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a b s t r a c t

Harmony search (HS) is an effective meta-heuristic algorithm inspired by the music improvisation
process, where musicians search for a pleasing harmony by adjusting their instruments’ pitches. The
HS algorithm and its variants have been widely used to solve binary and continuous optimization
problems. In this paper, we propose an improved binary global harmony search algorithm, called
IBGHS, to undertake feature selection problems. A modified improvisation step is introduced to
enhance the global search ability and increase the convergence speed of the algorithm. In addition,
the K -nearest neighbor (KNN) is used as an underlying learning model to evaluate the effectiveness of
the selected feature subsets. The experimental results on eighteen benchmark problems indicate that
the proposed IBGHS algorithm is able to produce comparable results as compared with other state-of-
the-art population-based methods such as genetic algorithm (GA), particle swarm optimization (PSO),
antlion optimizer (ALO), novel global harmony search (NGHS) and whale optimization algorithm (WOA)
in solving feature selection problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection (FS) is an optimization problem that plays an
important role in tackling classification problems. It is a process
of selecting an optimal subset of features from a data set so
that the classifier can obtain better accuracy and/or reduce the
computational burden. Nonetheless, removing irrelevant features
is a challenging issue and time consuming owing to a large search
space and wrapped relationship between the features [1–4].

FS techniques can be grouped into filter-, embedded- and
wrapper-based methods [5]. The filter-based methods use the
properties of the learning samples, such as distance and similar-
ity, during the FS process [6]. Embedded-based methods search
for the best feature subset during the training process, in order
to reduce the computational burden [7]. While, wrapper-based
methods use a classification algorithm to evaluate the quality of
the various feature subsets, and a search mechanism to find the
optimal ones. Among them, wrapper-based methods are more
effective since they use a classifier to operate as a feedback
mechanism to compute the fitness value of the selected feature
subsets, but they are computationally expensive [8].
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Traditional wrapper-based FS methods, such as sequential
backward selection (SBS) [9] and sequential forward selection
(SFS) [10], improve the performance of the learning model via
sequentially adding or removing features from data set. In these
methods, once features are removed or added, they cannot be
updated in the next steps. Later, this problem was solved by inte-
grating a floating technique into SBS and SFS [11]. However, they
suffer from nesting effects and computationally expensive [12].
To alleviate these problems, population-based optimization al-
gorithms, such as particle swarm optimization (PSO) [13–15],
genetic algorithm (GA) [16–18], genetic programming (GP) [19,
20], ant colony optimization (ACO) [21], brain storm optimization
(BSO) [22,23] and harmony search (HS) [24], have been used.
These algorithms start with a set of randomly generated solu-
tions, and use a fitness function to evaluate them. Then, they
generate new solutions based on the individuals that performed
better in the previous iteration. As a result, these algorithms
reduce the computational burden as they avoid generating new
individuals similar to the low quality ones.

Among them, harmony search (HS) [25] is an effective meta-
heuristic algorithm inspired by the music improvisation process
of probing for a better state of harmony. HS has been widely ap-
plied to solve real-world optimization problems, such as control
system [26] and financial management [27], due to its simple
structure, easy to implement and less parameters [28]. However,
the basic HS algorithm suffers from several limitations such as
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pre-mature convergence and not using the advantageous of the
current best solution to move toward the best position. To alle-
viate these issues, many enhanced variants of the HS algorithm
have been developed. In [29], an improved HS (IHS) algorithm
with adaptive pitch tuning strategy was developed. The global-
best HS (GHS) algorithm [30], which is inspired by the PSO, used
the advantageous of the global best solution to move toward
the best position. Later, novel global harmony search (NGHS)
algorithm [31,32] was proposed to tackle reliability problems. The
NGHS algorithm introduced a new updating mechanism to enable
worst harmony categories move toward the best position and
used a genetic mutation probability to jump out of local optimum.
The IAHS algorithm [33], i.e., an improved adaptive harmony
search, was proposed to solve the resource leveling problem.

Besides, several studies have been focused on developing
binary HS algorithms. The BHS algorithm [34] integrated the
binary-coding into the basic HS algorithm to solve water pump
switching problem. In [35], a modified NGHS algorithm was
introduced to solve the 0–1 knapsack problems. In [36], a sim-
plified binary harmony search (SBHS) algorithm was presented
to solve high-dimensional 0–1 knapsack problems. The ABHS
algorithm [37], i.e., adaptive binary harmony search, introduced a
new pitch adjustment role to effectively probe the search space.

This paper proposes an improved binary global harmony
search (IBGHS) algorithm to undertake the FS problems. We
introduce an efficient improvisation step that is able to effec-
tively search the search space, and escape from local optimum.
In addition, the K -nearest neighbor (KNN) is used as the un-
derlying learning model to evaluate the effectiveness of the
selected feature subsets. The IBGHS algorithm is evaluated using
eighteen benchmark problems from the UCI machine leaning
repository [38]. To sum up, our main contributions include:

• an improved binary global harmony search, i.e., IBGHS, al-
gorithm with the modified improvisation step;

• demonstration of the effectiveness of the IBGHS algorithm
as a FS technique using eighteen benchmark problems.

This paper consists of five sections. Section 2 provides a review
of population-based FS methods for data classification problems.
In Section 3, firstly, the structures of harmony
search and novel global harmony search algorithms are pre-
sented. Then, the proposed improved binary harmony search
algorithm is discussed in detail. Section 4 provides the exper-
imental results and discussion. Finally, Section 5 concludes the
paper and gives suggestion for future work.

2. Related work

In this section, we briefly give a review of population-based FS
methods. The GA was the first that has been used to undertake
FS problems [39]. In [40], the local search (LS) strategy was em-
bedded in GA to handle FS problems. In [41,42], a hybrid model
of Q-learning fuzzy ARTMAP (QFAM) [43] and GA, i.e., QFAM-
GA, was proposed for solving FS and classification problems.
Firstly, QFAM was used as the underlying learning model to
create a number of prototype nodes. Then, the GA was adopted
to select an optimal feature subset from the created prototype
nodes. Later, QFAM-GA was used to recognize human motion
recognition in [44]. The improved binary genetic algorithm with
feature granulation (IBGAFG) [45], which is a hybrid model of GA
and granulation information, was proposed to undertake FS and
optimization problems.

Chaotic binary PSO (CBPSO) [46] integrated two types of
chaotic maps, i.e., logistic and tents maps, in a binary PSO (BPSO)
for solving FS and classification problems. CBPSO used the chaotic
maps to compute the inertia weight of the BPSO. LFPSO [47]

combined PSO with the lévy flight (LF) strategy to help PSO
jump out of local optimum. HPSO-LS [48], which is a hybrid
model of PSO and LS strategy, employed LS to help PSO during
the FS process using the correlation information of features.
HPSO-SSM [49], namely a hybrid model of PSO and spiral-shaped
mechanism (SSM), was presented for FS. It used the logistic
map sequence to increase the diversity and introduced two new
update mechanisms to improve the quality of the movement. In
addition, SSM was adopted to locally search around the known
optimal position.

BAFS [50] is a bacterial algorithm (BA)-based FS method for
classification. A new parameters and update mechanism were
introduced to reduce the execution duration of the model. In [51],
two hybrid models of whale optimization algorithm (WOA) and
simulated annealing (SA) were proposed to improve exploitation
ability of the WOA. The first model integrated the SA into the
WOA, while the second model added the SA at the end of each
iteration to further improve the best solution found by the WOA.
In [52], a FS method based on grasshopper optimization algo-
rithm was developed to solve classification problems. A modified
ALO (MALO) [53] was proposed as an effective FS method for
hyperspectral image classification. MALO used the LF strategy
to increase the global search ability of the model. In addition,
the wavelet SVM was used as an underlying learning model to
evaluate the effectiveness of the selected feature subsets. In [54],
an improved Salp swarm Algorithm (ISSA) was introduced for FS.
ISSA used opposition based learning (OBL) at the initialization
phase and LS strategy to improve the population diversity and
exploitation capability of the model.

In [55], a hybrid model of ABC and differential evolution
(DE) was proposed for solving FS and classification problems. A
new neighborhood search strategy and a new mutation operator
were, respectively, introduced for ABC and DE algorithms to find
optimal feature subsets. In [56], a hybrid model of DE and SVM
was proposed for FS and classification of the EEG signals. MOFS-
BDE [57], which is a multi-objective FS method based on binary
DE algorithm, was proposed for classification. In this work, a new
probability-based binary mutation operator, known as one-bit
purifying search (OPS) operator, was introduced to improve the
self-learning ability of the individuals.

A novel HS algorithm with adaptive parameter tuning scheme
was proposed for FS [58]. SAHS [59], which is a self-adaptive
harmony search-based FS method, was developed to solve the
music genre-classification problems. In [60], a HS algorithm with
modified improvisation step was proposed for FS to detect epilep-
tic seizure. MRMR-COA-HS [61] is a two-stage gene selection
method for cancer classification based on minimum redundancy
and maximum relevance (MRMR) strategy, cuckoo optimization
algorithm (COA) and HS algorithm. Firstly, the relevant genes
were selected using the MRMR strategy. Then, the selected genes
were fed into a wrapper-based FS method where COA-HS and
SVMwere used as an underlying search strategy and classification
model, respectively.

3. The structure and dynamics of HS, NGHS and IBHGS models

In this section, firstly, we describe the structures of the HS
and NGHS algorithms in detail. Then the details of the proposed
improved binary harmony search algorithm is explained.

3.1. Harmony search algorithm

The HS algorithm represents each solution, which is called
a ‘‘harmony’’, by an N-dimensional input vector. The basic HS
algorithm has three main phases: (i) initialization, (ii) improvi-
sation of a harmony vector, and (iii) updating harmony memory
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(HM). Firstly, HS algorithm generates HMS (harmony memory
size) random harmony vectors and stores them in a HM. Then,
a new candidate harmony is generated based on all individuals
in HM by performing memory contraction and pitch adjustment
rules, and random re-initialization. Finally, replacement takes
place if the new candidate harmony is better than the worst
harmony category in the HM. This search cycle is repeated until
the termination condition is met. The detailed steps of the basic
HS algorithm are as follows:

Step 1: Initialize parameters: Harmony memory size (HMS),
number of decision variables (N), lower and upper bounds
(LB and UB), harmony memory consideration rate (HMCR),
pitch adjusting rate (PAR), bandwidth vector (BW ), and
maximum number of iteration (NI).

Step 2: Initialize the HM: The HS algorithm uses a uniform dis-
tribution to initialize the HM within the lower and upper
bounds of the search space, as follows:

HM =

⎡⎢⎢⎣
x(1,1) x(1,2) · · · x(1,N)
x(2,1) x(2,2) · · · x(2,N)

...
...

. . .
...

x(HMS,1) x(HMS,2) · · · x(HMS,N)

⎤⎥⎥⎦ (1)

Step 3: Improvise a harmony: The process of generating new
harmony is known as improvisation. In this step, a new
harmony Xnew

= (xnew1 , xnew2 , . . . , xnewN ) is generated based
on HM consideration, pitch adjustment and a random
choice. Details of the improvisation step is shown in Al-
gorithm 1.

Algorithm 1: Improvisation step of the HS algorithm.
1 for each i ∈ [1,N] do
2 if rand() ≤ HMCR then
3 xnewi = x(j,i) (j = 1, 2, ...,HMS) % memory

consideration
4 if rand() ≤ PAR then
5 xnewi = x(j,i) ± r × bw % pitch adjustment
6 if xnewi > UB then
7 xnewi = UB
8 if xnewi < LB then
9 xnewi = LB;

10 else
11 xnewi = LB + rand() × (UB − LB) % random selection

where x(j,i) j = 1, 2, . . . ,HMS is the ith element of jth
harmony candidate in HM, rand() and r are random values
between 0 and 1.

Step 4: Update HM: If the improvised harmony vector is better
than the worst harmony category in the HM, replacement
takes place.

Step 5: Check the termination criterion: If the termination con-
dition is met stop, otherwise go to Step 3.

3.2. Novel global harmony search algorithm

Inspired by the PSO, the novel global harmony search (NGHS)
algorithm [31] model modified the improvisation step in the
original HSA. This modification allowed new individuals to mimic
the successful companion, i.e., global-best, in the HM. The NGHS
algorithm excluded HMCR and PAR, and introduced the genetic

Algorithm 2: Improvisation step the NGHS [31] algorithm.
1 for each i ∈ [1,N] do
2 xR = 2 × xbesti − xworst

i .
3 if xR > UB then
4 xR = UB
5 if xR < LB then
6 xR = LB
7 xnewi = xworst

i + r × (xR − xworst
i ) % position updating

8 if rand() ≤ pm then
9 xnewi = LB + rand() × (UB − LB) % genetic mutation

mutation probability (pm). In addition, it replaces the worst har-
mony category in the HM with the new harmony without check-
ing their fitness values. The step-by-step improvisation of the
NGHS algorithm is summarized in Algorithm 2.

Where xbesti and xworst
i are the best and worst harmonies in the

HM, respectively.

3.3. The improved binary global harmony search algorithm

Although, the NGHS algorithm is able to produce better results
as compared with the original HS algorithm, it suffers from two
limitations: (i) trapping into local optima, and (ii) slow conver-
gence. These are mainly due to the tendency of the new harmony
categories to move toward the global-best harmony category
in the HM, consequently, they do not effectively probe the en-
tire search space. To alleviate the aforementioned limitations of
NGHS, we proposed an improved binary global harmony search
(IBGHS) algorithm, as follows.

The proposed IBGHS algorithm is a binary variant of the NGHS
algorithm with modified improvisation step. As such, the IBGHS
algorithm generates NHS random binary harmony vectors, and
stores them in the HM. Then, a new harmony is generated based
on the modified improvisation step, as shown in Algorithm 3.
Algorithm 3: Improvisation step of the proposed IBGHS
algorithm.
1 for each i ∈ [1,N] do
2 if rand() ≤ Pc then
3 xR = 2 × xbesti − xworst

i .
4 if xR > UB then
5 xR = UB
6 if xR < LB then
7 xR = LB
8 xnewi = xworst

i + r1 × (xR − xworst
i ) % position updating

9 if rand() ≤ pm then
10 xnewi = LB + rand() × (UB − LB) % genetic mutation

11 else
12 xnewi = 0.7xbesti + 0.3xworst

i
13 if rand() ≤ PAR then
14 xnewi = xnewi + r2 × BW
15 if xnewi > UB then
16 xnewi = UB
17 if xnewi < LB then
18 xnewi = LB

Where rand(), r1 and r2 are random values between 0 and 1,
and Pc and PAR are control parameter and pitch adjustment rate,
respectively.

In order to enhance the global search ability and convergence
speed of the NGHS algorithm, lines 12–18 are added. Specifically,
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Fig. 1. Accuracy rates of IBGHS with different (a) Pc , and (b) PAR settings for Penglung EW data set.

line 12 allows the IBGHS algorithm to move faster toward the
global best solution, while line 14 allows the algorithm to ran-
domly search the entire search space. The effectiveness of this
modification will be discussed in Section 4.2. After generating a
new harmony, its fitness value is calculated and compared with
the worst harmony in the HM. Replacement takes place if the new
harmony is outperformed the worst one. This process is repeated
till the termination condition is met. Algorithm 4 summaries the
step-by-step procedure of IBGHS.
Algorithm 4: The IBGHS algorithm procedure.

Input: Parameters of the IBGHS algorithm;
Output: An optimal harmony category;

1 Generate NHS random harmonies and store them in HM;
2 Calculate the fitness value of all harmonies;
3 while the termination condition is not met do
4 for each harmony in HM do
5 Generate a new harmony using Algorithm 3;
6 Calculate the fitness value of the new harmony;
7 if new harmony is better than the worst harmony in

HH then
8 Do replacement.

4. Experimental studies

The performance of the proposed IBGHS algorithm is evaluated
using eighteen benchmark classification problems from the UCI
machine leaning repository [38]. Table 1 summarizes the details
of the used data sets in this study. These data sets contain var-
ious characteristics, such as level of difficulty, and numbers of
samples and features, that are useful to assess the FS capability
of IBGHS. In addition, these data sets are chosen to compare
the performance of the proposed IBGHS algorithm with other
population-based FS techniques. The K -nearest neighbor (KNN)
(k=5) with Euclidean distance metric is used to evaluate the
effectiveness of the selected feature subsets and find an optimal
one [62]. The classification-error is used as fitness value. For all
experiments, the K -fold cross-validation, i.e. data sets are split
into K folds, then k − 1 folds are used for training and the
remaining for validation, is used and repeated 5 times. Data sets
are split into two equal subsets, i.e., training and validation.

The experimental parameters of the IBGHS algorithm are set
as follows. PAR = 0.3 and Pc = 0.9 are optimized in Section 4.1,
pm = 0.005 (adopted from [32]). In order to have a fair compar-
ison with other algorithms reported in [51], NI and HMS are set

Table 1
Details of the UCI data sets.
Data set No. of features No. of samples

Breast cancer 9 699
Breast EW 30 569
Congress EW 16 435
Exactly 13 1000
Exactly2 13 1000
Heart EW 13 270
Ionosphere EW 34 351
Kr-vs-kp EW 36 3196
Lymphography 18 148
M-of-n 13 1000
Penglung EW 325 73
Sonar EW 60 208
Spect EW 22 267
Tic-tac-toe 9 958
Vote 16 300
Waveform 40 5000
Wine 13 178
Zoo 16 101

to 100 and 10, respectively. All experiments are conducted using
Matlab 2018a with core i7, 4 GHz CPU and 16 GB memory.

4.1. Parameters setting

This section aims to find optimal parameters, i.e., Pc and PAR,
for the IBHGS algorithm that yields the best results. To achieve
this, both Pc and PAR are varied from 0.1 to 0.9 for all data sets.
In overall, the IBGHS algorithm achieves the best performance
when Pc and PAR are set to 0.9 and 0.3, respectively. For instance,
Fig. 1 shows the accuracy rates of IBGHS with different Pc and
PAR settings for the Penglung EW data set. As can be seen, IBGHS
produces highest accuracy rates when Pc is set between 0.7 and
0.9 (Fig. 1(a)), and PAR = 0.3 (Fig. 1(b)). Therefore, for the rest of
the experiments Pc and PAR are set to 0.9 and 0.3, respectively.

4.2. Results and discussions

In this section, the performance of IBGHS is compared with
NGHS and other population-based FS techniques such as GA, ALO
and WOASAT-2 (a hybrid model of WOA and SA with tournament
selection) [51] in terms of classification accuracy, number of
selected features, computational time and convergence speed. To
have a fair comparison with other techniques, the same pro-
cedure in [51], is adopted, i.e. for each data set, K-fold cross-
validation is used and repeated 5 times. Table 2 shows the mean
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Table 2
Mean accuracy rates for UCI data sets.
Data set WOASAT-2 ALO GA PSO NGHS IBGHS

Breast cancer 0.97 0.96 0.96 0.95 0.96 0.98
Breast EW 0.98 0.93 0.94 0.94 0.95 0.97
Congress EW 0.98 0.93 0.94 0.94 0.96 0.98
Exactly 1 0.66 0.67 0.68 0.81 1
Exactly2 0.75 0.75 0.76 0.75 0.71 0.80
Heart EW 0.85 0.83 0.82 0.78 0.85 0.89
Ionosphere EW 0.96 0.87 0.83 0.84 0.94 0.96
Kr-vs-kp EW 0.98 0.96 0.92 0.94 0.94 0.98
Lymphography 0.89 0.79 0.71 0.69 0.85 0.93
M-of-n 1 0.86 0.93 0.86 0.97 1
Penglung EW 0.94 0.63 0.7 0.72 0.86 1
Sonar EW 0.97 0.74 0.73 0.74 0.90 0.97
Spect EW 0.88 0.8 0.78 0.77 0.88 0.91
Tic-tac-toe 0.79 0.73 0.71 0.73 0.82 0.82
Vote 0.97 0.92 0.89 0.89 0.96 0.98
Waveform 0.76 0.77 0.77 0.76 0.74 0.75
Wine 0.99 0.91 0.93 0.95 0.95 1
Zoo 0.97 0.91 0.88 0.83 0.94 1
Average 0.92 0.83 0.83 0.82 0.88 0.94

Table 3
Average number of selected features.
Data set WOASAT-2 ALO GA PSO NGHS IBGHS

Breast cancer 4.20 6.28 5.09 5.72 5.40 4.80
Breast EW 11.60 16.08 16.35 16.56 14.00 12.20
Congress EW 6.40 6.98 6.62 6.83 7.80 3.80
Exactly 6.00 6.62 10.82 9.75 7.00 6.20
Exactly2 2.80 10.70 6.18 6.18 7.20 1.20
Heart EW 5.40 10.31 9.49 7.94 6.80 3.80
Ionosphere EW 12.8 9.42 17.31 19.18 14.60 10.71
Kr-vs-kp EW 18.40 24.7 22.43 20.81 19.40 14.80
Lymphography 7.20 11.05 11.05 8.98 10.80 5.60
M-of-n 6.00 11.08 6.83 9.04 7.60 6.00
Penglung EW 127.4 164.13 177.13 178.75 141.20 81.60
Sonar EW 26.40 37.92 33.30 31.20 29.20 23.00
Spect EW 9.40 16.15 11.75 12.50 11.40 6.20
Tic-tac-toe 6.00 6.99 6.85 6.61 6.60 5.40
Vote 5.20 9.52 6.62 8.80 6.80 4
Waveform 20.6 35.72 25.28 22.72 19.00 16.8
Wine 6.40 10.70 8.63 8.36 6.20 6.20
Zoo 5.60 13.97 10.11 9.74 7.40 4.00
Average 15.99 22.68 21.77 21.65 18.24 12.00

accuracy rates of IBGHS, NGHS, PSO, GA, ALO and WOASAT-2. As
can be seen, IBGHS yields the highest accuracy rates for ten out
of eighteen data sets, including Breast cancer, Exactly 2, Heart

EW, Ionosphere EW, Lymphography, Penglung EW, Spect EW,
Vote, Wine Ew and Zoo. While IBGHS does not outperform other
methods for Breast EW and Waveform EW data sets, it produces
similar results as WOASAT-2 for Congress EW, Exactly, Kr-vs-kp
EW, M-of-n and Sonar EW data sets. Overall, IBGHS outperformed
other FS techniques in term mean accuracy rate, i.e., 94%, for all
data sets.

Table 3 shows the average number of selected features of
IBGHS, NGHS, PSO, GA, ALO and WOASAT-2. IBGHS selects fewer
numbers of features for Congress EW, Exactly 2, Heart EW, Iono-
sphere EW, Kr-vs-kp EW, Lymphography, Penglung EW, Sonar
EW, Spec EW, Tic-Tac-Toe, Vote, Waveform EW, Wine and Zoo
data sets. It also selects similar numbers of features to WOASAT-
2 and NGHS for M-of-n and Wine, respectively. While IBGHS is
ranked second best performance for Breast cancer, Breast EW
and Exactly data set. Overall, IBGHS selected fewer number of
features, i.e., 12.00, for all data sets as compared with other FS
techniques.

The obtained mean, best and worst fitness values for the UCI
data sets are shown in Table 4. As can be seen, IBGHS achieves
better and similar mean fitness values for eleven and three data
sets, respectively. In term of best fitness value, IBHGS outper-
forms other FS techniques for seven data sets, and produces
similar results for eight data sets. While NGHS produces the worst
fitness values for most of the data sets. To sum up, IBGHS and
WOASAT-2, respectively, ranked first and second best methods
in terms of mean, best and worst fitness values for all data sets.

Table 5 shows the execution time (in second) of WOASAT-
2, ALO, GA, PSO, NGHS and IBHGS algorithms for the UCI data
sets. All algorithms use the same data sets, the number of it-
eration and population size. As can be seen, both IBGHS and
NGHS algorithms require the shortest execution time as com-
pared with other algorithms. Specifically, the IBHGS algorithm
has the best computational time for eleven out of eighteen data
sets, i.e. Breast cancer, Congress EW, Exactly, Exactly2, Heart EW,
Kr-vs-kp EW, Penglung EW, Spect EW, Waveform EW, Wine EW
and Zoo. While IBGHS needs longer computational time for Breast
EW, Ionosphere EW, Lymphography and Tic-tac-toe data sets than
NGHS, it requires similar computational time as NGHS for M-of-n,
Sonar EW and Vote data sets. In contrast, WOASAT-2 requires the
longest computational time for all data sets.

Finally, convergence of IBGHS, NGHS and WOASAT-2 is com-
pared. Fig. 2 shows the fitness values of IBGHS, NGHS and
WOASAT-2 with different iteration numbers. As can be seen, the
NGHS algorithm traps into local optimum for most of the data

Table 4
Mean, worst and best fitness values for UCI data sets.
Data set Mean Best Worst

WOASAT-2 ALO GA PSO NGHS IBGHS WOASAT-2 ALO GA PSO NHGS IBGHS WOASAT-2 ALO GA PSO NGHS IBGHS

Breast cancer 0.04 0.02 0.03 0.03 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.04 0.03 0.04 0.03 0.05 0.04
Breast EW 0.03 0.03 0.04 0.03 0.05 0.02 0.02 0.03 0.02 0.02 0.05 0.02 0.04 0.04 0.05 0.05 0.06 0.03
Congress EW 0.03 0.05 0.04 0.04 0.05 0.02 0.02 0.03 0.03 0.03 0.04 0.01 0.05 0.06 0.06 0.04 0.05 0.02
Exactly 0.01 0.29 0.28 0.28 0.28 0 0.01 0.28 0.27 0.21 0.19 0 0.01 0.29 0.31 0.32 0.32 0
Exactly2 0.25 0.24 0.25 0.25 0.31 0.2 0.23 0.23 0.22 0.22 0.28 0.19 0.27 0.25 0.3 0.31 0.33 0.22
Heart EW 0.16 0.12 0.14 0.15 0.32 0.12 0.13 0.11 0.12 0.13 0.15 0.10 0.18 0.13 0.14 0.18 0.79 0.13
Ionosphere EW 0.04 0.11 0.13 0.14 0.20 0.05 0.03 0.1 0.09 0.12 0.05 0.03 0.05 0.12 0.16 0.17 0.15 0.06
Kr-vs-kp EW 0.02 0.05 0.07 0.05 0.09 0.02 0.02 0.03 0.03 0.03 0.05 0.02 0.02 0.07 0.13 0.07 0.15 0.03
Lymphography 0.11 0.14 0.17 0.19 0.22 0.08 0.09 0.08 0.12 0.14 0.15 0.07 0.14 0.16 0.27 0.27 0.27 0.09
M-of-n 0.01 0.11 0.08 0.11 0.17 0 0.01 0.09 0.02 0.06 0.03 0 0.01 0.12 0.15 0.16 0.26 0
Penglung EW 0.06 0.14 0.22 0.22 0.16 0.02 0.03 0 0.13 0.13 0.13 0 0.11 0.21 0.29 0.29 0.19 0.05
Sonar EW 0.03 0.18 0.13 0.13 0.12 0.05 0.01 0.13 0.07 0.07 0.10 0.03 0.05 0.26 0.23 0.22 0.13 0.06
Spect EW 0.13 0.12 0.14 0.13 0.17 0.11 0.11 0.09 0.12 0.1 0.11 0.09 0.15 0.15 0.15 0.16 0.20 0.12
Tic-tac-toe 0.21 0.22 0.24 0.24 0.22 0.19 0.2 0.2 0.21 0.21 0.18 0.17 0.23 0.24 0.26 0.27 0.24 0.21
Vote 0.04 0.04 0.05 0.05 0.05 0.02 0.02 0.03 0.03 0.03 0.04 0.02 0.04 0.05 0.08 0.08 0.07 0.02
Waveform EW 0.25 0.21 0.2 0.22 0.26 0.24 0.23 0.19 0.19 0.21 0.25 0.24 0.26 0.22 0.21 0.23 0.27 0.25
Wine EW 0.01 0.02 0.01 0.02 0.05 0.01 0 0 0 0 0.04 0 0.03 0.03 0.03 0.03 0.06 0.01
Zoo 0.04 0.07 0.08 0.1 0.07 0 0 0.04 0 0.03 0.06 0 0.1 0.12 0.18 0.21 0.08 0.02

Total 1.83 2.15 2.3 2.39 2.73 1.18 1.57 1.7 1.69 1.77 1.93 1.01 2.14 2.54 3.03 3.08 3.67 1.36
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Fig. 2. The convergence of the IBGHS, NGHS and WOASAT-2 algorithms for UCI data sets.
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Table 5
Computational time (in second) of WOASAT-2, ALO, GA, PSO, NGHS and IBHGS
algorithms for the UCI data sets.
Dataset WOASAT-2 ALO GA PSO NGHS IBGHS

Breast cancer 16.32 6.94 3.59 1.57 0.45 0.44
Breast EW 17.29 6.82 3.53 1.54 0.44 0.50
Congress EW 14.10 7.26 3.76 1.64 0.47 0.42
Exactly 20.31 10.31 5.34 2.33 0.67 0.52
Exactly2 24.19 9.70 5.03 2.19 0.63 0.48
Heart EW 11.96 6.24 3.23 1.41 0.40 0.38
Ionosphere EW 13.68 6.50 3.37 1.47 0.42 0.44
Kr-vs-kp EW 243.13 60.09 31.14 13.58 3.88 3.84
Lymphography 11.34 6.32 3.27 1.43 0.41 0.43
M-of-n 20.87 9.65 5.00 2.18 0.62 0.62
Penglung EW 11.94 8.64 4.48 1.95 0.56 0.41
Sonar EW 11.22 5.99 3.10 1.35 0.39 0.39
Spect EW 11.72 6.71 3.48 1.52 0.43 0.42
Tic-tac-toe 19.02 10.63 5.51 2.40 0.50 0.69
Vote 11.29 6.00 3.11 1.36 0.39 0.39
Waveform EW 679.45 170.57 88.40 38.54 11.02 8.47
WineEW 10.77 5.85 3.03 1.32 0.38 0.37
Zoo 10.59 6.66 3.45 1.50 0.43 0.40

sets, as the fitness values remain constant after some iterations.
This is mainly because of NGHS that tends to move toward the
best harmony category, i.e., xbesti , found so far. While, IBGHS
alleviate this issue by generating new harmony categories within
xbesti and xworst

i or randomly within the search space. This helps
IBGHS to escape from the local optimum, and converge faster
than NGHS toward the best solution. In addition, IBGHS operates
better or similar to the WOASAT-2 algorithm.

Overall, the IBGHS algorithm can produce better results as
compared with NGHS and other algorithms reported in the lit-
erature. This is mainly because of the modified improvisation
step that help the algorithm to jump out of local optimum and
converge fast toward the best solution. However, it contains
more parameters to be optimized as compared with the NGHS
algorithm.

5. Summary

In this paper, a FS method known as IBGHS, which is an
improved binary global harmony search algorithm, for solving
data classification problems has been developed. Specifically, a
modified improvisation step was introduced that can increase
the convergence speed and avoid trapping into local optimum.
Eighteen benchmark problems have been conducted to evaluate
the effectiveness of the IBGHS algorithm in terms of classifica-
tion accuracy, number of selected features and computational
time. The outcome indicates that the IBGHS algorithm is able
to produce comparable results as compared with the basic HS,
NGHS and other population based FS techniques such as GA, PSO,
ALO and WOA. Our future work is focused on modifying the
IBGHS algorithm to solve combinatorial optimization problems.
In addition, it can be adapted to handle dynamic optimization
problems.
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