority issue. That is to say, the higher the customer’s ranking or
priority, the higher the rating, and the better the service. Therefore, in this paper, we design a rating scheme based on an
MCDMmethod in a finite FCAS to deal with this type of problem. At the same time, we propose a TOPSIS-WAAmethod based
on a covering-based fuzzy rough set (CFRS). This ranking decision-making method is the core of this scheme and can provide
an objective sorting information for the rating work. Before describing this scheme, we firstly review the relevant research of
TOPSIS methods, the weighted arithmetic average (WAA) operator method and the CFRS theory.

1.1. The TOPSIS method, the WAA operator method and the covering-based fuzzy rough sets

On the one hand, we introduce the methodological ideological basis of the TOPSIS-WAA method in a finite FCAS.

� The core idea of TOPSIS methods [12] is to find the optimal solution that is close to the positive ideal solution but far from
the negative ideal solution. In recent years, some scholars have developed a large number of novel TOPSIS methods [3,15]
in various environments and applied TOPSIS methods [34,39] to realistic problems.

� In addition to the TOPSIS method, the WAA operator method plays an important role in traditional decision theory. The
WAA operator method is a type of aggregation operator method [28]. The core of this method is a weighted arithmetic
average operator. Based on the basic idea of WAA operator methods, the final value of each alternative can be obtained
by using the weighted data. The WAA operator method is not only easy to understand in theory, but also has extensive
application value [8,16].
On the other hand, we introduce the theoretical development of the CFRS model in a finite FCAS. Rough set theory [19]
has been widely promoted and utilized [10,27] since its appearance. CFRS theory is an important branch of rough set the-
ory, which is mainly produced by the combination of the covering-based rough set (CRS) theory [31,32,35] and the fuzzy
rough set (FRS) theory [1,9,24]. Recently, some scholars have made important contributions to CFRS theory. Based on dif-
ferent fuzzy coverings, D’eer et al. [6] constructed different neighborhood operators and studied their relationships. Sub-
sequently, D’eer and Cornelis [5] conducted a comprehensive study on fuzzy covering-based rough set models. Besides,
Ma [17] proposed the concept of fuzzy b-coverings and explored two FRS models. Based on fuzzy b-coverings, Yang and
Hu [29] also developed several new models.
Based on the above three theories, we develop an MCDMmethod in a finite FCAS to solve the rating problem. Afterwards,
the following motivations of this paper will be described in detail.

1.2. The motivation of this paper

There are some related studies on MCDMmethods in a finite FCAS. For example, Jiang et al. [13] constructed four types of
new variable-precision fuzzy rough set models and explored the application of multi-attribute decision-making method in
the selection of financial products. Zhan et al. [36] proposed a multi-criteria group decision making method by using a new
multi-granularity fuzzy rough set model. In addition, based on the rough set theory and the MCDM theory, some scholars
have also studied plenty of new decision-making methods [21,22,40]. However, the above-mentioned several decision-
making methods are not suitable for our proposed rating scheme. The reason is that the core of the rating scheme designed
in this paper is the MCDM method in a finite FCAS. In order to better implement this scheme, we develop a new MCDM
method. Moreover, we explain the specific research motivations of this paper as follows:

� In real life, the limited resources of commercial services result in a limited number of customers that can enjoy services.
At the same time, the different levels of services require merchants to classify customers accordingly. Hence, how to grade
a certain number of customers act as a valuable topic. In view of this, this paper uses a pre-set subjective ratio (that is, a
quantitative ratio of all levels) and an objective ranking of all customers to form an effective rating scheme. Correspond-
ingly, the subjective ratio can be determined by the merchant itself (or the decision-maker), and the objective ranking of
all customers is determined by the new decision method proposed in this paper.

� The core of our proposed rating scheme is an MCDM method in a finite FCAS. However, some common MCDM methods
may fail in a finite FCAS (see Example 3.1 in this paper). In order to better implement our rating scheme, we develop a
new MCDM method by combining the TOPSIS method, the WAA operator method with CFRS theory.

1.3. The organization of this paper

The organization of the paper is listed below. In Section 2, some basic knowledge related to fuzzy logical operators and
fuzzy neighborhood operators will be described. Two pairs of CFRS models are proposed in Section 3. In Section 4, we give an
MCDM method in a finite FCAS. In Section 5, a numerical example to explain the effectiveness of our scheme and two test
rules are used to verify the validity of the proposed method. Further, we compare five different decision-making methods
with our method in Section 6. Finally, we verify the performance of our method from the perspectives of the optimal alter-
native and the optimal sorting scheme in Section 7.
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2. Preliminary

In this section, some basic knowledge related to fuzzy logical operators and fuzzy neighborhood operators will be
described.

2.1. Fuzzy logical operators

As we all know, a t-norm T is a generalization of Zadeh operators. Essentially, a t-norm operator is a mapping on [0,1]
that satisfies the commutative law, conjunction law, monotonicity and boundary condition. Moreover, based on a continuous
t-normT, we can obtain an R-implicator I. The R-implicator is defined as I m;nð Þ ¼

W
d 2 0;1½ � : T m; dð Þ 6 nf g, m;n 2 0;1½ �.

These two operators will be used in the research of this paper. Readers can learn more about these two operators from
[18,20].

2.2. Covering-based fuzzy neighborhood operators

From [6], we know that the relevant information of fuzzy coverings and covering-based fuzzy neighborhood operators.

Definition 2.1. Assume that F Wð Þ is a family of fuzzy subsets on W . For every e 2 W , if there is a H 2 H such that H eð Þ ¼ 1,
then H ¼ Hk 2 F Wð Þ : Hk –£; k 2 rf g is called a fuzzy covering (FC), here r is an index set. W;Hð Þ is called a finite FCAS.

Note that the fuzzy covering is finite in this paper. According to a finite FC H, we have the following definition:

Definition 2.2. LetH be a finite FC, for every e; f 2 W , four fuzzy covering-based fuzzy neighborhood operators are expressed
as follows:
1 NH
1

2 NH
1

NH
1 eð Þ fð Þ ¼ inf

H2H
I H eð Þ;H fð Þð Þ;

NH
2 eð Þ fð Þ ¼ sup

H2md H;eð Þ
T H eð Þ;H fð Þð Þ;

NH
3 eð Þ fð Þ ¼ inf

H2MD H;eð Þ
I H eð Þ;H fð Þð Þ;

NH
4 eð Þ fð Þ ¼ sup

H2H
T H eð Þ;H fð Þð Þ;

ð2-1Þ
where md H; eð Þ and MD H; eð Þ are called the fuzzy minimum description and fuzzy maximum description of e, respectively

In [6], D’eer et al. explored the properties and relationships of these four fuzzy neighborhood operators. The operators NH
1

and NH
3 are reflexive and T-transitive. The operator NH

2 is reflexive. The operator NH
4 is reflexive and symmetric. Moreover,

from [6], we have NH
1 6 NH

2 6 NH
4
1 and NH

1 6 NH
3 6 NH

4
2.

3. Two pairs of covering-based fuzzy rough set models

From the study of a large number of MCDM research literatures, we find that MCDM methods can be applied to a variety
of complex environments. A finite FCAS is a complex and real environment. However, there are few applications of MCDM
methods in a finite FCAS. Moreover, there are some decision-making problems in a finite FCAS. For example, there exists a
failure situation for the TOPSIS method and the WAA operator method in a finite FCAS. The following example will show this
problem.

Example 3.1. Let W ¼ kiji ¼ 1;2; � � � ;10f g be 10 alternatives and H ¼ Hjjj ¼ 1;2; � � � ;6
� �

be 6 criteria. In addition, Hj kið Þ
indicates a fuzzy score of the alternative ki with respect to the criterion Hj, where Hj kið Þ 2 0;1½ �. The MCDMmatrix with fuzzy
information is shown as Table 1.

Note : In Table 1, based on the TOPSIS method [12] and the WAA operator method [28], the ranking results of ten clients
are identical, that is, k1 � k2 � k3 � k4 � k5 � k6 � k7 � k8 � k9 � k10. This phenomenon illustrates the TOPSIS method and
the WAA operator method may fail in a finite FCAS.

In light of Example 3.1, we have the following question:
Question : In a finite FCAS, how to combine the advantages of the TOPSIS method with the WAA operator method to pro-

vide a decision-maker with the optimal ranking scheme and the best alternative?.
In light of the above problems, we develop a new TOPSIS-WAAmethod in a finite FCAS. Before that, we will introduce two

pairs of CFRS models.
6 NH
2 6 NH

4 is defined as NH
1 eð Þ fð Þ 6 NH

2 eð Þ fð Þ 6 NH
4 eð Þ fð Þ for every e; f 2 W .

6 NH
3 6 NH

4 is defined as NH
1 eð Þ fð Þ 6 NH

3 eð Þ fð Þ 6 NH
4 eð Þ fð Þ for every e; f 2 W .



Table 1
The MCDM matrix with fuzzy information.

W=H H1 H2 H3 H4 H5 H6

k1 1 0:2 0:5 0:9 0:5 0:8
k2 0:5 0:7 1 0:4 0:6 0:7
k3 0:4 0:8 0:6 0:8 1 0:3
k4 0:2 1 0:7 0:7 0:8 0:5
k5 0:8 0:4 0:8 0:6 0:3 1
k6 0:9 0:3 1 0:4 0:4 0:9
k7 0:3 0:9 0:5 0:9 1 0:3
k8 0:4 0:8 0:6 0:8 0:3 1
k9 0:2 1 0:5 0:9 0:6 0:7
k10 0:6 0:6 0:4 1 0:3 1
Weight 0:25 0:25 0:15 0:15 0:1 0:1
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Definition 3.2. Let W;Hð Þ be a finite FCAS and I and T be an R-implicator and a continuous t-norm, respectively. For any

H 2 F Wð Þ; e 2 W , the pairs FNH
k ;T;I Hð Þ; FNH

k ;I;T Hð Þ
� �

and FNH
k ;I;I Hð Þ; FNH

k ;T;T Hð Þ
� �

are defined as follows:
FNH
k ;T;I Hð Þ eð Þ ¼

_
f2W

T NH
k fð Þ eð Þ;

^
g2W

I NH
k f

� �
gð Þ;H gð Þ

 !
Þ; ð3-1Þ

FNH
k ;I;T Hð Þ eð Þ ¼

^
f2W

I NH
k fð Þ eð Þ;

_
g2W

T NH
k fð Þ gð Þ;H gð Þ

� � !
; ð3-2Þ

FNH
k ;I;I Hð Þ eð Þ ¼

^
f2W

I NH
k fð Þ eð Þ;

^
g2W

I NH
k fð Þ gð Þ;H gð Þ

� � !
; ð3-3Þ

FNH
k ;T;T Hð Þ eð Þ ¼

_
f2W

T NH
k fð Þ eð Þ;

_
g2W

T NH
k fð Þ gð Þ;H gð Þ

� � !
: ð3-4Þ
The operators FNH
k ;T;I, FNH

k ;I;T, FNH
k ;I;I and FNH

k ;T;T are called NkTI-lower, NkIT-upper, NkII-lower and NkTT-upper fuzzy

rough approximation operators, respectively. The pairs FNH
k ;T;I; FNH

k ;I;T

� �
and FNH

k ;I;I; FNH
k ;T;T

� �
are called NkTI;NkITð Þ-

CFRS model (the first pair) and NkII;NkTTð Þ-CFRS model (the second pair) on W;Hð Þ, respectively. Moreover, for every

H 2 F Wð Þ, FNH
k ;T;I Hð Þ; FNH

k ;I;T Hð Þ
� �

and FNH
k ;I;I Hð Þ; FNH

k ;T;T Hð Þ
� �

are denoted NkTI;NkITð Þ-CFRS model and

NkII;NkTTð Þ-CFRS model of H on W;Hð Þ, respectively. Note that the parameter k can take values 1, 2, 3 and 4, respectively
Next we continue to study the degradations of the above two models.

Remark 3.3. In [6], D’eer et al. showed that a fuzzy neighborhood operator and a fuzzy binary relationship are equivalent in
some conditions. Therefore, the above two pairs of models have the following degenerated forms.

(i) If a fuzzy neighborhood operator NH
k is replaced by a fuzzy binary relation R, for every H 2 F Wð Þ and e 2 W ,

FNH
k ;T;I Hð Þ; FNH

k ;I;T Hð Þ
� �

and FNH
k ;I;I Hð Þ; FNH

k ;T;T Hð Þ
� �

can be degenerate into the following forms:
FR;T;I Hð Þ eð Þ ¼
_
f2W

T R f ; eð Þ;
^
g2W

I R f ; gð Þ;H gð Þð Þ
 !

; ð3-5Þ

FR;I;T Hð Þ eð Þ ¼
^
f2W

I R f ; eð Þ;
_
g2W

T R f ; gð Þ;H gð Þð Þ
 !

; ð3-6Þ

FR;I;I Hð Þ eð Þ ¼
^
f2W

I R f ; eð Þ;
^
g2W

I R f ; gð Þ;H gð Þð Þ
 !

; ð3-7Þ

FR;T;T Hð Þ eð Þ ¼
_
f2W

T R f ; eð Þ;
_
g2W

T R f ; gð Þ;H gð Þð Þ
 !

: ð3-8Þ
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(ii) If R is symmetric and T-transitive, then both pairs can degenerate into the following form:

RI Hð Þ eð Þ ¼
^
f2W

I R e; fð Þ;H fð Þð Þ; ð3-9Þ

RT Hð Þ eð Þ ¼
_
f2W

T R e; fð Þ;H fð Þð Þ: ð3-10Þ

We obtain more information about the model RI;RT

� �
from [20].

We also explore the relationship between models FNH
k ;T;I; FNH

k ;I;T

� �
and FNH

k ;I;I; FNH
k ;T;T

� �
as follows.

Remark 3.4. In Remark 3.3, we find that the covering-based fuzzy rough set model can be degenerated into a fuzzy rough set
model based on a fuzzy binary relation. Moreover, the semantics of fuzzy rough set models based on a fuzzy binary relation
can be explained from the relationship between an element and a set. In other words, the fuzzy rough upper approximation
and fuzzy rough lower approximation of a fuzzy set can represent the maximum degree and minimum degree to which an
element belongs to this fuzzy set.

In fact, the difference between the two fuzzy rough set models is that they have different fuzzy binary relations. The fuzzy
rough set model based on a fuzzy binary relation is established based on the binary relationship between objects. Thus, in
practice, researchers need to obtain the binary relationship between objects. However, in real life, we often obtain a binary
relationship between object and criterion rather than a binary relationship between objects. Correspondingly, the covering-
based fuzzy rough set model is based on the fuzzy binary relationship between object and criterion. Furthermore, the binary
relationship between object and criterion is represented by an object-criteria information table, also called a multi-criteria
information table. Moreover, in the multi-criteria information table, for any object, if the conditions in Definition 2.1 are met,
then the multi-criteria information table is a finite FCAS. In light of this, based on the multi-criteria information table, we can
use the fuzzy neighborhood operator to obtain the binary relationship between objects. Therefore, the covering-based fuzzy
rough set model is a general fuzzy rough set model in a finite FCAS (or multi-criteria information table). It can also be said
that the covering-based fuzzy rough set model is a special fuzzy rough set model based on a fuzzy binary relation.

Therefore, for the covering-based fuzzy rough set model, the fuzzy rough upper approximation and fuzzy rough lower
approximation of a fuzzy set can represent the maximum and minimum degrees to which an element belongs to this fuzzy
set.
Theorem 3.5. Let W;Hð Þ be a finite FCAS. For every H 2 F Wð Þ, we have
FNH

k ;I;I Hð Þ# FNH
k ;T;I Hð Þ#H# FNH

k ;I;T Hð Þ# FNH
k ;T;T Hð Þ.
Proof. For every H 2 F Wð Þ and e 2 W ,
FNH
k ;I;I Hð Þ eð Þ ¼

^
f2W

I NH
k fð Þ eð Þ;

^
g2W

I NH
k fð Þ gð Þ;H gð Þ

� � !

6 I NH
k eð Þ eð Þ;

^
g2W

I NH
k eð Þ gð Þ;H gð Þ

� � !

¼ I 1;
^
g2W

I NH
k eð Þ gð Þ;H gð Þ

� � !

¼
^
g2W

I NH
k eð Þ gð Þ;H gð Þ

� �

¼ T 1;
^
g2W

I NH
k eð Þ gð Þ;H gð Þ

� � !

¼ T NH
k eð Þ eð Þ;

^
g2W

I NH
k eð Þ gð Þ;H gð Þ

� � !

6
_
f2W

T NH
k fð Þ eð Þ;

^
g2W

I NH
k fð Þ gð Þ;H gð Þ

� � !

¼ FNH
k ;T;I Hð Þ eð Þ

6 H eð Þ:
Hence, FNH
k ;I;I Hð Þ# FNH

k ;T;I Hð Þ#H. Likewise, H# FNH
k ;I;T Hð Þ# FNH

k ;T;T Hð Þ. This completes the proof.
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Remark 3.6. [5] Let A and B be two fuzzy neighborhood operators on W . For any H 2 F Wð Þ, if A 6 B, then
FB;I;I Hð Þ# FA;I;I Hð Þ# FA;T;T Hð Þ# FB;T;T Hð Þ.

Theorem 3.5 demonstrates the relationship between the model FNH
k ;T;I; FNH

k ;I;T

� �
and the model FNH

k ;I;I; FNH
k ;T;T

� �
. In fact,

by taking different fuzzy neighborhood operators (i.e., NH
k ; k ¼ 1;2;3;4), these two pairs of models will also derive different

model forms. Besides, according to Theorem 3.5 and Remark 3.6, for every H 2 F Wð Þ, the relationships among these derived
models are shown as the following Fig. 1:

In Fig. 1, ! represents # . Moreover, we can see that the model FNH
1 ;T;I; FNH

1 ;I;T

� �
is a relatively compact model. Next we

apply this model to MCDM.

4. A method to MCDM based on N1TI ;N1ITð Þ-CFRS models

In this section, we propose an MCDM method in a finite FCAS. This method is a combination of the TOPSIS method, the
WAA operator method and CFRS theory, which can effectively solve the problem of the TOPSIS method and the WAA oper-
ator method in a finite FCAS.

4.1. Background description

How to develop a new MCDM method in a finite FCAS is the main research interest of this paper. Generally speaking, an
MCDM problem can be represented by a multi-criteria information table. At the same time, in the multi-criteria information
table, for any object, if the conditions in Definition 2.1 are met, then the multi-criteria information table can be called a finite
FCAS. Therefore, how to extend the MCDM methods in a finite FCAS will be a good research direction. In light of this, we
develop a new MCDM method in a finite FCAS in the following section. Besides, in order to improve readability, we extract
some MCDM information (Table 2) as follows:

In the following section, we will describe the steps of our MCDM method in detail.

4.2. Method description

Firstly, a multi-criteria information table (Table 3) that can form a finite FCAS is as follows:
From Table 3, the score of the alternative ki on the criterion Hj is hij (Hj kið Þ), where hij 2 0;1½ �. Furthermore, For every

k 2 W , there is a H 2 H such that H kð Þ ¼ 1. H forms a finite FC and W;Hð Þ forms a finite FCAS.
Note : our method is a combination of the TOPSIS method, the WAA operator method and CFRS models. Therefore, we

need a suitable CFRS model. This paper applies the model FNH
1 ;T;I; FNH

1 ;I;T

� �
to MCDM. The reason is that this model is rel-

atively compact (Fig. 1). Of course, other models that appear in this paper can also be applied to MCDM. We will implement
our method on this information matrix.

In Table 3, each criterion can form a fuzzy set as follows:
Hj ¼
Xn
i¼1

hij

ki
; j 2 1;2; � � � ;mf g: ð4-1Þ
We can use the model FNH
1 ;T;I; FNH

1 ;I;T

� �
to calculate the lower and upper approximation sets for each criterion Hj as

follows:.
FNH
1 ;T;I Hj

� �
¼
Xn
i¼1

uij

ki
; j 2 1;2; � � � ;mf g; ð4-2Þ

FNH
1 ;I;T Hj

� �
¼
Xn
i¼1

v ij

ki
; j 2 1;2; � � � ;mf g: ð4-3Þ
By the formulas (4–2) and (4–3), we can obtain the lower and upper approximation information matrices with fuzzy
information, respectively.

We will use the fuzzy information matrix in Table 4 and Table 5, respectively, for the following descriptions of methods.
Based on Table 4 (Table 5), the positive ideal point uj;þ (v j;þ) and the negative ideal point uj;� (v j;�) of each criterion Hj are

expressed as the following formulas:
uj;þ v j;þ
� �

¼
max
16i6n

uij max
16i6n

v ij

� 	
; Hj 2 C; j 2 1;2; � � � ;mf g;

min
16i6n

uij min
16i6n

v ij

� 	
; Hj 2 D; j 2 1;2; � � � ;mf g;

8>>><
>>>:

ð4-4Þ



4 , , ( )HN T TF H

4 , , ( )HN I TF H3 , , ( )HN T TF H 2 , , ( )HN T TF H

1 , , ( )HN T TF H3 , , ( )HN I TF H
2 , , ( )HN I TF H

1 , , ( )HN I TF H

H

1 , , ( )HN T IF H

1 , , ( )HN I IF H
3 , , ( )HN T IF H

2 , , ( )HN T IF H

3 , , ( )HN I IF H
4 , , ( )HN T IF H

2 , , ( )HN I IF H

4 , , ( )HN I IF H

Fig. 1. The relationships among different models.

Table 2
The MCDM information table.

Designation Information

Number of criteria m
Number of alternatives n
Set of alternatives W ¼ kiji ¼ 1;2; � � � ;nf g
Set of criteria H ¼ Hjjj ¼ 1;2; � � � ;m

� �
Evaluation value (score) hij Hj kið Þ

� �
Weight vector T ¼ tjjj ¼ 1;2; � � � ;m

� �
, 0 6 tj 6 1,

Pm
j¼1tj ¼ 1

A finite FC H
A finite FCAS W;Hð Þ
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Table 3
The multi-criteria information table.

W=H H1 H2 � � � Hm

k1 h11 h12 � � � h1m

k2 h21 h22 � � � h2m

..

. ..
. ..

. � � � ..
.

kn hn1 hn2 � � � hnm

Weight (T) t1 t2 � � � tm

Table 4
The lower approximation information
matrix.

W=H H1 H2 � � � Hm

k1 u11 u12 � � � u1m

k2 u21 u22 � � � u2m

..

. ..
. ..

. � � � ..
.

kn un1 un2 � � � unm

k1 u11 u12 � � � u1m

k2 u21 u22 � � � u2m

..

. ..
. ..

. � � � ..
.

kn un1 un2 � � � unm

Table 5
The upper approximation information
matrix.

W=H H1 H2 � � � Hm

k1 v11 v12 � � � v1m

k2 v21 v22 � � � v2m

..

. ..
. ..

. � � � ..
.

kn vn1 vn2 � � � vnm
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uj;� v j;�
� �

¼
min
16i6n

uij min
16i6n

v ij

� 	
; Hj 2 C; j 2 1;2; � � � ;mf g;

max
16i6n

uij max
16i6n

v ij

� 	
; Hj 2 D; j 2 1;2; � � � ;mf g;

8>>><
>>>:

ð4-5Þ
here C and D are the set of benefit and cost criteria, respectively.
The distance formula in the fuzzy information matrix is displayed as follows:
d x; yð Þ ¼ jx� yj; x; y 2 0;1½ �; ð4-6Þ
where j�j represents the absolute value of �.
Therefore, we can obtain the lower approximation positive ideal distance matrix Uþ and the lower approximation neg-

ative ideal distance matrix U� as follows:
Uþ ¼

u11;þ u12;þ � � � u1m;þ

u21;þ u22;þ � � � u2m;þ

..

. ..
.

� � � ..
.

un1;þ un2;þ � � � unm;þ

2
66664

3
77775; ð4-7Þ
U� ¼

u11;� u12;� � � � u1m;�

u21;� u22;� � � � u2m;�

..

. ..
.

� � � ..
.

un1;� un2;� � � � unm;�

2
66664

3
77775; ð4-8Þ
where uij;þ ¼ d uj;þ � uij
� �

, uij;� ¼ d uj;� � uij
� �

.
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Likewise, the upper approximation positive ideal distance matrix Vþ and the upper approximation negative ideal distance
matrix V� are shown as follows:
Vþ ¼

v11;þ v12;þ � � � v1m;þ

v21;þ v22;þ � � � v2m;þ

..

. ..
.

� � � ..
.

vn1;þ vn2;þ � � � vnm;þ

2
66664

3
77775; ð4-9Þ

V� ¼

v11;� v12;� � � � v1m;�

v21;� v22;� � � � v2m;�

..

. ..
.

� � � ..
.

vn1;� vn2;� � � � vnm;�

2
66664

3
77775; ð4-10Þ
where v ij;þ ¼ d v j;þ � v ij
� �

, v ij;� ¼ d v j;� � v ij
� �

.
Through the matrices (4–7) and (4–8), we obtain the correlation coefficient value of alternative ki on criterion Hj. These

correlation coefficient values form the lower approximation correlation matrix U� as follows:
U� ¼

u11;� u12;� � � � u1m;�

u21;� u22;� � � � u2m;�

..

. ..
.

� � � ..
.

un1;� un2;� � � � unm;�

2
66664

3
77775; ð4-11Þ
where
uij;� ¼
uij;�

uij;� þ uij;þ
; i 2 1;2; � � � ; nf g; j 2 1;2; � � � ;mf g:
Likewise, through the matrices (4–9) and (4–10), the upper approximation correlation matrix V� is listed as follows:
V� ¼

v11;� v12;� � � � v1m;�

v21;� v22;� � � � v2m;�

..

. ..
.

� � � ..
.

vn1;� vn2;� � � � vnm;�

2
66664

3
77775; ð4-12Þ
where
v ij;� ¼
v ij;�

v ij;� þ v ij;þ
; i 2 1;2; � � � ;nf g; j 2 1;2; � � � ;mf g:
By the lower approximation correlation matrix (4–11), each alternative has a correlation coefficient value on each crite-
rion. For each alternative, we use the WAA operator to aggregate the correlation coefficient values on each criterion. Then,
we can obtain an overall coefficient value. The specific way is listed as follows:
ki;u;� ¼ t1ui1;� þ t2ui2;� þ � � � þ tmuim;�; i 2 1;2; � � � ;nf g: ð4-13Þ
Likewise, by the upper approximation correlation matrix (4–12), the overall coefficient value of each alternative is listed
as follows:
ki;v;� ¼ t1v i1;� þ t2v i2;� þ � � � þ tmv im;�; i 2 1;2; � � � ;nf g: ð4-14Þ
Using the two overall coefficient values formed by the lower approximation correlation matric and upper approximation
correlation matric, we use the following method to obtain the intimacy coefficient of each alternative.
ki;� ¼ ki;u;� þ ki;v;� � ki;u;�ki;v;�; i 2 1;2; � � � ;nf g: ð4-15Þ
We can acquire the ranking result of alternatives by the size of intimacy coefficient ki;�. The larger ki;� is, the better alter-
native ki is.

Remark 4.1. The following statements will explain the rationality and advantage of decision-making method.

(1) In this paper, we focus on how to deal with MCDM problems in a finite FCAS. In light of this, we combine the TOPSIS
method, theWAA operator method with CFRS theory to propose the TOPSIS-WAAmethod in a finite FCAS. As we all know,
both the TOPSIS method and the WAA operator method are effective methods for dealing with multi-criteria problems.
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Furthermore, CFRS theory is an effective tool for dealing with inaccurate and ambiguous data in a finite FCAS. Our method
not only inherits advantages of these three theories, but also effectively solves the multi-criteria problem in a finite FCAS.
(2) According to the above descriptions, we find that a multi-criteria information table can form a finite FCAS. However,
in Example 3.1, the failure of the TOPSIS method and the WAA operator method in a finite FCAS brings us some questions
that need to be solved urgently. In order to deal with the multi-criteria problem in a finite FCAS, we develop a newMCDM
method. This method is an effective combination of the TOPSIS method, the WAA operator method and CFRS theory. The
core ideas of our method are as follows: first, we utilize the possible rule and the deterministic rule in CFRS theory to
describe the fuzzy sets formed by the criteria. Then, we obtain two new multi-criteria fuzzy information matrices. These
two fuzzy information matrices form two finite FCASs. Secondly, based on these two fuzzy information matrices, we use
the idea of the TOPSIS to obtain the lower approximation (deterministic) correlation matrix and the upper approximation
(possible) correlation matrix. Then, for each alternative, we use the idea of the WAA operator to obtain the two overall
coefficient values formed by lower and upper approximation correlation matrices. Finally, for each alternative, we utilize
the idea of probability sum function to fuse these two overall coefficient values into one intimacy coefficient value.
According to intimacy coefficient values of all alternatives, we can obtain an optimal ranking scheme.
(3) In a finite FCAS, the TOPSIS method and the WAA operator method may fail under the influence of some special sub-
jective weights (Example 3.1). But our method can directly ignore the adverse effects of subjective weight.

4.3. Method steps

The detailed steps of our method are shown as follows:
Input The MCDM information.
Output The ranking for all alternatives.
Step 1 : According to the actual problem, we acquire an MCDMmatrix with fuzzy information that can form a finite FCAS.

Step 2 : By the model FNH
1 ;T;I; FNH

1 ;I;T

� �
, formulas (4–2) and (4–3), we obtain the lower and upper approximation infor-

mation matrices with fuzzy information, respectively.
Step 3 : By the Table 4, Table 5 and the formulas (4–4)-(4–6), we obtain the lower (upper) approximation positive ideal

distance matrix and the lower (upper) approximation negative ideal distance matrix.
Step 4 : By the matrices (4–7)-(4–10), we obtain the lower (upper) approximation correlation matrix U� (V�).
Step 5 : By the formulas (4–13)-(4–15), we obtain the ranking result of all alternatives.

Remark 4.2. The global algorithm complexity of our method is the sum of the local algorithm complexity of each step in the
method. In fact, the local algorithm complexity of Step 2 is the highest, namely O mn3

� �
. In Step 2, we need to calculate the

lower and upper approximation sets ofm fuzzy sets. In the calculation of the lower or upper approximation set of each fuzzy
set, n2 operations are required for each object. Then, the lower or upper approximation set of each fuzzy set requires n3

operations. Thus, the number of operations in Step 2 is mn3. Note that the number of operations in other steps is actually
lower than the number of operations in Step 2. Therefore, the global algorithm complexity of our method is O mn3

� �
.

To improve the visibility, the following Fig. 2 shows the overall idea of the method for this paper.

5. Problem background, scheme description, numerical simulation and validity test

In Section 4, we establish the TOPSIS-WAA method in a finite FCAS. In real life, there are some MCDM problems that can
form finite FCASs. In this section, we use the decision method established in this paper to propose a rating scheme to apply
the rating problem of some specific customer groups.

5.1. Problem background

Preferential activities are an important means for some merchants or companies to return new and regular customers.
However, the resources in these activities are limited. In other words, the number of customers who can enjoy the prefer-
ential service is limited. Moreover, the level of these preferential services may also be different, that is, the preferential ser-
vice can be divided into the first-level preferential service, the second-level preferential service, and so on. At the same time,
the number of preferential services at each level is also different. Therefore, merchants or enterprises need to formulate a
scheme to distribute these preferential resources to customers fairly. In fact, the essence of this scheme is the rating scheme,
which divides all customers into multiple different levels.

5.2. Scheme description

Based on the above problem, we design a rating scheme based on an MCDM method in a finite FCAS in this paper. The
rating scheme is implemented based on the preset subjective ratio and the calculated objective ranking of all alternatives.



Input

Acquire an MCDM matrix with fuzzy information

Obtain the lower approximation information 

matrix with fuzzy information

Obtain the upper approximation information 

matrix with fuzzy information

Obtain the lower approximation positive 

(negative) ideal distance matrix

Obtain the upper approximation positive 

(negative) ideal distance matrix

Obtain the lower approximation correlation 

matrix

Obtain the upper approximation correlation 

matrix

Obtain the lower approximation overall 

coefficient value of each alternative

Obtain the upper approximation overall 

coefficient value of each alternative

Obtain the ranking of all alternatives

Obtain the intimacy coefficient of each alternative

Output

Fig. 2. The decision-making step.
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That is to say, the scheme mainly includes two aspects, namely the quantity ratio among all levels and the ranking informa-
tion among all customers.

For these two aspects, our explanations are as follows:
1ð Þ The quantity ratio among all levels is actually very easy to be determined. This ratio can be determined according to

the number of preferential services at various levels in actual activities. In other words, the ratio can be determined by the
merchants (or decision-makers) in advance, which is called the subjective ratio.
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2ð Þ The ranking information among all customers can be obtained by the ranking decision method provided in this paper.
The detailed steps of the rating scheme are as follows:
Firstly, all customers are scored according to pre-determined criteria. Note that the score interval is [0, 1]. The score infor-

mation of all customers forms a multi-criteria fuzzy information matrix or a finite FCAS.
Secondly, all customers’ ranking information is obtained by the MCDMmethod provided in this paper. That is, merchants

or companies can rank all customers. The higher the customer’s ranking, the better the preferential service.
Finally, merchants or companies determine the number of customers in each level (i.e., the quantitative ratio) according

to the actual situation. At the same time, based on the known ranking information of all customers, each customer is deter-
mined to be a certain level. Based on this, the levels of all customers are determined. Moreover, the higher the customer’s
ranking, the higher the rating, and the better the preferential service.

In addition, the customer’s score information under each criterion is obtained according to the following
principles:

� Based on each criterion, we first convert the customer’s original information into a score with fuzzy information (the
score interval is [0, 1]). Scores with fuzzy information are obtained by predetermined score conversion rules. The score
conversion rules are set by merchants or companies (decision-makers).

� To prevent excessive gaps among customers, we set an upper limit for each criterion. If a customer’s original information
value exceeds this limit, then the score with fuzzy information of a customer is 1.

� We define the following principles. If a customer’s scores are 1 on all criteria, he or she becomes a highest-level directly. If
a customer’s scores are no more than 1 on all criteria, he or she becomes a lowest-level directly. Therefore, these two
types of customers are excluded directly when classifying all customers.
According to the above principles, we can convert any data set into fuzzy information data. Based on the new fuzzy infor-
mation data, we can obtain an MCDM data table (or information system) with fuzzy information. By Definition 2.1, we can
see that this multi-criteria information system is a finite FCAS.

Next, we use the scheme proposed in this paper to solve the rating problem in real life.

5.3. Numerical simulation

This paper takes the bank’s implementation of preferential business for some customers as an example. At the same time,
we extract some of the data from the customer information database of ICBC in 2018 to conduct experiments.

In this paper, we fix the upper limit of each criterion. The purpose is to unify the dimensions on different criteria. At the
same time, we propose the following conversion scheme to obtain customers’ fuzzy evaluation scores on the criteria. This
conversion scheme can be regarded as fuzzy granulation of the evaluation value on the criterion. If the customer’s data value
E on a certain criterion is higher than the upper limit F of criterion, it is directly recorded as 1. If the customer’s data value E
on a certain criterion is lower than the upper limit F of criterion, it is recorded as E

F.
Thus, for six criteria, our explanations are shown as follows:
Deposit situation H1ð Þ: This is a benefit criterion. The more deposit amount, the higher score. Moreover, the upper limit of

deposit situation is 300,000 RMB. The fuzzy evaluation value H1 kð Þ obtained by the object k on the criterion H1 can be
obtained by the following formula:
H1 kð Þ ¼
E

300000 ; E 2 0;300000½ Þ;
1; E 2 300000;1½ Þ:



ð4-16Þ
Personal monthly income H2ð Þ: This is a benefit criterion. Moreover, the upper limit of personal monthly income is 10,000
RMB. The fuzzy evaluation value H2 kð Þ obtained by the object k on the criterion H2 can be obtained by the following formula:
H2 kð Þ ¼
E

10000 ; E 2 0;10000½ Þ;
1; E 2 10000;1½ Þ:



ð4-17Þ
Degree of education H3ð Þ: This is a benefit criterion. In general, score interval of this criterion is 0;10½ �. Moreover, the
upper limit of this criterion is 6. The fuzzy evaluation value H3 kð Þ obtained by the object k on the criterion H3 can be obtained
by the following formula:
H3 kð Þ ¼
E
6 ; E 2 0;6½ Þ;
1; E 2 6;10½ �:



ð4-18Þ
Career situation H4ð Þ: This is a benefit criterion. Bank staffs will predetermine relevant scores for different occupations. In
general, score interval of this criterion is 0;10½ �. Moreover, the upper limit of the score of this criterion is 6. The fuzzy eval-
uation value H4 kð Þ obtained by the object k on the criterion H4 can be obtained by the following formula:
H4 kð Þ ¼
E
6 ; E 2 0;6½ Þ;
1; E 2 6;10½ �:



ð4-19Þ



K. Zhang et al. / Information Sciences 539 (2020) 397–421 409
Debt situation H5ð Þ: This is obviously a cost criterion. The upper limit of the debt situation is 50,000 RMB. In addition, for
the fuzzy information of customer under cost criterion, we use the difference value method to convert it into fuzzy informa-
tion under the benefit criterion. The principle of difference value method is as follows: If the cost fuzzy information is h
(h 2 0;1½ �), then the benefit fuzzy information is 1� h. This way is used to facilitate our unified calculation. The fuzzy eval-
uation value H5 kð Þ obtained by the object k on the criterion H5 can be obtained by the following formula:
Table 6
The cus

W=H

� � �
CU15

� � �
CU28

� � �
CU69

� � �
CU12

� � �
CU18

� � �
CU25

� � �
CU65

� � �
CU78

� � �
CU87

� � �
CU98

� � �
H5 kð Þ ¼ 1� E
50000 ; E 2 0;50000½ Þ;

0; E 2 50000;1½ Þ:



ð4-20Þ
Interview situation H6ð Þ: This is a benefit criterion. When a bank staff collects information from customers, the perfor-
mance of customers in the process of communicating with the bank staff also affects customer’s credit rating. In general,
score interval of this criterion is 0;10½ �. Moreover, the upper limit of score of this criterion is 6. The fuzzy evaluation value
H6 kð Þ obtained by the object k on the criterion H6 can be obtained by the following formula:
H6 kð Þ ¼
E
6 ; E 2 0;6½ Þ;
1; E 2 6;10½ �:



ð4-21Þ
Based on each criterion, the process of obtaining fuzzy evaluation values is the process of implementing fuzzy granula-
tion. By the formulas (4–16)-(4–21), we can convert the original evaluation values obtained by different objects on different
criteria into fuzzy evaluation values.

In order to facilitate the calculation, we extract 10 customers as a sample of the data experiments in this paper. Moreover,
we mark CU1548, CU2859, CU6984, CU12587, CU18955, CU25896, CU65897, CU78521, CU87457, CU98512 as k1, k2, k3, k4, k5, k6, k7, k8, k9, k10,
respectively. At the same time, in this paper, we divide the preferential business into four levels (A, B, C, D), and the
subjective ratio is 1: 2: 3: 4. Data are as follows:

Before the formal calculation, we convert the actual data (Table 7) into the fuzzy information data (Table 8) according to
the formulas (4–16)-(4–21). For example, the data value of the customer CU1548 on H1 is 300200 in Table 6. The upper limit of
the criterion H1 is 300,000. Therefore, the fuzzy information value of the customer k1 on H1 is 1 in Table 8. In addition, the
data value of the customer CU1548 on H2 is 6400 in Table 6. The upper limit of the criterion H2 is 10,000. Therefore, the fuzzy
information value of the customer k1 on H2 is 6400

10000 ¼ 0:64 in Table 8.
Based on the above descriptions, the fuzzy information data of 10 customers are shown in Table 8.
Step 1 : The fuzzy information matrix is shown in Table 8.

Step 2 : For every H 2 F Wð Þ and e 2 W , the specific form of FNH
1 ;T;I Hð Þ; FNH

1 ;I;T Hð Þ
� �

is listed as follows:
FNH
1 ;T;I Hð Þ eð Þ ¼

_
f2W

T NH
1 fð Þ eð Þ;

^
g2W

I NH
1 fð Þ gð Þ;H gð Þ

� � !
; ð4-22Þ

FNH
1 ;I;T Hð Þ eð Þ ¼

^
f2W

I NH
1 fð Þ eð Þ;

_
g2W

T NH
1 fð Þ gð Þ;H gð Þ

� � !
: ð4-23Þ
tomer information data of ICBC in 2018.

H1 H2 H3 H4 H5 H6

� � � � � � � � � � � � � � � � � �
48 300200 6400 1:5 5:58 29000 3:54

� � � � � � � � � � � � � � � � � �
59 168000 7600 1:74 5:82 50320 3:9

� � � � � � � � � � � � � � � � � �
84 264000 10000 4:26 4:68 20500 4:56

� � � � � � � � � � � � � � � � � �
587 198000 8300 7 4:02 26500 4:92

� � � � � � � � � � � � � � � � � �
955 300000 4800 4:92 3:24 15500 5:04

� � � � � � � � � � � � � � � � � �
896 117000 2600 5:7 6 500 5:76

� � � � � � � � � � � � � � � � � �
897 138000 9500 4:38 7:2 7500 3:18

� � � � � � � � � � � � � � � � � �
521 294000 6200 6 2:22 18000 3:06

� � � � � � � � � � � � � � � � � �
457 300800 4600 3:48 0:96 6000 3:36

� � � � � � � � � � � � � � � � � �
512 255000 5800 6 5:28 2000 3:66

� � � � � � � � � � � � � � � � � �



Table 7
The MCDM matrix.

W=H H1 H2 H3 H4 H5 H6

k1 300200 6400 1:5 5:58 29000 3:54
k2 168000 7600 1:74 5:82 50320 3:9
k3 264000 10000 4:26 4:68 20500 4:56
k4 198000 8300 7 4:02 26500 4:92
k5 300000 4800 4:92 3:24 15500 5:04
k6 117000 2600 5:7 6 500 5:76
k7 138000 9500 4:38 7:2 7500 3:18
k8 294000 6200 6 2:22 18000 3:06
k9 300800 4600 3:48 0:96 6000 3:36
k10 255000 5800 6 5:28 2000 3:66

Table 8
The fuzzy information matrix.

W=H H1 H2 H3 H4 H5 H6

k1 1 0:64 0:25 0:93 0:42 0:59
k2 0:56 0:76 0:29 0:97 1 0:65
k3 0:88 1 0:71 0:78 0:59 0:76
k4 0:66 0:83 1 0:67 0:47 0:82
k5 1 0:48 0:82 0:54 0:69 0:84
k6 0:39 0:26 0:98 1 0:99 0:96
k7 0:46 0:95 0:73 1 0:85 0:53
k8 0:98 0:62 1 0:37 0:64 0:51
k9 1 0:46 0:58 0:16 0:88 0:56
k10 0:85 0:58 1 0:88 0:96 0:61
T 0:25 0:25 0:15 0:15 0:1 0:1

Table 9
The lower approximation fuzzy information matrix.

W=H H1 H2 H3 H4 H5 H6

k1 1 0:6400 0:2500 0:9300 0:4200 0:5900
k2 0:5600 0:7600 0:2900 0:9700 1 0:6500
k3 0:8800 1 0:7100 0:7800 0:5900 0:7600
k4 0:6600 0:8300 1 0:6700 0:4700 0:8200
k5 1 0:4800 0:8200 0:5400 0:6900 0:8400
k6 0:3900 0:2600 0:9800 1 0:9900 0:9600
k7 0:4600 0:9500 0:7300 1 0:8500 0:5300
k8 0:9800 0:6200 1 0:3700 0:6400 0:5100
k9 1 0:4600 0:5800 0:1600 0:8800 0:5600
k10 0:8500 0:5800 1 0:8800 0:9600 0:6100
k1 1 0:6400 0:2500 0:9300 0:4200 0:5900
k2 0:5600 0:7600 0:2900 0:9700 1 0:6500
k3 0:8800 1 0:7100 0:7800 0:5900 0:7600
k4 0:6600 0:8300 1 0:6700 0:4700 0:8200
k5 1 0:4800 0:8200 0:5400 0:6900 0:8400
k6 0:3900 0:2600 0:9800 1 0:9900 0:9600
k7 0:4600 0:9500 0:7300 1 0:8500 0:5300
k8 0:9800 0:6200 1 0:3700 0:6400 0:5100
k9 1 0:4600 0:5800 0:1600 0:8800 0:5600
k10 0:8500 0:5800 1 0:8800 0:9600 0:6100
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Let T ¼ Tp
3, I ¼ Ip

4, then the lower and upper approximation fuzzy information matrices are shown in Table 9 and
Table 10, respectively.

Remark 5.1. In fact, we can also use other fuzzy logical operator order pairs ( TL;ILð Þ and TM ;IMð Þ) to calculate the lower
and upper approximations of H.
3 Tp b; cð Þ ¼ b � c for every b; c 2 0;1½ �.
4 IP b; cð Þ ¼ c

b for b > c and IP b; cð Þ ¼ 1 elsewhere, for any e; f 2 0;1½ �.



Table 10
The upper approximation fuzzy information matrix.

W=H H1 H2 H3 H4 H5 H6

k1 1 0:8387 0:8500 0:9300 0:8160 0:6374
k2 0:6487 0:7746 0:7632 0:9700 1 0:6500
k3 0:8800 1 0:7500 0:7800 0:5900 0:7600
k4 0:6600 0:8300 1 0:6700 0:6708 0:8200
k5 1 0:8551 0:8200 0:6670 0:6971 0:8400
k6 0:5401 0:5960 0:9800 1 0:9900 0:9600
k7 0:6108 0:9500 0:7300 1 0:8500 0:5300
k8 0:9800 0:7100 1 0:7633 0:8327 0:6503
k9 1 0:6705 0:8500 0:7480 0:8800 0:6586
k10 0:8500 0:6146 1 0:8800 0:9600 0:6100

Table 11
The lower approximation positive (negative) ideal point uj;þ (uj;�).

H1 H2 H3 H4 H5 H6

uj;þ 1 1 1 1 1 0:9600
uj;� 0:3900 0:2600 0:2500 0:1600 0:4200 0:5100

Table 12
The upper approximation positive (negative) ideal point v j;þ (v j;�).

H1 H2 H3 H4 H5 H6

v j;þ 1 1 1 1 1 0:9600
v j;� 0:5401 0:5960 0:7300 0:6670 0:5900 0:5300
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Step 3 : According to Table 9, the formula (4–4) and the formula (4–5), the lower approximation positive and negative
ideal points on criterion Hj are listed as follows:

Likewise, by Table 10, the upper approximation positive and negative ideal points on criterion Hj are listed as follows: see
Tables 11 and 12.

Thus, the lower approximation positive ideal distance matrix Uþ and the lower approximation negative ideal distance
matrix U� are listed as follows:
Uþ ¼

0 0:3600 0:7500 0:0700 0:5800 0:3700
0:4400 0:2400 0:7100 0:0300 0 0:3100
0:1200 0 0:2900 0:2200 0:41 0:2000
0:3400 0:1700 0 0:3300 0:5300 0:1400
0 0:5200 0:1800 0:4600 0:3100 0:1200
0:6100 0:7400 0:0200 0 0:0100 0
0:5400 0:0500 0:2700 0 0:1500 0:4300
0:0200 0:3800 0 0:6300 0:3600 0:4500
0 0:5400 0:4200 0:8400 0:1200 0:4000
0:1500 0:4200 0 0:1200 0:0400 0:3500

2
6666666666666666664

3
7777777777777777775

; ð4-24Þ

U� ¼

0:6100 0:3800 0 0:7700 0 0:0800
0:1700 0:5000 0:0400 0:8100 0:5800 0:1400
0:4900 0:7400 0:4600 0:6200 0:1700 0:2500
0:2700 0:5700 0:7500 0:5100 0:0500 0:3100
0:6100 0:2200 0:5700 0:3800 0:2700 0:3300
0 0 0:7300 0:8400 0:5700 0:4500
0:0700 0:6900 0:4800 0:8400 0:4300 0:0200
0:5900 0:3600 0:7500 0:2100 0:2200 0
0:6100 0:2000 0:3300 0 0:4600 0:0500
0:4600 0:3200 0:7500 0:7200 0:5400 0:1000

2
6666666666666666664

3
7777777777777777775

: ð4-25Þ
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Likewise, the upper approximation positive ideal distance matrix Vþ and the upper approximation negative ideal distance
matrix V� are listed as follows:
Vþ ¼

0 0:1613 0:1500 0:0700 0:1840 0:3226
0:3513 0:2254 0:2368 0:0300 0 0:3100
0:1200 0 0:2500 0:2200 0:4100 0:2000
0:3400 0:1700 0 0:3300 0:3292 0:1400
0 0:1499 0:1800 0:3330 0:3029 0:1200
0:4599 0:4040 0:0200 0 0:0100 0
0:3892 0:0500 0:2700 0 0:1500 0:4300
0:0200 0:2900 0 0:2367 0:1673 0:3097
0 0:3295 0:1500 0:2520 0:1200 0:3014
0:1500 0:3854 0 0:1200 0:0400 0:3500

2
6666666666666666664

3
7777777777777777775

; ð4-26Þ

V� ¼

0:4599 0:2427 0:1200 0:2630 0:2260 0:1074
0:1086 0:1786 0:0332 0:3030 0:4100 0:1200
0:3399 0:4040 0:0200 0:1130 0 0:2300
0:1199 0:2340 0:2700 0:0030 0:0808 0:2900
0:4599 0:2591 0:0900 0 0:1071 0:3100
0 0 0:2500 0:3330 0:4000 0:4300
0:0707 0:3540 0 0:3330 0:2600 0
0:4399 0:1140 0:2700 0:0963 0:2427 0:1203
0:4599 0:0745 0:1200 0:0810 0:2900 0:1286
0:3099 0:0186 0:2700 0:2130 0:3700 0:0800

2
6666666666666666664

3
7777777777777777775

: ð4-27Þ
Step 4 : By the matrices (4–24) and (4–25), the lower approximation correlation matrix U� is listed as follows:
U� ¼

1 0:5135 0 0:9167 0 0:1778
0:2787 0:6757 0:0533 0:9643 1 0:3111
0:8033 1 0:6133 0:7381 0:2931 0:5556
0:4426 0:7703 1 0:6071 0:0862 0:6889
1 0:2973 0:7600 0:4524 0:4655 0:7333
0 0 0:9733 1 0:9828 1
0:1148 0:9324 0:6400 1 0:7414 0:0444
0:9672 0:4865 1 0:2500 0:3793 0
1 0:2703 0:4400 0 0:7931 0:1111
0:7541 0:4324 1 0:8571 0:9310 0:2222

2
6666666666666666664

3
7777777777777777775

: ð4-28Þ
By the matrices (4–26) and (4–27), the upper approximation correlation matrix V� is listed as follows:
V� ¼

1 0:6007 0:4444 0:7898 0:5512 0:2498
0:2361 0:4421 0:1230 0:9099 1 0:2791
0:7391 1 0:0741 0:3393 0 0:5349
0:2607 0:5792 1 0:0090 0:1971 0:6744
1 0:6413 0:3333 0 0:2612 0:7209
0 0 0:9259 1 0:9756 1
0:1537 0:8762 0 1 0:6341 0
0:9565 0:2822 1 0:2892 0:5920 0:2798
1 0:1844 0:4444 0:2432 0:7073 0:2991
0:6738 0:0460 1 0:6396 0:9024 0:1860

2
6666666666666666664

3
7777777777777777775

: ð4-29Þ
Step 5 : By the matrices (4–28) and (4–29), the two overall coefficient values are listed as follows:
Finally, by Table 13, the intimacy coefficients of all alternatives are shown as follows:
By Table 14, the ranking result of all alternatives is listed as follows:
k3 � k10 � k1 � k5 � k8 � k4 � k7 � k6 � k2 � k9:
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In this paper, we divide the preferential service into four levels (A, B, C, D) and set the ratio to 1: 2: 3: 4. Thus, for these ten
customers, we have the following rating table:

Our rating principle and preferential principle are as follows: the higher the customer’s ranking, the higher the rating, and
the better the preferential service. Thus, customer k3 enjoys the highest level (i.e., A) of preferential service, customers
k7; k6; k2; k9 enjoy the lowest level (i.e., D) of preferential service.

Furthermore, customers of different levels can enjoy different preferential services, that is, the higher the level, the better
the preferential service. We take k1 and k9 as examples. From Table 15, we find that k1 is rated B-level and k9 is rated D-level.
Therefore, the degree of preferential service enjoyed by k1 is higher than the degree of preferential service enjoyed by k9.

Remark 5.2. Decision-makers can determine the number of preferential service levels and the quantitative ratio (subjective
ratio) between each level according to the actual situation. For example, the decision-maker can also divide the
preferential service into three levels (High, Medium, Low), and the quantity ratio is 3: 3: 4. Then, the new rating table is
as follows: All in all, no matter how decision-makers determine the number of preferential service levels and the
quantitative ratio (subjective ratio) among all levels, they need to follow a principle, namely, the higher the customer’s
ranking, the higher the customer’s rating, and the larger the preferential service.
5.4. Validity of the method proposed in this paper

In the rating scheme, the ranking decision method proposed in this paper is the core. In order to further demonstrate the
validity of our ranking method, we do the following two tests. The following test principle comes from [14,25,37].

(1) The first test rule: An effective decision-making method should meet the following requirement, that is, when the
non-optimal alternative is replaced by another worse alternative, the optimal alternative is unchanged.
(2) The second test rule: If an original MCDM problem is decomposed into several small decision-making problems, the
same decision-making method is used to obtain the rankings of these small decision-making problems. The ranking
results of all alternatives obtained by several small problems should be consistent with the original ranking results
obtained by the original MCDM problem. The decision method that satisfies the above test rule is called the effective deci-
sion method.

According to the above two test rules, our tests are as follows:

(1) The first test
Based on the numerical examples (Table 7) in Section 5.3, the optimal alternative calculated by our method is k3, and the
non-optimal alternative is k9. At the same time, the rating table obtained from our rating scheme is shown in Table 15. In
Table 7, we replace k9 as 300000, 4000, 3, 0.6, 10000, 3. The new MCDM table (Table 17) after replacement is as follows:
Using our method (all steps in Section 5.3), the sorting results are as follows:
k3 � k10 � k1 � k5 � k8 � k4 � k7 � k6 � k2 � k9:
Based on the above ranking results, we find that the optimal alternative is still k3. In addition, when the decision-maker sets
the level of preferential service to four levels and the ratio is 1: 2: 3: 4, the rating table of all alternatives is still shown in
Table 15. When the decision-maker sets the level of preferential service to three levels and the ratio is 3: 3: 4, the ranking
table of all alternatives is still shown in Table 16. Thus, our method passes the first test.

(2) The second test
Based on the requirements of the second test, we decompose the original decision-making problem (the ranking problem
of k1; k2; k3; k4; k5; k6; k7; k8; k9; k10f g in Table 7) into two smaller decision problems, namely the ranking problems of
k1; k3; k4; k5; k6; k7; k8; k9; k10f g and k1; k2; k3; k4; k6; k7; k8; k9; k10f g. Using our method (all steps in Section 5.3), the ranking
result of k1; k3; k4; k5; k6; k7; k8; k9; k10f g is k3 � k10 � k1 � k5 � k8 � k4 � k7 � k6 � k9; the ranking result of
k1; k2; k3; k4; k6; k7; k8; k9; k10f g is k3 � k10 � k1 � k8 � k4 � k7 � k6 � k2 � k9: If the sorting results obtained by the two
small problems are combined, then the final sorting result is k3 � k10 � k1 � k5 � k8 � k4 � k7 � k6 � k2 � k9; which is
consistent with the ranking results obtained from the original decision problem. Therefore, our method passes the second
test.

In conclusion, our method is valid based on these two tests (the validation mechanism in [37]). Therefore, our method is
valid.

6. Comparative analysis

In this section, we use several existing methods to compare our method and illustrate the advantages of our method.



Table 13
The overall coefficient values of all alternatives.

k1 k2 k3 k4 k5

ki;u;� 0:5337 0:5223 0:7384 0:6218 0:6261
ki;v;� 0:6654 0:4524 0:5503 0:4485 0:5585

k6 k7 k8 k9 k10
ki;u;� 0:4943 0:5864 0:5889 0:4740 0:6905
ki;v;� 0:4864 0:4709 0:5902 0:4999 0:5348

Table 14
The intimacy coefficients of all alternatives.

k1 k2 k3 k4 k5

ki;� 0:8440 0:7384 0:8824 0:7914 0:8349
k6 k7 k8 k9 k10

ki;� 0:7403 0:7812 0:8315 0:7369 0:8560

Table 15
The rating table.

Customers Rating position

k3 A
k10; k1 B
k5; k8; k4 C
k7; k6; k2; k9 D
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6.1. Comparison among different decision-making methods

The core of the rating scheme designed in this paper is an MCDM method based on a finite FCAS. In other words, the core
of this rating problem is the ranking problem in a finite FCAS. Therefore, some existing methods [21,22,36,40] that using
fuzzy rough set theory cannot solve such problems. For example, the method proposed by Zhan et al. [36] is suitable for solv-
ing multi-expert group decision-making problems; the method proposed by Zhang et al. [40] is to solve decision problems
with intuitionistic fuzzy information.

At the same time, in order to verify the performance of our method, in this section, we will compare with our method
with the TOPSIS method [12], theWAA operator method [28], the TOPSIS method based on a fuzzy b-covering approximation
space [38], the TOPSIS method based on a variable-precision fuzzy b-covering approximation space [13] and the TOPSIS
method based on a k-rough set [33]. The core ideas of these MCDM methods are listed as follows:

� The TOPSIS method: The core idea of this method is to find the optimal solution that is close to the positive ideal solution
but far from the negative ideal solution.

� TheWAA operator method: The core of this method is a weighted arithmetic average operator. The basic idea of WAA is to
use the weighted data to obtain the final value of each alternative.

� The TOPSIS method based on a fuzzy b-covering approximation space (TOPSISFbCAS): The core of this method is to utilize
the relationships among the positive ideal fuzzy set, the negative ideal fuzzy set and the integrated ideal fuzzy set to
obtain the intimacy coefficient of each alternative.

� The TOPSIS method based on a variable-precision fuzzy b-covering approximation space (the TOPSISVFCAS): The core of
the method is to calculate the intimacy coefficient by using the positive ideal distance fuzzy set and the negative ideal
distance fuzzy set.

� The TOPSIS method based on a k-rough set (TOPSISkAS): The core of the method is to obtain the lower and upper approx-
imation decision-making information system by means of k-rough sets, and use the idea of the TOPSIS method to obtain
the final order.

The reasons for comparing these five MCDM methods with ours are as follows:

(1) The TOPSIS method and the WAA operator method are both traditional decision methods. Both of them are suitable
for solving decision problems with real-valued data. In essence, a finite FCAS can be regarded a system with real-valued
information on [0,1]. Therefore, these two methods are also suitable for decision problems in finite FCASs. In view of this,
this paper uses our method to compare with these two classical decision-making methods to verify the effectiveness of
our method.



Table 16
The new rating table.

Customers rating position

k3; k10; k1 High
k5; k8; k4 Medium
k7; k6; k2; k9 Low

Table 17
The new MCDM matrix.

W=H H1 H2 H3 H4 H5 H6

k1 300200 6400 1:5 5:58 29000 3:54
k2 168000 7600 1:74 5:82 50320 3:9
k3 264000 10000 4:26 4:68 20500 4:56
k4 198000 8300 7 4:02 26500 4:92
k5 300000 4800 4:92 3:24 15500 5:04
k6 117000 2600 5:7 6 500 5:76
k7 138000 9500 4:38 7:2 7500 3:18
k8 294000 6200 6 2:22 18000 3:06
k9 300000 4000 3 0:6 10000 3
k10 255000 5800 6 5:28 2000 3:66
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(2) Both the TOPSISFbCAS and the TOPSISVFCAS are up-to-date methods and can solve the decision problem in the fuzzy
b-covering approximation space. At the same time, when b ¼ 1, a fuzzy b-covering approximation space is a finite FCAS.
In view of this, this paper uses our method to compare with these two emerging methods to demonstrate the feasibility of
our method.
(3) By setting the threshold, a finite FCAS can be transformed into a k-approximation space. For this reason, this paper
compares it with our method. Besides, the TOPSIS method based on a k-rough set has the obvious drawback that the
use of the deflection values is unreasonable when the final sort is calculated. We can witness this defect from the follow-
ing comparative analysis.

In addition, note that any sorting decision-making methods are developed to obtain an optimal ranking scheme and an
optimal alternative. A comparison among the above decision-making methods and our method will be reflected in these two
aims. According to Table 8, we have the following results.

Fig. 3 shows the comparison between the TOPSIS method and our method, the comparison between the WAA operator
method and our method, the comparison between the TOPSISFbCAS and our method, the comparison between the TOPSISVF-
CAS method and our method and the comparison between the TOPSISkAS and our method.

From Table 18 and Fig. 3, the description of ranking results of these six decision-making methods is as follows:

(1) Result description
All six decision-making methods have their own optimal ranking scheme. Furthermore, in addition to the TOPSISkAS, we
can easily see that the optimal alternatives for other five decision-making methods are the same, namely k3. In addition,
we can find that the TOPSIS method, the WAA operator method and our method have the same second place, namely k10.
However, from the ranking results of the TOPSISFbCAS (b=0.6, a=0.7), we perceive that the alternative k10 is ranked 8th.
(2) Result analysis
Although these six methods all have a complete sorting scheme, their specific ordering is different. On the one hand, our
method is highly similar to the WAA operator method in sorting results, and has a certain degree of similarity with the
TOPSIS method. This phenomenon is reasonable. Although our method is a fusion and improvement of these two meth-
ods, it will not be exactly the same. This phenomenon indirectly explains the rationality and enforceability of our method.
On the other hand, our method, the TOPSISFbCAS, the TOPSISVFCAS a ¼ 0; b ¼ 0:6ð Þ and the TOPSISkAS are both general-
izations of the TOPSIS method in an FbCAS5. The best alternative for the first three methods is the same, i.e., k3. This shows
that our method is consistent with the latest methods [13,38]. However, we can see from Fig. 3 that the TOPSISkAS k ¼ 0:3ð Þ
not only fails to obtain a complete ordering, but also has different best alternative to other methods. This phenomenon does
not meet the basic requirements of the ranking decision-making method.

Based on the above analysis and description, we notice that our method can be consistent with the traditional methods
[12,28], and can have similarities with the latest methods [13,38]. This is a good indication of the rationality and enforce-
ability of our method.
5 When b=1, a fuzzy b-covering approximation space is a fuzzy covering approximation space.
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6.2. Advantages of the method presented in this paper

In this section, we continue to illustrate the superiority of our method.
Notation : Given a collection of alternativesW ¼ k1; k2; � � � ; knf g, based on a ranking decision-making method, we acquire

an optimal ranking scheme N : ki1 � � � � � kia � � � � � kib � � � � � kin , here ki1 ; � � � ; kia ; � � � ; kib ; � � � ; kin is an n-level permutation.
For any two alternatives kia and kib , the relation kia � kib is denoted an ordered relation. Thus, we can observe that the number

of ordered relations of N is n� 1ð Þ þ n� 2ð Þ þ � � � þ 2þ 1 ¼ n n�1ð Þ
2 . Based on the collection of alternatives W ¼ k1; k2; � � � ; knf g,

the sorting similarity degree between the two ranking schemes is explained as follows:
Consider two sorting schemes P, Q obtained by two different ranking decision-making methods. Based on W , the number

of ordered relations in P and Q is both x. If there are y y 6 xð Þ same ordered relations in P and Q , then the sorting similarity
degree between P and Q is y

x. The sorting similarity degree represents the degree to which two ranking decision-making
methods are consistent.

Remark 6.1.
(1) As mentioned above, our method and the TOPSISFbCAS are both generalizations of the TOPSIS method in an FbCAS.
Therefore, based on the same data set, the ranking results of our method and the TOPSISFbCAS should be similar to
the TOPSIS method. With notation and Table 18, we can calculate the degrees of consistency of our method and the TOP-
SIS method, the TOPSISFbCAS and the TOPSIS method are 34

45,
28
45, respectively. Therefore, compared to the TOPSISFbCAS, the

consistency between our method and the TOPSIS method is higher. In other words, our method is better than the
TOPSISFbCAS.
(2) At the same time, although the TOPSISVFCAS [13] is applicable to our rating scheme, it has some defects, that is, the
model used in the article does not satisfy the inclusion relationship between the lower and upper approximations. This
flaw can lead to unpredictability in lower and upper approximation calculations. Therefore, our method is better than the
TOPSISVFCAS.

In addition, we can also illustrate that our method is superior to the WAA operator method and the TOPSIS method in
some special situations.

Remark 6.2. In Example 3.1, we find that the WAA operator method and the TOPSIS method fail in a finite FCAS. In other
words, the sorting result of both methods is k1 � k2 � k3 � k4 � k5 � k6 � k7 � k8 � k9 � k10. At the same time, we use our
method to obtain the sorting result as k6 � k9 � k4 � k7 � k1 � k5 � k8 � k2 � k10 � k3. This shows that our method has
better sorting ability in complex fuzzy environment than the WAA operator method and the TOPSIS method.

In summary, we know that our method is not only consistent with the TOPSIS method (traditional method), the WAA
operator method (traditional method) and the TOPSISFbCAS (latest method), but also has better sorting ability in complex
fuzzy environment than these three methods.

Remark 6.3. In the light of the above descriptions, the significances of the decision-making method proposed in this paper
are outlined as follows:
(1) From a theoretical perspective, our decision-making method is a combination of the TOPSIS method, the WAA oper-
ator method and CFRS theory. Therefore, our decision-making method has the advantages of these three theories in deal-
ing with MCDM problems. At the same time, our ranking decision-making method can be efficiently applied to MCDM
problems in a finite FCAS.
(2) From an application perspective, in Section 5.2, we provide a rating scheme for some merchants or companies. Our
ranking decision-making method is the core of this scheme and can provide optimal sorting scheme information for
the rating work. This approach is also beneficial to some merchants or companies to launch some new businesses in
the future, such as selecting VIP customers.

7. Experimental analysis

There are two purposes for any sorting decision-making methods, namely the best alternative and the optimal sorting
scheme. Based on these two purposes, this section is divided into two parts to conduct data experiments on our method.
Through these two experiments, we can demonstrate the superiority and randomness of performance of our method. These
two experiments are enforced by using MATLAB R2014a and accomplished on a personal computer with an Intel Core i5-
4590, 3.30 GHz CPU, 4.0 GB of memory, and 32-bit Windows 7.



Fig. 3. The comparison of sorting results under different methods.

Table 18
The ranking results of all alternatives on different methods.

Different methods Ranking of all alternatives

The WAA operator method [28] k3 � k10 � k4 � k7 � k5 � k8 � k1 � k2 � k6 � k9
The TOPSIS method [12] k3 � k10 � k4 � k7 � k8 � k1 � k5 � k2 � k9 � k6
The TOPSISFbCAS [38] k3 � k8 � k7 � k1 � k6 � k2 � k4 � k10 � k9 � k5
The TOPSISVFCAS [13] k3 � k10 � k7 � k8 � k4 � k2 � k1 � k5 � k6 � k9
The TOPSISkAS [33] k6 � k10 � k3 � k5 � k2 � k4 � k1 � k8 � k9 � k7
Our method k3 � k10 � k1 � k5 � k8 � k4 � k7 � k6 � k2 � k9
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7.1. Experimental analysis with respect to the optimal sorting scheme

In Section 5.3, we use our ranking method to calculate the multi-criteria data set (Table 6) and obtain the final sorting.
Note that this multi-criteria data set is obtained based on a collection of alternativesM1 ¼ k1; k2; � � � ; k10f g. In this section, we
will expand the capacity of the multi-criteria data set (i.e., increase the number of alternatives) to verify the superiority of
our method’s performance. According to the sample extraction method and data conversion method in Section 5.3, we obtain
the following table.

Let M1 ¼ k1; � � � ; k10f g, M2 ¼ k1; � � � ; k20f g, M3 ¼ k1; � � � ; k30f g, M4 ¼ k1; � � � ; k40f g, M5 ¼ k1; � � � ; k50f g represent different col-
lections of alternatives, respectively. That is to say, M1, M2, M3, M4, M5 represent 5 data sets. Using our method, we can cal-
culate the sorting results of these 5 data sets as shown in Table 20.

Table 20 shows the ranking schemes L1, L2, L3, L4, L5 of M1, M2, M3, M4, M5, respectively. In order to illustrate the invari-
ance of the original ordered relations in different collections of alternatives, Fig. 4 shows the comparison among L1, L2, L3, L4
and L5.

From Fig. 4, we see that when the capacity of the data set increases, the original ordered relations still exist. For example,
the ordered relation k3 � k10 exists on L1, L2, L3, L4 and L5. Through the above analysis, we find that the performance of our
ranking method is excellent. Moreover, our ranking method can also be applied to big data problems.

We continue to examine the randomness of performance of our method.
7.2. Experimental analysis with respect to the best alternative

Based on Table 19, we randomly sample 20 collections of alternatives Q1;Q2; � � � ;Q20. Let the data sets corresponding to
the collections of alternatives Q1;Q2; � � � ;Q20 be E1; E2; � � � ; E20, respectively. Besides, for every collection of alternatives, there
are 5 alternatives which contain the alternative k3. In Section 7.1, we find that when our method is applied to different data
sets, the best alternative is consistent, i.e., k3. In this section, we apply our method to these 20 data sets to acquire 20 optimal
alternatives. If these 20 optimal alternatives are still k3, then the randomness of performance of our method can be illus-
trated. The detailed ranking results of 20 collections of alternatives are shown in Table 21.
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Fig. 4. The comparison of sorting results under different collections of alternatives.

Table 19
MCDM matrix with fuzzy information.

W=H H1 H2 H3 H4 H5 H6

k1 1 0:6400 0:2500 0:9300 0:4200 0:5900
k2 0:5600 0:7600 0:2900 0:9700 1 0:6500
k3 0:8800 1 0:7100 0:7800 0:5900 0:7600
k4 0:6600 0:8300 1 0:6700 0:4700 0:8200
k5 1 0:4800 0:8200 0:5400 0:6900 0:8400
k6 0:3900 0:2600 0:9800 1 0:9900 0:9600
k7 0:4600 0:9500 0:7300 1 0:8500 0:5300
k8 0:9800 0:6200 1 0:3700 0:6400 0:5100
k9 1 0:4600 0:5800 0:1600 0:8800 0:5600
k10 0:8500 0:5800 1 0:8800 0:9600 0:6100
k11 0:8100 0:4700 0:3800 0:1700 1 0:6400
k12 1 0:3800 0:8800 0:6100 0:3800 0:3700
k13 0:6700 0:7500 0:5300 0:74600 0:2400 1
k14 1 0:5200 0:5700 0:7700 0:4900 0:5800
k15 0:2400 0:6900 1 0:8700 0:8500 0:3500
k16 0:7500 1 0:2800 0:8600 0:1300 1
k17 0:2700 0:4600 0:7700 0:8400 1 0:8700
k18 0:5900 0:6400 0:7500 0:3900 1 0:5500
k19 1 0:3400 0:3800 0:2500 0:5700 0:6200
k20 1 0:4700 0:5800 0:8100 0:5800 0:5800
k21 0:1500 1 0:0700 0:4300 0:2800 0:7700
k22 1 0:6700 0:0500 0:0600 0:3500 0:3000
k23 0:7200 0:5100 0:5800 0:1800 1 0:4700
k24 0:4800 0:2600 1 0:3800 0:5400 0:2300
k25 1 0:0100 0:3000 0:1400 0:4300 0:8400
k26 0:1400 0:4400 0:1900 1 0:1600 0:1900
k27 0:4800 1 0:5800 1 0:6100 0:2900
k28 1 0:3400 0:4400 0:5700 0:7700 0:1700
k29 0:7900 0:5300 1 0:5900 0:6400 0:2200
k30 1 0:2800 0:3300 0:1400 0:4900 0:4300
k31 0:5700 0:7500 0:1200 1 0:5400 0:3100
k32 0:5700 0:5100 0:7900 0:2100 0:2900 1
k33 0:9100 0:5000 1 0:7700 0:4300 0:5800
k34 1 0:9100 0:5200 0:5200 0:1900 0:4800
k35 0:6700 0:8900 0:5600 0:4800 0:6800 1
k36 0:7700 1 0:6000 0:0700 0:3500 0:9700
k37 0:7100 0:5200 0:2600 0:2300 1 0:4900
k38 0:2200 0:8600 1 0:3300 0:5600 1
k39 0:5500 1 0:6200 0:3900 0:7200 0:2100
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Table 20
The ranking results of alternatives on different collections of alternatives.

Different collections Ranking of alternatives

M1 ¼ k1; k2; � � � ; k10f g k3 � k10 � k1 � k5 � k8 � k4 � k7 � k6 � k2 � k9
M2 ¼ k1; k2; � � � ; k20f g k3 � k10 � k1 � k20 � k8 � k16 � k14 � k5 � k4 � k12 �

k7 � k19 � k9 � k6 � k2 � k18 � k15 � k11 � k13 � k17
M3 ¼ k1; k2; � � � ; k30f g k3 � k10 � k26 � k1 � k20 � k14 � k16 � k8 � k5 � k30 �

k22 � k12 � k29 � k7 � k4 � k19 � k27 � k24 � k28 � k2 �
k9 � k6 � k18 � k21 � k25 � k15 � k23 � k11 � k13 � k17

M4 ¼ k1; k2; � � � ; k40f g k3 � k26 � k10 � k1 � k20 � k14 � k5 � k16 � k30 � k8 �
k33 � k22 � k12 � k19 � k7 � k29 � k4 � k34 � k27 � k36 �
k24 � k28 � k21 � k9 � k2 � k39 � k40 � k35 � k18 � k31 �
k6 � k25 � k23 � k11 � k15 � k13 � k38 � k37 � k32 � k17 �

M5 ¼ k1; k2; � � � ; k50f g k3 � k26 � k10 � k1 � k20 � k14 � k5 � k16 � k30 � k8 �
k45 � k33 � k22 � k12 � k49 � k19 � k7 � k29 � k4 � k34 �
k27 � k36 � k47 � k48 � k24 � k46 � k28 � k21 � k9 � k2 �
k39 � k40 � k31 � k18 � k35 � k50 � k23 � k6 � k25 � k11 �
k43 � k44 � k41 � k37 � k15 � k42 � k13 � k38 � k32 � k17

Table 19 (continued)

W=H H1 H2 H3 H4 H5 H6

k40 0:1700 0:2500 1 0:2400 0:8100 0:4700
k41 0:6000 0:8400 0:4500 0:4100 1 0:4900
k42 0:1800 0:4300 1 0:4700 0:7700 0:2600
k43 0:6900 0:8100 0:2200 1 0:6800 0:2800
k44 0:4600 0:2400 0:33 1 0:4300 0:7100
k45 0:7100 1 0:2400 0:4900 0:4400 0:2200
k46 0:2300 0:3500 0:8200 0:9300 1 0:1400
k47 0:6800 0:1600 1 0:3700 0:5500 0:2700
k48 0:3100 0:2100 1 0:9000 0:5100 0:3100
k49 1 0:6100 0:8200 0:3900 0:8100 0:4200
k50 0:4400 0:4700 1 0:1200 0:7800 0:5900

Table 21
The ranking results of alternatives on different collections of alternatives.

Different collections of alternatives Ranking of alternatives

Q1 ¼ k1; k3; k5; k7; k9f g k3 � k5 � k7 � k1 � k9
Q2 ¼ k1; k2; k3; k4; k5f g k3 � k5 � k4 � k1 � k2
Q3 ¼ k3; k4; k5; k6; k7f g k3 � k5 � k4 � k6 � k7
Q4 ¼ k3; k8; k9; k10; k11f g k3 � k8 � k10 � k9 � k11
Q5 ¼ k3; k12; k13; k14; k15f g k3 � k14 � k12 � k15 � k13
Q6 ¼ k3; k16; k17; k18; k19f g k3 � k16 � k19 � k17 � k18
Q7 ¼ k3; k20; k21 ; k22; k23f g k3 � k20 � k21 � k22 � k23
Q8 ¼ k3; k24; k25; k26; k27f g k3 � k27 � k25 � k26 � k24
Q9 ¼ k3; k28; k29; k30; k31f g k3 � k28 � k30 � k29 � k31
Q10 ¼ k3; k32; k33; k34; k35f g k3 � k34 � k33 � k35 � k32
Q11 ¼ k3; k36; k37; k38; k39f g k3 � k36 � k39 � k38 � k37
Q12 ¼ k3; k40; k41; k42; k43f g k3 � k43 � k41 � k42 � k40
Q13 ¼ k3; k44; k45; k46; k47f g k3 � k45 � k44 � k47 � k46
Q14 ¼ k3; k47; k48; k49; k50f g k3 � k49 � k50 � k47 � k48
Q15 ¼ k3; k13; k23; k33; k43f g k3 � k33 � k43 � k13 � k23
Q16 ¼ k3; k11; k21; k31; k41f g k3 � k21 � k41 � k31 � k11
Q17 ¼ k3; k12; k22; k32; k42f g k3 � k12 � k22 � k32 � k42
Q18 ¼ k3; k14; k24; k34; k44f g k3 � k14 � k34 � k44 � k24
Q19 ¼ k3; k15; k25; k35; k45f g k3 � k45 � k35 � k15 � k25
Q20 ¼ k3; k16; k26; k36; k46f g k3 � k16 � k36 � k26 � k46
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Table 21 illustrates that our method is applied to these 20 collections of alternatives whose optimal alternatives are con-
sistent with the known optimal alternative k3. This phenomenon is a powerful demonstration of the randomness of our
method’s performance.
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8. Conclusion

In this paper, we firstly define two pairs of CFRS models and study their properties and relationships. Second, we propose
a new MCDM method in a finite FCAS. Furthermore, we provide a rating scheme based on an MCDM method for some mer-
chants or companies. Then, to illustrate the rationality and superiority of this new method, we use two classic methods and
three latest methods to compare with our method. Finally, we also verify the performance of our method. The core points of
this paper are as follows:

(1) We construct models FNH
k ;T;I; FNH

k ;I;T

� �
and models FNH

k ;I;I; FNH
k ;T;T

� �
. Then, based on different fuzzy neighborhood

operators, we study the nature and relationship of the models.
(2) We study a new MCDM method in a finite FCAS, which is a combination of the TOPSIS method, the WAA operator
method, and CFRS theory. At the same time, in order to classify some customers more effectively, we design a rating
scheme. The core of this rating scheme is an MCDM method in a finite FCAS.
(3) We use five decision-making methods to compare with our methods and illustrate the rationality and superiority of
our method. The reason is that all five methods can realize the decision in a finite FCAS. Through method comparison, we
can show the effectiveness and feasibility of our method. In addition, from the perspectives of the best alternative and
optimal ranking scheme, we verify the performance of our method.

In the future, we want to consider the following ideas for research. Firstly, we hope to explore other properties and appli-

cations of models FNH
k ;T;I; FNH

k ;I;T

� �
and models FNH

k ;I;I; FNH
k ;T;T

� �
, such as attribute selections [4], attribute reductions [11],

feature selections [30], granular computing [23], lattices [41], and so on. Secondly, we hope to develop more efficient MCDM
methods in a finite FCAS.
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