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Abstract

Quantifying the uncertainty of supervised learning models plays an important role
in making more reliable predictions. Epistemic uncertainty, which usually is due
to insufficient knowledge about the model, can be reduced by collecting more data
or refining the learning models. Over the last few years, scholars have proposed
many epistemic uncertainty handling techniques which can be roughly grouped into
two categories, i.e., Bayesian and ensemble. This paper provides a comprehensive
review of epistemic uncertainty learning techniques in supervised learning over the
last five years. As such, we, first, decompose the epistemic uncertainty into bias and
variance terms. Then, a hierarchical categorization of epistemic uncertainty learning
techniques along with their representative models is introduced. In addition, several
applications such as computer vision (CV) and natural language processing (NLP)
are presented, followed by a discussion on research gaps and possible future research
directions.

Keywords: Epistemic uncertainty learning, supervised learning, Bayesian
approximation, ensemble learning, computer vision, natural language processing

1. Introduction

Supervised learning, as a broad branch of machine learning, refers to the task
of learning a mapping function for associating high-dimensional input samples into
their corresponding target vectors using labeled data [1, 2, 3, 4]. They have been
successfully used for a variety of real-world applications, e.g., medical and fault di-
agnosis [5, 6, 7, 8], object detection [9, 10], text processing [11, 12, 13], and speech
recognition [14], image segmentation [15, 16, 17], image enhancement [18, 19]. In-
deed, supervised learning is a process of predicting unknown data based on partial
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samples that cannot accurately represent the whole data set distribution. In such an
experience-driven process, the model is not provably correct but only hypothetical;
therefore uncertain and the same holds for the predictions produced by the model [20].
In addition, the challenge of big data, such as skyrocketed feature dimensions and
categories, missing data, unbalanced data distribution and huge solution space, aggra-
vate the uncertainty of the learning process, which seriously affects the performance
of the supervised learning algorithms [21]. Moreover, supervised learning approaches
are unable to identify in-domain from out-domain samples [22], provide reliable un-
certainty approximation [23], and lack expressiveness during inference [24]; therefore,
their deployment in high-risk and safety-critical applications remains limited. To al-
leviate these issues, it is vital to present uncertainty estimate in a way that ignores
the uncertain predictions or passes them to experts [25].

In supervised learning, traditional uncertainty assessment is usually based on a
single probability distribution. Nowadays, the widely accepted way is quantifying un-
certainty separately by distinguishing two different sources, i.e., aleatoric uncertainty
and epistemic uncertainty [20]. Aleatoric (data) uncertainty is a kind of uncertainty
that reflects the inherent property of data, like noise. It is usually caused by the ir-
reducible error in the data measurements and observations process, which cannot be
reduced even by collecting more data. Kendal and Gal [26] further divided aleatoric
uncertainty into homoscedastic uncertainty and heteroscedastic uncertainty. The for-
mer is a value that stays constant for various input samples in the same task and the
latter is associated with the differences among input data, for example, some inputs
contain more noise than others. In contrast, epistemic (model) uncertainty is referred
to a state that model cognition is restricted, which is due to the upper limit of the
model fitting ability, the optimizing strategy, the parameters, the lack of knowledge.
It can be reduced by gathering more data or refining models.

On the other hand, the generalization error is a standard metric to quantify the
effectiveness of decisions made by supervised learning models. Meanwhile, several
studies [27, 28, 29] have proved that the generalization error manifests the predictive
uncertainty. It simultaneously commits to the theoretical exploration of the quantifi-
cation and formal expression of their relationship. The generalization error can be
decomposed into three terms, i.e., noise, bias, and variance [30, 31].

Suppose, yo = f(x) + ε represents the observed value for a given x ∈ <d, which is
corrupted by noise ε ∼ N(0, σ2

1). Thus, yo ∼ N(f(x), σ2
1) where f(x) represents the

original target. Besides, yp ∼ N(ŷ, σ2
2) denotes the distribution of prediction f̂(x)

centered on mean value ŷ = Ef̂(x). The noise term (σ2
1) arises from data and it is

irreducible, which can be represented as aleatoric (data) uncertainty. In contrast, the
(squared) bias term ([Ef̂(x) − f(x)]2) reveals the gap between the estimated value
and the true value. It reflects the degree of cognitive limitation caused by the setting
of model properties such as parameters, strategies, or learning algorithms. While, the
variance term (E[f̂(x)−Ef̂(x)]2) is related to the sensitivity of model pertaining to the
training samples. Thus, we argue that the bias term together with variance represents
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Fig. 1: Decomposition of uncertainty in supervised learning.

the epistemic (model) uncertainty. Fig. 1 shows these three terms and explains the
predictive uncertainty from the perspective of the generalization error decomposition.
The generalization error of a model can be reduced through the correlation analysis
of bias and variance, i.e., epistemic uncertainty. Therefore, analyzing the epistemic
uncertainty, using the established relationship between uncertainty and error items
(as shown in Fig. 1), can help to select an appropriate uncertainty quantification
method and improve the model performance.

Existing survey papers: There exist several overviews of uncertainty learning
techniques in machine learning from different perspectives and emphases (see Ta-
ble 1). In 2016, Wang and He [21] discussed the challenging issues in analyzing big
data and emphasized the importance of modeling uncertainty in improving the perfor-
mance of the learning models. Subsequently, Hariri et al. [33] surveyed uncertainty
learning techniques in big data. They briefly introduced the classical uncertainty
measuring techniques in machine learning and categorized them into probability the-
ory, Shannon’s entropy, fuzzy set theory, and rough set theory. Recently, Hullermeier
and Waegeman [20] emphasized the significance of identifying aleatoric and epistemic
uncertainty separately in machine learning. With the popularity of deep learning
techniques, most of the recent review papers focused on techniques that are effective
for neural network frameworks. For example, Kabir et al. [32] provided a review
of uncertainty quantification techniques in neural networks from the concept of pre-
diction intervals. Wang et al. [34] described Bayesian deep learning as a uniform
framework that combines deep learning techniques with a paradigm of excellent un-
certainty handling capabilities, i.e., probabilistic graphical methods. Jospin et al. [35]
organized a handbook from basic statistic concepts to the principle, the learning strat-
egy, and specific algorithms for researchers interested in Bayesian neural networks.
They categorized Bayesian methods into Variational inference (VI), Markov Chain
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Table 1: Summary of related uncertainty quantification surveys.

Study Venue Content

Wang and He
(2016) [21]

IEEE Systems, Man,
& Cybernetics Mag-
azine

Summarizing challenges of big
data and uncertainty-based
learning methods.

Kabir et al. (2018) [32] IEEE access Discussing from the concept
of Prediction Intervals.

Hariri et al. (2019) [33] Journal of Big Data Categorizing techniques that
handle uncertainty in big data
according to various data
characteristics.

Wang and Yeung
(2020) [34]

ACM Computing
Surveys

Outlining Bayesian-based
quantification methods from
the perspective of PGM.

Jospin et al. (2020) [35] ACM Computing
Surveys

A tutorial specific on Bayesian
deep learning.

Hullermeier and Waege-
man (2021) [20]

Machine Learning Emphasizing the important
to distinguish different uncer-
tainty.

Abdar et al. (2021) [36] Information Fusion Reviewing uncertainty quan-
tification techniques along
with their applications.

Gawlikowski et al.
(2021) [37]

arXiv Introducing sources of un-
certainty, categorizing uncer-
tainty techniques and review-
ing re-calibration techniques .

Monte Carlo (MCMC), and Bayes by backprop. They also discussed approximation
techniques in terms of stochastic gradient descent (SGD) dynamics and Monte Carlo
dropout (MCD).

Recently, Abdar et al. [36] gave an extensive review of uncertainty quantification
methods in deep learning along with their applications. Specifically, they categorized
the uncertainty quantification techniques into Bayesian approximation and ensemble
learning and discussed the representative models of each category. In addition, they
provided open challenges and future research directions associated with uncertainty
quantification. While Gawlikowski et al. [37] first identified five sources of uncertainty
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in deep learning models. These sources are variability in practical scenarios, error,
and noise in measurement tools, errors caused by unknown data samples, errors in
model structure and training procedure. Then, they categorized uncertainty learning
techniques into single deterministic methods, Bayesian methods, ensemble Methods,
test-time augmentation methods. Besides, they reviewed re-calibration techniques
in DL. Each of these surveys has provided a comprehensive review of uncertainty
learning from different points of view. But none of them include a detailed review of
epistemic uncertainty techniques in terms of bias-variance decomposition.

Contributions of the paper: Different from existing surveys, we emphasize the
importance of uncertainty analysis in supervised learning models from the perspective
of generalization error decomposition. Specifically, the focus is on tracing the epis-
temic uncertainty according to the decomposed items, i.e., bias and variance. In this
paper, we outline the two most representative techniques in supervised learning, e.g.,
Bayesian and ensemble methods, over the last five years and discuss the properties of
each category according to the bias-variance decomposition. In this context, we have
collected a total of 138 publications, in which:

• Approximately 70% of the selected articles are published in the last five years,
i.e., after 2016; while most of the remaining 30% are high-cited classic articles.

• More than 80% of the selected articles are indexed in Q1 journals, top confer-
ences1, and high-cited books or thesis

Standing upon these high-quality articles, this work aims to guide researchers
interested in tracing the limitation of models from the perspective of uncertainty
decomposition, quantification, analysis, and applications. To sum up, the main con-
tributions of this survey include:

• review of the epistemic (model) uncertainty learning techniques in supervised
models over the last five years;

• discussion on epistemic uncertainty learning from the perspective of generaliza-
tion error, i.e., bias and variance decomposition;

• hierarchical categorization of the epistemic uncertainty learning methods along
with their representative models and real-world applications;

• elucidation on the main research gaps and suggesting future research directions.

Organization of the paper: As shown in Fig. 2, this review consists of four
sections. Section 2, first, provides a review of epistemic uncertainty learning methods.

1Top conferences refer to the well-accepted high level conferences, such as NIPS, ICML, AAAI,
IJCAI, ICCV, ECCV, CVPR, etc.
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Fig. 2: Organization of this survey.

Specifically, these methods are categorized into Bayesian approximation and ensem-
ble learning. Then, several widely used Bayesian approximation techniques, such as
variational inference (VI), Monte Carlo dropout (MCD), Markov Chain Monte Carlo
(MCMC), and Laplace approximation (LA), are discussed in detail. Finally, ensemble
learning is introduced in terms of its concept and relationship to epistemic uncertainty
as well as those related ensemble methods. Section 3 discusses the importance of
quantifying uncertainty in supervised learning approaches for several real-world ap-
plications such as computer vision and natural language processing. Section 4 presents
the research gaps and trends for future research as well as concluding remarks.

2. Review on Epistemic Uncertainty Learning

This section gives a review of the epistemic uncertainty learning techniques in
supervised learning. Specifically, we focus on the epistemic uncertainty quantification
methods in terms of decomposed items of the generalization error, i.e., bias and
variance. According to Fig. 3, the epistemic uncertainty learning methods are grouped
into the Bayesian and ensemble methods, as follows:

• Bayesian methods formulate epistemic uncertainty as a probability distribu-
tion over the model parameters. These methods mainly quantify the variance
(as shown in Fig. 1) in order to reduce the generalization error of the learning
model. In this context, most studies explore the neural network-based model
and Bayesian methods to estimate the epistemic uncertainty caused by the
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Fig. 3: The taxonomy of epistemic (model) uncertainty learning.

model parameters. Section 2.1 provides a comprehensive review of these tech-
niques.

• Ensemble methods train multiple models to produce multiple predictions and
then combine their predictions to reach the final output. These methods mainly
quantify the variance of the outputs of base models as the epistemic uncertainty
to control the complementarity among these base models for improving the
ensemble performance. In this context, the reduction of the generalization error
can be achieved by reducing the bias or the variance of the ensemble output,
depending on the essence of specific ensemble methods. These methods are
reviewed in Section 2.2.

In the following subsections, we provide a detailed review and discuss the main
properties of each category.

2.1. Bayesian methods

Assume a training data set D = {(xi, yi)}Ni=1, where xi ∈ <d and yi ∈ {1, ..., C}
indicate the i-th input and its corresponding class, respectively, and C denotes the
number of classes. The aim is to learn a function y = f θ(x) with parameters θ
to obtain a desired output. Bayesian modeling aims to capture the epistemic un-
certainty by putting distributions over the network weights instead of deterministic
network weights, which is known as marginalisation. For a given test sample x∗, the
distribution over a prediction y∗ can be written as [38]:

p(y∗|x∗, D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ, (1)

where p(θ|D), which is known as posterior distribution on the model parameters,
represents the uncertainty on the model parameters given a training data set D.

Assume θ̂t indicates the parameters of t-th sample from distribution p(θ|D), the
epistemic uncertainty of the model can be quantified via variance term (as shown in
Fig. 1):

V ar(y∗) ≈ 1

T

T∑
t=1

f θ̂t(x∗)Tf θ̂t(x∗)− E(y∗)TE(y∗), (2)
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where T is the total number of sampling, which will be explained in the following
subsections.

Bayesian methods are easy to implement but difficult to perform inference, be-
cause they require to estimate the posterior distribution, i.e., p(θ|D). Therefore, the
marginal probability cannot be computed analytically [26]. In order to obtain the
posterior distribution, the Bayes theorem [39] is applied to a given data set D over
θ, as follows:

p(θ|D) =
p(D, θ)p(θ)

p(D)
, (3)

where p(D, θ) represents the likelihood that the data samples in D are realization
of the distribution predicted by a model with parameter θ, and p(D) is the prior
distribution on the model parameters. Scholars have proposed many approxima-
tion techniques to estimate posterior distribution. In this survey, we discuss several
approximation techniques including variational inference (VI), Monte Carlo dropout
(MCD), Markov chain Monte Carlo (MCMC) and Laplace approximation. A detailed
review of each category is provided in the following subsections.

2.1.1. Variational inference (VI)

VI [40] has been successfully applied as an approximation technique to many
applications of neural networks. It uses a pre-specified distribution q(θ) to infer the
posterior distribution p(θ|x, y). In other words, VI aims to make q(θ) to be close to the
posterior obtained from the original model through optimizing a set of parameters.
To achieve this, the Kullback-Leibler (KL) divergence [41] can be defined as:

KL(q||p) = Eq

[
log

q(θ)

p(θ|x, y)

]
. (4)

But the KL divergence cannot be directly minimized because of the posterior p(θ|x, y).
Instead, the evidence lower bound (ELBO) can be optimized. As such, the ELBO for
a given prior distribution over the model parameters can be written as:

L = Eq

[
log

p(y|x, θ)
q(θ))

]
. (5)

and for the KL divergence:

KL(q||p) = −L+ log p(y|x), (6)

holds.
Graves et al. [42] introduced a stochastic variational method to reduce the diffi-

culty in inferring analytical solutions of the original VI. They used numerical inte-
gration to approximate the expected values. Bayes By Backprop (BBB) [43] is an
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extended version of the stochastic variational method [42] to non-Gaussian priors.
Specifically, BBB uses an unbiased estimate of gradients to learn a distribution over
the network’s weights. Kingma et al. [44, 45] reduced the variance of the stochastic
gradients by introducing a reparameterization strategy. This strategy can approx-
imate posterior inference in models with continuous latent variables. Rezende and
Mohamed [46] used normalizing flow to construct distributions for approximation.
This technique applies a sequence of invertible transformations to transfer a simple
density to a more complex one. Zeng et al. [47] estimated the epistemic uncertainty in
an active learning framework using Bayesian convolutional neural networks (CNNs)
with Gaussian approximate VI. They showed that using a few Bayesian layers close
to the output layer of CNN can estimate a similar level of uncertainty as with that
of the original Bayesian CNNs.

Zhang et al. [48] showed that natural gradient descent [49] with adaptive weight
noise can be fitted as a variational posterior to maximize the ELBO. Later, Osawa et
al. [50] trained deep networks using a natural gradient VI, namely variational online
Gauss-Newton (VOGN) [51], and obtained similar results to that of Adam optimizer
by using strategies such as batch normalization and data augmentation. The stochas-
tic low-rank approximate natural-gradient (SLANG) [52] is a variant of VI methods
that use a structure based on diagonal plus low-rank to compute the Gaussian ap-
proximations. In addition, SLANG uses the back-propagated gradients of the network
log-likelihood to build a covariance, which enables the model a faster estimation than
mean-field methods. Heo et al. [53] proposed uncertainty-aware attention, which uses
VI with dropout sampling, to compute the epistemic uncertainty together with the
heteroscedastic uncertainty in predicting time-series data.

2.1.2. Monte Carlo dropout (MCD)

Monte Carlo (MC) [54] is another approximation technique that has been widely
used for estimating the posterior distribution, but it is computationally expensive
and slow. Gal devised MC dropout (MCD) [55, 38] to alleviate these issues. MCD
integrates dropout [56], which is an effective technique for tackling overfitting prob-
lems in deep models, as a regularization term to estimate the prediction uncertainty.
During learning, dropout randomly (with a certain probability p) drops some model
units to avoid excessive co-tuning. MCD uses the mean of N models, fθ1 , ..., fθN ,
parametrized by θ1, ..., θN to approximate outcome based on the posterior estimation
of the weights as follows [55]:

y∗ ≈ 1

N

N∑
i=1

y∗i =
1

N

N∑
i=1

fθi(x
∗). (7)

Later, Gal et al. [57] introduced a new variant of dropout, called concrete dropout,
which uses gradient methods instead of grid search to tune the dropout probability.
This leads to a calibrated uncertainty estimate in large models. Mokhoti and Gal [58]
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integrated MCD and concrete dropout as inference techniques into the DeepLab-
v3+ [59] structure sense segmentation. In addition, they introduced a new met-
ric, namely mutual information, to estimate epistemic uncertainty by computing the
mutual information between a predictive distribution and posterior over the model
weights. The single-shot MCD [60] analytically approximates the expected value
and variance of the MCD for each layer of the fully connected network. This model
requires less computational time as compared with that of the MCD. Study [61] con-
ducted an empirical study to show how epistemic uncertainty is affected when the
observing condition is changed using MCD.

Since the proposal of MCD, many scholars have applied it to estimate epistemic
uncertainty. For example, Abdar et al. [62, 63] applied MCD to tackle uncertainty
during skin cancer image classification. Studies [64] and [6] integrated MCD into
CNN to estimate the epistemic uncertainty for segmentation and lesion detection in
medical images. Loquercio et al. [65] computed the epistemic uncertainty in robotics
by combining Bayesian belief networks with MCD. Bertoni et al. [66] estimated the
epistemic uncertainty for Monocular 3D Pedestrian Localization using MCD. In [67],
MCD is used to estimate the epistemic uncertainty in an encoder-decoder framework
with long-short-term-memory (LSTM) for time series forecasting and anomaly detec-
tion using Uber data. Xiao and Wang [11] utilized MCD to estimate the epistemic
uncertainty for natural language processing tasks.

2.1.3. Markov chain Monte Carlo (MCMC)

MCMC is another popular technique to approximate inference and represents
epistemic uncertainty. It first samples from arbitrary distributions and then performs
a stochastic transition governed by the current state and the desired distribution,
e.g., true posterior. In other words, MCMC starts with generating samples in an
iterative and Markov chain fashion. Markov chain is a distribution over random
variables that undergoes a transition from one state to another one in the space
state. At each iteration, the model selects samples based on pre-specified rules. This
process is iterated T times. Finally, the desired distribution is approximated using
the generated samples. It aims to sample for a set of independent observations x ∈ D
from the posterior distribution θ [68]:

p(θ|D) ∝ exp(−U(θ)), (8)

where U is the potential energy function defined by:

U = −
∑
x∈D

log p(x|θ)− log p(θ). (9)

Hamiltonian (hybrid) MC (HMC) [54, 69] is the first one that involves using the
MCMC sampling technique for Bayesian neural networks. It explores the state space
based on the Metropolis-Hastings framework instead of a random-walk strategy to
sample from θ. As such, it introduces a set of auxiliary momentum variables, denoted
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by r, from a Hamiltonian system. In order to sample from p(θ|D), HMC generates
samples from a joint distribution of (θ, r) as follows:

π(θ, r) ∝ exp

(
− U(θ)− 1

2
rT M−1r

)
, (10)

where M , which is a mass matrix and often set to the identity matrix, together with
r indicates a kinetic energy term. The Hamiltonian function in given by:

H(θ, r) = U(θ) +
1

2
rT M−1r. (11)

The Hamiltonian dynamics is simulated by HMC to generate samples, as follows:{
dθ = M−1r dt
dr = −5 U(θ) dt

. (12)

Despite the success of HMC, it requires processing all data samples at each itera-
tion, which is computationally expensive specifically for large data sets. To alleviate
this issue, many algorithms have attempted to use a mini-batch strategy. In this re-
gard, Welling and Teh [70] proposed stochastic gradient descent (SGD) HMC method
that combines SGD with first-order Langevin dynamics. Later, Chen et al. [68] proved
that using second-order Langevin dynamics can explore the space of solutions and
provide good generalization. In addition, they added friction into the SGD-HMC to
update momentum and evaluated the impact of the noisy gradient. Teye et al. [71]
showed that training deep models with batch normalization is equal to that of esti-
mating the inference in Bayesian networks. Chandra et al. [72] proposed Bayesian
graph deep learning techniques that use MCMC samples with Langevin-gradient.
Mandt et al. [73] used SGD with a constant learning rate (constant SGD) to sim-
ulate the Markov chain with a stationary distribution and showed that constant
SGD can approximate the posterior inference. Cyclical stochastic gradient MCMC
(SG-MCMC) [74] used a cyclical stepsize schedule to better approximate posterior
distributions. However, using a mini-batch strategy, that employs a small set of sam-
ples at each iteration, adds noise to the network and increases its uncertainty. To
alleviate this, Luo et al. [75] used Nosé-Hoover thermostats [76] to deal with the gener-
ated noise. The resulting method is called thermostat-assisted continuously tempered
HMC.

Maddox et al. [77] introduced stochastic weight averaging Gaussian (SWA-Gaussian)
to represent uncertainty and calibrate deep models. Specifically, SWA-Gaussian uses
SWA [78] to compute the mean of SGD iterates with a high constant learning rate in
order to improve the generalization in deep models. In addition, the Gaussian poste-
rior approximation over the model weights is approximated by using mean SWA and
computing a low-rank plus diagonal approximation to the covariance of the iterates.
Garg and Awate [5] proposed a perfect/exact MCMC for generic Markov random
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fields to compute the uncertainty in multi-label segmentation. Specifically, they com-
bined two schemes, namely coupling from the past [79] and bounding-chain [80], to
propose perfect-sample label images. Hernández et al. [81] combined dropout and
HMC to improve the predictive uncertainty in classification problems. Akkoyun et
al. [82] applied MCMC into a Bayesian framework to predict maximum aneurysm di-
ameter. In addition, Cai et al. [83] developed proximal MCMC techniques to estimate
uncertainty in radio interferometric imaging.

2.1.4. Laplace approximation

As another powerful approximating method, Laplace approximation tackles the
problem of representing a complex posterior over the parameters of neural networks by
assuming it as a Gaussian distribution [84]. Different from variational approximation
methods, Laplace approximation is a local approximation technique that pays more
attention to the trend around the mode of the posterior distribution. As described
in [85], the expectation µ of Gaussian distribution q(θ) is the extreme point θ∗ of
posterior distribution p(θ|D). Thus, µ is determined by the first derivative of p(D, θ)
which meet the condition p(θ|D) ∝ p(D, θ), while the covariance matrix Σ is obtained
by the second-order Taylor expansion of ln p(D, θ) centering on θ∗:

ln p(D, θ) ≈ ln p(D, θ∗)− 1

2
(θ − θ∗)TH(θ − θ∗), (13)

where H is Hessian matrix which defined as:

H = −∂
2 ln p(D, θ)

∂θ2

∣∣∣∣
θ=θ∗

. (14)

Then, the posterior p(θ|D) is approximated as Gaussian q(θ) with covariance
matrix Σ = H−1:

p(θ|D) ≈ q(θ) ∼ N(θ|θ∗,H−1). (15)

Unfortunately, it is infeasible to compute the Hessian matrix for deep neural net-
works with a significant number of parameters. Relatively, constructing a diagonal
matrix in curvature approximating for a neural network is more calculable and effi-
cient. Kirkpatrick et al. [86] used diagonal Laplace approximations to enhance the
capability of deep neural networks for sequentially learning tasks by preserving the
weights important for previous tasks. Subsequently, Ritter et al. [87] first pointed out
the limitation of diagonal approximation when some weights exhibit high covariance,
then suggested the effectiveness of Kronecker Factorization for acquiring covariance
in Laplace approximation and successfully applied in learning online scenarios [88].

More recently, Lee et al. [89] developed a sparsification technique using a low-rank
approximation to demonstrate the effectiveness of scaling Laplace approximation to
large-sized data sets (e.g., ImageNet) and architectures. Schillings et al. [90] discussed
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the convergence of Laplace approximation in Hellinger distance. Margossian et al. [91]
derived an adjoint method to promote the computation of Monte Carlo with an
embedded Laplace approximation in order to marginalize out weights. Daxberger
et al. [92] obtained posteriors by performing inference over a small subset of model
weights and outlined the procedure for scaling the linearized Laplace approximation
to large neural network models within the framework of subnetwork inference. A
new idea, L2M [93], estimated uncertainty by expanding Laplace approximation with
gradient raw second moment estimation in optimizers.

2.2. Ensemble methods

Ensemble learning is generally aimed at training multiple models that are com-
bined to make a final prediction. In a regression context, simple averaging is a com-
monly used way of combining multiple models fi : X → Y for i = 1, . . . ,M in an
ensemble fens : X → Y , as illustrated below:

fens(x) =
1

M

M∑
i=1

fi(x). (16)

In a classification context, majority voting is a commonly used rule of fusing
multiple classifiers to finally output a class c = 1, 2, . . . , k, as illustrated below:

fens(x) = arg max
c

M∑
i=1

I(fi(x) = c). (17)

In general, it often appears that the outputs of multiple models in an ensemble are
different, where the variance of the outputs is considered as an indicator of epistemic
uncertainty in a prediction [20, 94, 95]. On the other hand, the epistemic uncertainty
is also referred to as ensemble ambiguity (diversity), which is viewed as a key factor
of successful ensemble learning [96, 97]. In this section, we will introduce the general
concept of ensemble diversity and analyze the importance of the diversity in terms
of improving the ensemble performance. Moreover, we will provide a review of those
existing methods of diversity quantification and creation.

2.2.1. General Concept of Ensemble Diversity

Ensemble diversity is generally related to the generalization error of an ensem-
ble. In a regression context, the generalization error can be decomposed through two
well-known schemes, namely, ambiguity decomposition [98] and bias-variance decom-
position [99].

In terms of ambiguity decomposition, given a weighted averaging ensemble (il-
lustrated in Eq. (18)), the ensemble error (fens − y)2 can be decomposed into two

terms, i.e., the average error of the based models 1
M

M∑
i=1

wi(fi − y)2 and the ensemble

ambiguity (diversity) 1
M

M∑
i=1

wi(fi − fens)2, as illustrated in Eq. (19).
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fens(x) =
M∑
i=1

wifi(x), (18)

where wi is the weight of each base model fi with the constraints 0 ≤ wi ≤ 1 and
M∑
i=1

wi = 1, i.e., fens is essentially a convex combination of the M base models.

(fens − y)2 =
1

M

M∑
i=1

wi(fi − y)2 − 1

M

M∑
i=1

wi(fi − fens)2. (19)

According to Eq. (19), it is straightforward to derive that the ensemble error is
guaranteed to be less than or equal to the average error of the base models, i.e., the
higher the diversity among the base models is created, the larger the error reduction
would be achieved. However, the increase of the diversity may also cause the increase
of the average error of the base models [100], so it is necessary to get the reasonable
trade-off between the diversity and the average error.

As discussed in [100], the ambiguity decomposition does not take into account
the possible changes of the training data distribution or the initialized weights distri-
bution. However, it is essential to measure effectively the expected error on unseen
data given a specific distribution of training data or initialized weights. From this
point of view, the bias-variance decomposition scheme is considered as a useful tool
for analyzing the generalization error of an ensemble, given that this scheme exactly
takes into account the above mentioned changes of distributions.

The general formulation of the bias-variance decomposition is shown in Fig. 1
in Section 1. Based on this formulation, three concepts have been defined in [100],
namely, the averaged bias, the averaged variance and the averaged co-variance of the
M base models, as illustrated below:

bias =
1

M

M∑
i=1

(E{fi} − y), (20)

var =
1

M

M∑
i=1

E{(fi − E{fi})2}, (21)

covar =
1

M(M − 1)

M∑
i=1

∑
j 6=i

E{(fi − E{fi})(fj − E{fj})}. (22)

According to Eq. (20)-(22), we can obtain the bias-variance-co-variance decompo-
sition of the mean square error of an ensemble fens, as shown below:

E{(fens − y)2} = bias
2

+
1

M
var + (1− 1

M
)covar. (23)
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Eq. (23) indicates that the mean square error of an ensemble fens generally depends
on the correlation between those base models, where the correlation is quantified
through the third term (the averaged co-variance of the base models). Therefore, it
is expected to decrease the co-variance, without affecting the bias and variance [100].

Moreover, the connection between the ambiguity decomposition and the bias-
variance-co-variance decomposition was disclosed in [100]. In particular, according
to Eq. (19), the ensemble error (fens − y)2 can be decomposed into the average error

of M base models 1
M

M∑
i=1

wi(fi − y)2 and the ensemble ambiguity 1
M

M∑
i=1

wi(fi − fens)2.

While assuming that the base models are equally weighted for simplicity, the right
hand side of Eq. (19) can be substituted into the left hand side of Eq. (23) to obtain
a new formulation as below:

E{ 1

M

M∑
i=1

(fi − y)2 − 1

M

M∑
i=1

(fi − fens)2} = bias
2

+
1

M
var + (1− 1

M
)covar. (24)

Based on Eq. (24), the following formulations can be obtained after some deriva-
tions [100]:

E{ 1

M

M∑
i=1

(fi − fens)2} =
1

M

M∑
i=1

E{(fi − E{fi})2} − E{(fens − E{fens})2}

= var − var(fens) = var − 1

M
var − (1− 1

M
)covar

(25)

E{ 1

M

M∑
i=1

(fi − y)2} =
1

M

M∑
i=1

(E{fi} − y)2 +
1

M

M∑
i=1

E{(fi − E{fi})2} = bias
2

+ var

(26)
It can be seen from Eq. (25)-(26) that the variance term var relates to both

the average error of base models and the ensemble ambiguity, so the subtraction of
Eq. (25) from Eq. (26) gets Eq. (23) back and cancels out the variance term var
(not 1

M
var). Moreover, the fact that the variance term var appears in both Eq. (25)

and Eq. (26) indicates that it is generally difficult to simply maximize the ensemble
ambiguity without affecting the bias term bias [100, 101].

The above two error decomposition schemes were generally designed for regression
problems and can not be directly applied to classification tasks. In terms of the
ambiguity decomposition, Eq. (19) derived in a regression setting can be transformed
into Eq. (27) [102] to suit a classification task, while assuming that the M base
classifiers are fused by combining the class probability values estimated by these
classifiers through using the product rule [101]. In particular, the KL divergence
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DKL(y||fens) of the ensemble fens from the target distribution y of class probability
is defined as the ensemble error, which can be decomposed into two terms, namely,

the average KL divergence 1
M

M∑
i=1

DKL(y||fi) of the class probability estimates of base

classifiers from the target distribution y and the ambiguity 1
M

M∑
i=1

DKL(fens||fi) of the

ensemble fens.

DKL(y||fens) =
1

M

M∑
i=1

DKL(y||fi)−
1

M

M∑
i=1

DKL(fens||fi). (27)

According to Eq. (27), the KL divergence DKL(y||fens) of the ensemble fens from
the target distribution y is guaranteed to be less than or equal to the average KL

divergence 1
M

M∑
i=1

DKL(y||fi) of the class probability estimates of the M base classifiers,

i.e., the higher the ambiguity 1
M

T∑
i=1

DKL(fens||fi) of ensemble fens is created, the

higher the performance improvement would be achieved.
However, the combination of multiple classifiers can be achieved in various ways,

e.g., majority vote and average of class probability distributions, which indicates that
Eq. (27) does not provide a general formulation of ensemble diversity for classification
tasks.

In terms of the bias-variance decomposition, as discussed in [101], Eq. (23) was
derived only for regression problems and similar results cannot be obtained for classifi-
cation tasks. Therefore, Eq. (23) can not be used as a general formulation of ensemble
diversity either. Those methods of diversity quantification in a classification context
will be introduced in Section 2.2.2. Moreover, there is not yet a formally accepted
definition of the diversity term [101, 103, 96, 97], so existing methods of diversity
creation were designed heuristically using different definitions and the methods will
be reviewed in Section 2.2.3.

2.2.2. Review of Methods of Diversity Quantification

In a classification context, if the ensemble prediction is made by averaging the class
probabilities estimated by M classifiers, then the ensemble diversity can be measured
based on Tumer and Ghosh’s framework [104, 105]. In particular, suppose that each
class c has a true posterior probability Pd(c|x) and another posterior probability
Pei(c|x) estimated by a classifier fi, given a one-dimensional feature vector x. In
this context, the classification error can be decomposed into the Bayes error and the
added error, where the Bayes error is irreducible and the added error ηei(c|x) results
from the incorrect estimation of the class posterior probability as illustrated below:

Pei(c|x) = Pd(c|x) + ηei(c|x). (28)
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If it is assumed that the errors of posterior probability estimation on two classes
a and b are independent and identically distributed random variables [105] with zero
mean and variance σ2

ηi
, then the expected added error of classifier fi in distinguishing

the two classes can be defined as shown below:

Eadd,i =
σ2
ηi

P ′d(a|x)− P ′d(b|x)
, (29)

where P ′d(a|x) and P ′d(b|x) are the derivatives of the true posterior probabilities of
classes a and b. In the case of combing the posterior probabilities estimated by
M classifiers, the expected added error can be measured in the way as illustrated
below [105]:

Eensemble
add = Eadd(

1 + δ(M − 1)

M
). (30)

In Eq. (30), δ is a correlation coefficient used for measuring the correlation among
the estimation errors made by M base classifiers for each class and is thus a way of
quantifying the ensemble diversity. If the estimation errors of the M classifiers are
independent, i.e., δ = 0, then the expected added error of the ensemble would be
1
M

as same as the added error of each of the M base classifiers (that are assumed
to have the same estimation error). However, if the estimation errors of the M base
classifiers are perfectly correlated, i.e., δ = 1, then the expected added error of the
ensemble would be the same as the added error of each base classifier. Moreover, if the
estimation errors of the M base classifiers are negatively correlated, i.e., δ < 0, then
the expected added error of the ensemble can be reduced even more in comparison
with the amount of the error reduction in the case of δ = 0 [96].

In addition to the average rule of fusion, i.e. averaging the class probabilities
estimated by multiple classifiers, majority voting is also a popular rule of combining
classifiers. Since the outputs of the M classifiers in a majority vote ensemble are not
numeric, the correlation coefficient δ used in Eq. (30) can not be applied directly.
Instead, some researchers have tried to define the classification error diversity quali-
tatively. For example, a scheme has been suggested in [106] to classify error diversity
into four levels as follows:

• Level 1: At most one of the base classifiers in an ensemble makes incorrect
classification for each instance.

• Level 2: The majority of the base classifiers in an ensemble make correct clas-
sification for each instance.

• Level 3: At least one of the base classifiers in an ensemble make correct classi-
fication for each instance.

• Level 4: All of the base classifiers in an ensemble make incorrect classification
for each instance.
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Furthermore, a decomposition of the majority vote error Emaj into the average
error Eavg of the base classifiers, good and bad diversity was introduced in [102],
where good diversity has a positive impact on the error reduction and bad diversity
results in a negative impact. In this context, Level 1 and Level 2 diversity would be
classified as good ones whereas Level 3 and Level 4 diversity would be classified as
bad ones. In the setting of binary classification, i.e., y ∈ {+1,−1}, the majority vote
error decomposition is shown as below:

Emaj =
∑
x

Eavg(x)−
∑
x

y(x)f̄(x)
1

M

M∑
i=1

Disi(x), (31)

where the disagreement Disi between a base classifier fi and the ensemble f̄ is mea-
sured using:

Disi(x) =
1

2
(1− fi(x)f̄(x)). (32)

In Eq. (31), the sign of y(x)f̄(x) essentially reflects whether the ensemble clas-
sification is correct or not, i.e., y(x)f̄(x) = +1 represents correct classification and
y(x)f̄(x) = −1 indicates incorrect classification. Therefore, Eq. (31) can be rewritten
as below:

Emaj =
∑
x

Eavg(x)−
∑
x+

1

M

M∑
i=1

Disi(x) +
∑
x−

1

M

M∑
i=1

Disi(x). (33)

where the second term
∑
x+

1
M

M∑
i=1

Disi(x) denotes good diversity and the third term∑
x−

1
M

M∑
i=1

Disi(x) denotes bad diversity.

Table 2: Contingency table for classifiers fi and fj

fi correct(1) fi incorrect(0)

fj correct(1) N11 N10

fj incorrect(0) N01 N00

Those representative methods of the diversity quantification have been analysed
in [96, 101], which are put into two main categories, namely, pairwise measures and
non-pairwise measures. In particular, pairwise measures are generally designed by
involving calculation based on a contingency table shown in Table 2 for a pair of
classifiers fi and fj, whereas non-pairwise measures generally involve counting the
number l(x) of classifiers that correctly classify sample x and calculating the relevant
probability P (l(x)).
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Table 3: Summary of Diversity Measures

Name Symbol ↑/↓ P Equation Range

Q-statistic Q (↓) Y Qi,j = N11N00−N10N01

N11N00+N10N01 [−1, 1]

correlation coefficient ρ (↓) Y ρi,j = N11N00−N10N01√
(N11+N10)(N01+N00)(N11+N01)(N10+N00)

[−1, 1]

disagreement measure dis (↑) Y disi,j = N01+N10

N11+N10+N01+N00 [0, 1]

double-fault measure DF (↓) Y DFi,j = N00

N11+N10+N01+N00 [0, 1]

entropy ENT (↑) N ENT = 1
|DS|

∑
x∈DS

1
M−bM/2cmin{l(x),M − l(x)} [0, 1]

Kohavi-Wolpert variance KW (↑) N KW = 1
|DS|M2

∑
x∈DS

l(x)(M − l(x)) [0, 1]

inter-rater agreement IRA (↓) N IRA = 1−
1
M

∑
x∈DS

l(x)(M−l(x))

|DS|(M−1)p̄(1−p̄) [0, 1]

difficulty measure DM (↓) N DM = V ar( l(x)
M

) [0, 1]

generalized diversity GD (↑) N GD = 1−

M∑
l(x)=1

M−l(x)
M

(M−l(x)−1)
(M−1)

p(l(x))

M∑
l(x)=1

M−l(x)
M

p(l(x))

[0, 1]

coincident failure diversity CFD (↑) N CFD =


0, p(0) = 1.0;

1
1−p(0)

M∑
l(x)=1

l(x)
M−1

p(l(x)), p(0) < 1

 [0, 1]

Those popularly used pairwise measures include the Q-statistic Q, the correlation
coefficient ρ, the disagreement measure dis and the double-fault measure DF . Repre-
sentative non-pairwise measures of diversity include entropy ENT , Kohavi-Wolpert
variance KW , measurement of inter-rater agreement IRA, difficulty measure DM ,
generalized diversity GD and coincident failure diversity CFD. More details of these
diversity measures are summarised in Table 3.

In terms of Q-statistics, the value of Qi,j is ranged in [−1, 1] and is expected to
be 0 for two statistically independent classifiers fi and fj. While the two classifiers
provide the same outputs correctly, the value of Qi,j tends to be positive [96]. In
contrast, if the two classifiers make incorrect classifications on different instances, the
value of Qi,j would be rendered negative [96]. Therefore, it can be concluded that
the lower the value of Qi,j resulting from a pair of classifiers fi and fj, the higher the
diversity between fi and fj is created.

The value of the correlation coefficient ρi,j is also ranged in [−1, 1]. According to
formulations of Qi,j and ρi,j, it is straightforward to identify that the values of Qi,j

and ρi,j always obtain the same sign but |ρi,j| ≥ |Qi,j| [96, 101].
According to the formulations of the disagreement measure disi,j and the double-

fault measure DFi,j, it is easy to see that both disi,j and DFi,j are ranged in [0, 1].
However, disi,j and DFi,j aim at measure of diversity in different levels (according to
the scheme suggested in [106] for classifying the diversity into four different levels),
i.e., disi,j shows the percentage of samples that are classified incorrectly by only one
of the two base classifiers fi and fj, whereas DFi,j is the proportion of samples that
are mis-classified by both classifiers.

While it is needed to measure the diversity among multiple classifiers, the above-
introduced pairwise measures can be used by averaging the values obtained for all
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those pairs of classifiers. For example, theQ statistic can be used for diversity measure
through averaging the values of Q obtained for all classifier pairs, as shown below:

Qavg =
2

M(M − 1)

M−1∑
i=1

M∑
k=i+1

Qi,j. (34)

All the non-pairwise measures are ranged in [0, 1]. In the formulations of ENT ,
KW and IRA, |DS| represents the number of samples in a data set DS and l(x)
denotes the number of classifiers that correctly classify sample x. In addition, p̄ used
in the formulation of IRA denotes the average accuracy of base classifiers.

In terms of the entropy ENT , the minimum value is obtained when all the M clas-
sifiers provide the same outputs and the maximum value is obtained when bM/2c clas-
sifiers consistently classify sample x as one class and the other M −bM/2c classifiers
consistently output another class for x. As emphasized in [96], the Kohavi-Wolpert
variance KW is correlated to the average disagreement measure disavg by a coefficient
M−1
2M

, i.e., KW = M−1
2M

disavg. Moreover, the inter-rater agreement IRA is correlated
to both KW and disavg [96], i.e., IRA = 1− M

|DS|(M−1)p̄(1−p̄)KW = 1− 1
2p̄(1−p̄)Disavg.

In terms of the difficult measure DM , it is generally expected that each instance is
difficult for some classifiers but is easy for the other classes to encourage the ensemble
diversity [96, 101]. The minimum of DM is obtained while each instance is easy for
the majority of the base classifiers, and the maximum of DM is obtained while each
instance is either easy or difficult for all the base classifiers. The generalized diversity
GD is designed based on the argument that the incorrect output of one classifier is
always accompanied by the correct output of another classifier for maximizing the
diversity [107]. Furthermore, the coincident failure diversity CFD is defined as a
modification of GD [107], which expects that each instance can be classified correctly
by some of the base classifiers. While each instance is classified incorrectly by at most
one base classifier, the maximum of CFD would be reached, i.e., the highest level
of diversity is reached according to the scheme suggested in [106] for identifying the
level of diversity.

More recently, Yin et al presented a formulation of diversity learning in [108] as
shown below:

min
w
floss(w)− βfdiversity(w) s.t. w ≥ 0 (35)

where the diversity is treated as a regularization term, β is used as a control parameter
for the diversity regularization and w represents the model parameter. A formulation
of sparsity learning was also presented in [108] for the purpose of ensemble pruning.

Based on the work presented in [108], more studies have been conducted later on
by using diversity as a regularization term [97, 109, 110, 111, 112, 113, 114], such that
the ensemble accuracy and diversity can be optimized simultaneously. In particular,
Cavalcanti et al [97] proposed to combine different pairwise measures of diversity for
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ensemble pruning, while the genetic algorithm is used to optimize the combined diver-
sity to obtain several candidate ensembles that are evaluated using the validation data
for selecting the final ensemble. Ahmed et al [109] made an empirical investigation on
whether combining the ensemble accuracy with several popular diversity measures is
a better evaluation function than using only the accuracy in the setting of ensemble
pruning. Dai et al pointed out in [110] that accuracy and diversity are closely related
to each other and should be considered simultaneously for ensemble pruning. Accord-
ingly, they proposed three new measures for ensemble pruning, namely, Simultaneous
Diversity & Accuracy, Diversity-Focused-Two and Accuracy-Reinforcement. Dvornik
et al [111] proposed to encourage the ensemble diversity by enabling the classifiers
to output consistently the highest probability for the ground truth class label and to
rank inconsistently the other classes by making different classes obtain the second-
highest probability (or other lower-ranked probability). Zhang et al [112] proposed
to construct a diversified ensemble layer for combining multiple neural networks as
individual modules, while the cross entropy loss of each individual module and the
diversity among different modules are optimized simultaneously. Bian et al [113] for-
mulated the relationship between the diversity and the ensemble performance in the
context of the theorem of margin and generalization and proposed two diversity-driven
pruning methods to utilize the formulated relationship, leading to the enhancement
of diversity and the reduction of the ensemble size without much loss of performance.
Wu et al [114] revised those representative diversity measures and introduced focal
model based measures of diversity for improving further the correlation between the
diversity and the prediction accuracy. Overall, all of the above-reviewed works indi-
cate that effective selection and combination of diversity measures would be essential,
such that simultaneous optimization of the ensemble accuracy and diversity can be
achieved effectively.

2.2.3. Review of Methods of Diversity Creation

In general, ensemble diversity can be created using various types of methods. In
this section, we provide a detailed review of diversity creation methods that fall in the
category of data input manipulation. We also briefly introduce other methods in the
following categories: data output manipulation, manipulation of model architectures,
differentiation of starting points in hypothesis space and diversification of learning
strategies.

In the setting of data input manipulation, some popularly used methods include
Bagging [115], Random Subspace [116] and Boosting [117]. Bagging involves train-
ing M independent classifiers on M different sample sets drawn by random sampling
from the original training set with replacement over M iterations. In this setting,
the diversity is created heuristically through diversifying the training samples, which
contributes to the variance reduction in the context of bias-variance trade-off [118].
Moreover, two variants of Bagging, namely, Dagging [119, 120] and Wagging [118],
were developed by setting different ways of diversifying the training samples. In
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Fig. 4: Methods of diversity creation in Ensemble Learning.

particular, Dagging involves drawing M equal-sized sample sets by partitioning the
original training set into M disjoint training subsets, whereas Wagging involves learn-
ing each of the M base classifiers from the entire training set but each training sample
is assigned a random weight.

Random Subspace can be viewed as a way of diversity creation through feature
sampling, which involves training M independent classifiers on M different feature
subsets produced by random sampling of features from the full feature set without
replacement. Therefore, the Random Subspace method aims at creating diversity
heuristically through diversifying the features. A variant of Random Subspace, which
is referred to as ‘Attribute Bagging’ [121], was designed to require a suitable subspace
size to be set as a hyper-parameter for drawing M feature subsets. However, in
the setting of Random Subspace, all the base classifiers are learned from the entire
training set without diversity creation through manipulation of training samples. In
order to better enhance the diversity among base classifiers through the combination
of Bagging and Random Subspace [122], the Random Forest method [123] has been
developed and used as a powerful decision tree ensemble approach [124].

In contrast to Bagging and Random Subspace that create diversity heuristically
leading to independent classifiers, the Boosting approach aims at creating diversity
explicitly by training one classifier that aims at correcting the errors resulting from
the classifier trained at the previous iteration, i.e., training negatively correlated
base classifiers. In particular, two popular methods of Boosting are referred to as
‘Adaptive Boosting’ (AdaBoost) [125] and ‘Gradient Boosting’ [126]. The former
method involves diversity creation through re-weighting samples at each iteration
i of learning a base classifier fi. In other words, at the end of each iteration i,
the weight of each correctly classified sample is decreased and the weight of each
misclassified sample is increased, so the learning of classifier fi+1 will focus more on
those misclassified samples. The re-weighting of each sample e is operated in the way
shown below:
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ωi+1
e =

ωieexp(−αiyefi(xe))
Zi

=

{
ωieexp(−αi), if ye = fi(xe)
ωieexp(αi), if ye 6= fi(xe)

}
.

(36)

In Eq. (36), ωie is the weight of sample e updated at iteration i, Zi is a normal-
ization factor (Eq.(37)), αi is the weight of classifier fi (Eq. (38)) measured based on
the classification error rate εi (Eq. (39)), xe represents the feature vector of sample e
and ye represents the ground truth label of sample e.

Zi =
N∑
e=1

ωieexp(−αiyehi(xe)), (37)

αi =
1

2
ln(

1− εi
εi

), (38)

εi =

∑N
e=1 ω

i
e · I(ye 6= fi(xe))∑N

e=1 ω
i
e

. (39)

In Eq. (39), I(·) is an indicator function comparing the ground truth label ye and
the output label fi(xe) for each sample e.

According to Eq. (36)-(39), it can be derived that classifier fi trained at iteration i
must classify correctly as many as possible those samples misclassified by the ensemble
f̄i−1 of classifiers trained at the previous iterations, in order to reduce the error rate εi.
Also, due to the case that classifier fi pays less attention to those samples that were
classified correctly by the ensemble f̄i−1 of classifiers trained at the previous iterations,
some of such samples may be misclassified by classifier fi. Therefore, the AdaBoost
method is considered to be able to create diversity among classifiers explicitly.

In contrast to AdaBoost, the Gradient Boosting method is aimed at training a
classifier at iteration i to fit the negative gradient (residual) estimated at iteration i−1,
based on the error rate of the ensemble f̄i−1 of the classifiers trained at the previous
iterations. Moreover, any differential loss functions can be used in the setting of
gradient boosting, which overcomes the limitations of the AdaBoost method in terms
of the selection of loss functions. Based on the principle of the Gradient Boosting
method, a popular decision tree ensemble method, referred to as Gradient Boosting
Decision Trees (GBDT) [127], has been developed and used in many application
areas. In a regression context, as illustrated in Eq. (40), GBDT is essentially aimed
at training a decision tree fi at each iteration i by optimizing θi to fit the residual ri−1

resulting from the tree ensemble f̄i−1 obtained at iteration i − 1 for error reduction,
i.e., the better the decision tree fi fits the residual ri−1, the larger the error reduction
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would be achieved. As pointed out in [101], the error reduction is achieved primarily
through the bias reduction although the variance reduction can also be achieved.

L(y, f̄i−1(x) + fi(x; θi)) = (y − f̄i−1(x)− fi(x; θi))
2 = (ri−1 − fi(x; θi))

2. (40)

Based on the Bagging, Random Subspace and Boosting approaches, there have
been a variety of decision tree ensemble methods developed by introducing specific
ways of diversity creation. In particular, Dynamic Random Forest [124] (a variant of
Random Forest) involves training M decision trees on M training sets with different
weight distributions over those samples, where the weight ωie of each sample e at
each iteration i is set heuristically to be equal to the proportion of base classifiers
correctly classifying sample e to the total number of base classifiers obtained so far.
Rotation Forest [128] involves using Principal Component Analysis (PCA) [127] over
M iterations to draw M transformed feature sets, such that M diverse decision trees
are trained. Furthermore, Rotation Random Forest [129] was developed as a vari-
ant of Rotation Forest, which involves using PCA or Linear Discriminant Analysis
(LDA) [127] to transform each feature subset selected randomly for generating each
specific node of a decision tree. Extremely Randomized Trees (Extra-Tree) [130] in-
volves not only randomly selecting a feature subset for generating each specific node
of a decision tree but also randomly selecting a numeric value as the cut-point at the
tree node if the split attribute is continuous. Random Feature Weights for decision
tree ensemble construction [131] was designed to assign each feature a random weight
(ranged in [0, 1]) for training a decision tree at each iteration i. In this setting, M
different decision trees are trained using M feature sets with different weight distri-
butions over those features. Forest by Penalizing Attributes (Forest PA) [132] was
designed to assign each attribute Attr a weight heuristically at each iteration i, based
on the level of the tree (trained at iteration i− 1) in which the node (corresponding
to attribute Attr) is located.

In addition to the above introduced methods, it is also a popular strategy of
data input manipulation to create diversity through training multiple classifiers on
different sets of features extracted in different ways [133, 134]. In the era of deep
learning, a new type of decision tree ensemble referred to as ‘Deep Forest’ [103, 135]
has become more popular. The pilot study was reported in [103], which introduces the
gcForest method that aims at producing a cascade of decision forests, i.e., creating an
ensemble of ensembles. In particular, the major idea of gcForest is to train a model
that involves multiple layers and multiple decision forests (an ensemble of decision tree
ensembles) in each layer, where the feature space is dynamically changed every time a
new layer is added. In other words, some new features, which are generated as outputs
in each layer lri, are used as inputs for the next layer lri+1, where all the original
features are kept for each layer. In this context, the ensembles of decision forests in
different layers are produced using different sets of features, so those ensembles of
decision forests trained in different layers are considered to involve diversity created
through diversification of feature sets. Based on gcForest, some variants have been
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developed later on through setting different strategies of feature space update, such
as multi-layered GBDT [136], Deep Extra-Tree [137], Deep Multigrained Cascade
Forest [138], Densely Connected Deep Random Forest [139], Rotation-based deep
forest [140], Siamese Deep Forest [141].

In terms of data output manipulation, a popular way is to transform a multi-class
classification problem into a number of binary classification problems through binary
decomposition. Popular strategies of decomposition include one-vs-one (OVO) [142],
one-vs-rest (OVR) [143], many-vs-many (MVM) strategy [142]. In the setting of
binary decomposition, an ensemble of binary classifiers is created and the error cor-
recting output codes (ECOC) strategy [144] is commonly used for fusing the outputs
of the binary classifiers to finally classify a new sample. Also, ECOC has shown
its effectiveness in improving the diversity between binary classifiers in the setting
of end-to-end neural network training [145]. More recently, N-nary decomposition
has been proposed in [146] as a generalization of binary decomposition. In addition,
two other representative ways of output manipulation for diversity enhancement are
referred to as ‘Output Flipping’ and ‘Output Smearing’, which have been proposed
and experimented in [147].

In addition to data manipulation, some other ways can also be taken in practice for
diversity creation, which include manipulation of model architectures, differentiation
of starting points in the hypothesis space and diversification of learning strategies.
The manipulation of model architectures can be applied to decision tree learning,
leading to a tree ensemble that contains both binary and multi-way trees, e.g., com-
bining a binary tree trained by CART and two multi-way trees trained by ID3 and
C4.5 [148]. Also, in the setting of neural network learning, different types of networks
can be produced to form an ensemble through manipulating the network architec-
tures [112]. Differentiation of starting points in the hypothesis space can be applied
to neural network learning through random initialization of weights [100] over mul-
tiple iterations for training complementary models. In the setting of decision tree
learning, starting points in the hypothesis space can be differentiated by selecting
different attributes for the root nodes of the trees [149]. In addition, diversification of
learning strategies can be achieved by training heterogeneous classifiers through using
different learning algorithms [103, 135], or using different hyper-parameter settings of
the same learning algorithm, e.g., combination of various loss functions [150].

3. Applications

This section discusses the importance of estimating epistemic uncertainty in sev-
eral popular applications. These applications include computer vision and natural
language processing (NLP). In the following subsections, we first review the appli-
cations of epistemic uncertainty learning in computer vision, and then explain how
epistemic uncertainty learning has applied to NLP.

3.1. Computer vision
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In computer vision, uncertainty is taken into account in variety of applications such
as image classification [151, 152], segmentation [83, 153], camera relocalization [154],
object detection [155, 156, 157], image/video retrieval (restoration) [158, 159], in the
setting of Bayesian and ensemble learning. Image classification and segmentation are
among the most popular applications of DL models. The former categorize all objects
in an image into a single class, while later aims to assign a label to each pixel in a
single image in which pixels from a label share specific properties.

Both classification and segmentation have been widely used for medical image
analysis. Although the state-of-the-art supervised learning models can produce pre-
cise predictions, they are uncertain about the quality of their predictions. Since the
size and shape of diseases are different, and they locate across the patient’s body, it is
vital to address uncertainties and make predictions interpretable and reliable. Known
et al. [153] proposed an uncertainty estimation method using the Bayesian neural
networks for stroke lesion segmentation. This method finds a relationship between
variance and means of a multi-modal random value. Abdar et al. [151] integrated an
ensemble MCD into a multi-model learning framework, which receives chest X-ray
(CXR) and computed tomography (CT) images as inputs, to estimate uncertainty in
identifying COVID19 cases. Study [160] proposed an uncertainty-aware framework
for grading diabetic retinopathy. This framework built a Gaussian sampling approach
based on multiple instance learning strategies to infer the grade of images.

Object detection is another popular application of supervised learning models
that are being extensively used in autonomous cars. Any mistake in their predictions
may cause catastrophic damages or even fatality; therefore, it is vital to estimate the
reliability of their predictions. In this regard, prediction surface uncertainty [156],
denoted as PURE, was proposed to estimate the predictive uncertainty. This model
formulates the object detection task as a regression problem to locate objects in
a 2D-camera view image and uses MCD to estimate the uncertainty of the model.
Study [161] proposed an uncertainty-aware model for the detection of both salient and
camouflaged objects. Specifically, the contradicting attributes of these two tasks were
modeled using a similarity measure technique. In addition, an adversarial learning
model was proposed to compute the network confidence score.

As the basis of downstream image classification and segmentation tasks, image
restoration is an inverse image degradation process. Specifically, it processes the
degraded image caused by the imaging device subject to external interference and re-
stores a high-quality image approximating the original image before being degraded.
In image restoration tasks, the degraded images are samples with high-level aleatoric
uncertainty. Study [158] estimated uncertainty resulting from the undersampled
source data. It enhanced the quality of reconstructed images by utilizing a specific
network branch to study inherent aleatoric uncertainty arising from noise data. While
epistemic uncertainty was superb at estimating the reliability of restored images, sat-
isfying the requirements of safety-critical fields, such as magnetic resonance (MR)
images reconstruction. As Begoli et al. [162] concluded that understanding predic-
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tion system structure and defensibly quantifying uncertainty is significantly beneficial
for medical AI applications. Tanno et al. [163] combined a 3D subpixel-CNN based
framework with Bayesian image quality transfer (IQT) [164] to solve diffusion MRI
reconstruction problems. They described intrinsic uncertainty as an irreducible vari-
ance of mapping low-resolution(LR) to high-resolution(HR) images and defined the
degree of ambiguity in the model parameters as parameter uncertainty captured by
variational dropout. Subsequently, Schlemper et al. [165] introduced MCD into recon-
struction networks, demonstrating the competitive performance of quantifying epis-
temic uncertainty by utilizing Bayesian methods, especially dealing with test samples
which out of training data distribution and superior to overparametrised deterministic
networks.

Epistemic uncertainty learning techniques have been applied to other image restora-
tion tasks such as denoising [166, 167], deraining [168]. For instance, Cheng et al. [166]
presented an MCMC-based Stochastic gradient Langevin dynamics (SGLD) frame-
work to approximate the posterior distribution to improve performance in image
denoising tasks. Serra et al. [167] proposed a fast variational inference framework for
solving the sparse representation-related problems in image processing and success-
fully applied it to the denoising problem.

In addition, several studies have addressed the epistemic uncertainty in analyzing
video streams. Huang et al. [169] utilized the similarity of consecutive frames,i.e., tem-
poral property, in videos. They proposed region-based temporal aggregation (RTA)
framework, which dramatically speeds up MC-dropout in video segmentation tasks,
to estimate uncertainty by calculating the moving average of prediction in consecu-
tive frames to simulate the sampling procedure. Study [170] is the first learning-based
solution for the bronchoscopic localization, which estimates uncertainty utilizing VI
to conduct video-CT registration.

3.2. Natural language processing

In natural language processing tasks, various metrics of uncertainty quantification
have been studied [11, 171, 172, 12, 13] in the context of either Bayesian deep learning
or ensemble learning.

In setting of Bayesian deep learning, Xiao and Wang [11] proposed novel methods
of quantifying epistemic and aleatoric uncertainties in sentiment analysis, named en-
tity recognition and language modeling tasks, and the experimental results show that
learning to quantify uncertainty is not only necessary in measuring the prediction
confidence but also useful in improving the model performance. Dong et al. [171]
outlined three major causes of uncertainty and designed various metrics for quan-
tifying these factors and estimating confidence scores that indicate the likelihood of
correct predictions made by a model. The experimental results reported in [171] show
that the proposed confidence model outperforms those methods that rely on confi-
dence scores based on posterior probability, and the interpretation of uncertainty is
also improved in comparison with simply using attention scores. Wang et al. [12]
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proposed to quantify the epistemic uncertainty for measuring the prediction confi-
dence of a neural machine translation model and their experimental results indicate
that the performance of machine translation can be improved significantly through
uncertainty-based estimation of prediction confidence.

In the setting of ensemble learning, Shen et al [172] investigated applying Gaus-
sian processes and random forests for measuring the uncertainty in document quality
predictions. The experimental results reported in [172] indicate that both Gaus-
sian processes and random forests can be used effectively in predicting the quality
of Wikipedia articles alongside an estimate of the uncertainty concerning the incon-
sistent outputs of various models. He et al. [13] proposed to improve the confidence
of winning score for generating accurate uncertainty score. In particular, a model,
which consists of three parts, namely, “mix-up”, “self-ensembling” and “distinctive-
ness score”, is proposed in the setting of deep neural networks for reducing the impact
of the overconfidence of winning score and also taking into account the impacts of
other types of uncertainty. The experimental results reported in [13] indicate that
accurate scores of uncertainty can be obtained using the proposed model and the
performance of text classification can be improved by assigning those uncertain pre-
dictions to domain experts.

4. Discussions and Conclusions

In this survey, we provided a hierarchical categorization of the epistemic (model)
uncertainty learning methods, i.e., Bayesian and ensemble methods. Bayesian meth-
ods formulate epistemic uncertainty as a posterior distribution over the weight param-
eters. Since these methods need to compute posterior, they cannot perform inference
analytically but can be approximated. In this regard, we discuss four widely used
approximation techniques, including variational inference (VI), Monte Carlo dropout
(MCD), Markov Chain Monte Carlo (MCMC), and Laplace approximation. Each of
these techniques has several advantages and disadvantages [36]. Among them, MCD
techniques are easy to implement and don’t need to change the training process.
However, they are not reliable for out-of-distribution samples and require multiple
sampling when performing inference. VI techniques benefit from stochastic optimiza-
tion methods and are suitable for big data sets. However, they are computationally
complex.MCMC techniques can approximate exact posterior, but they are very slow
and fail to converge. Although the Laplace approximation techniques have a sim-
ple procedure, they perform poorly due to ignoring the global properties of the real
posterior.

In contrast, ensemble methods formulate epistemic uncertainty as the variance of
the outputs of base models. The epistemic uncertainty is also referred to as ensem-
ble diversity, which is considered as a key factor of successful ensemble learning. In
particular, existing works have illustrated mathematically how the ensemble diversity
impacts the generalization performance in the context of bias-variance decomposi-
tion. There have been quite a lot of studies conducted for diversity quantification
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and creation, which have provided useful guidance on how to construct effectively
a high quality ensemble leading to the improvement of the generalization perfor-
mance. However, there is still not yet a formally accepted definition of the term
‘diversity’ [96, 101, 135], which indicates that different measures of diversity were
designed from different views of diversity and the ensemble diversity was usually cre-
ated in different heuristic ways [103]. Moreover, a great number of studies have been
conducted towards optimizing the ensemble accuracy and the diversity simultane-
ously and some works also involve introducing new metrics of diversity quantification
towards enhancing heuristically the relationship between the ensemble accuracy and
the diversity. However, the above-mentioned relationship still needs to be explored
further in depth to make it more clear how the simultaneous optimization of the
ensemble accuracy and the diversity can be achieved more effectively.

4.1. Research Gaps

Despite considerable progress in handling the epistemic uncertainty in supervised
learning models, there exist several challenging issues that must be addressed in the
future. We found several research gaps that need further investigations, as follows:

• Methodology: Although supervised learning approaches have been widely ap-
plied to solve computer vision and NLP problems, most of the existing studies
fail to quantify uncertainty in practice. They usually use ideal (standard) data
sets and inject a uniform random noise to evaluate their performance, which
is unrealistic in real-world problems. In practice, the performance of learning
from data sets are affected by uncertain distributions; therefore, it is crucial
to develop robust techniques for learning uncertainty. Moreover, in NLP, the
uncertainty on the contexts of words is naturally present in the text due to the
insufficient amount of data but very few studies on epistemic uncertainty have
been conducted in this aspect, which indicates the necessity of further studies
on uncertainty in text processing. In addition, most of the studies estimated the
uncertainty in supervised learning models, while little attention has been paid
to other learning strategies such as semi-supervised learning [173], multi-modal
learning [174], reinforcement learning [175], active learning [176], transfer learn-
ing [177], graph learning [178], etc. From the perspective of algorithm optimiza-
tion, choosing suitable epistemic uncertainty quantification methods according
to specific tasks and algorithm characteristics, and generating an optimized
learning strategy based on quantified uncertainty, is worth further exploration.
It may be an effective way to improve the performance of deep neural networks
with different structural characteristics and other classic learning algorithms.
For example, there are several excellent evolutionary computation algorithms,
such as particle swarm optimization [179, 180, 181], that have received extensive
attention from researchers in the post-deep learning era. However, there is little
research work on quantifying the uncertainty of such algorithms. We believe
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that the epistemic uncertainty learning techniques can be used to improve the
stability of the optimization process.

• Lack of data set: For the topic of model uncertainty quantification, there are
not yet benchmark databases designed particularly. The data sets used in this
study are from areas of CV and NLP. Nonetheless, it is one of the basements for
studying epistemic uncertainty quantification. Analyzing epistemic uncertainty
based on bias-variance decomposition may be a breakthrough in constructing
a benchmark data set that reflects the effectiveness of epistemic uncertainty
quantification techniques fairly. We will explore this further in our future work.

• Lack of standard evaluation protocol: Existing uncertainty learning tech-
niques are being evaluated based on measurable quantities such as performance
on out-of-distribution detection. However, the details of such performance eval-
uation strategy may vary for different studies, which leads to an unfair compari-
son among various techniques. Therefore, it is vital to have a standard protocol
for evaluating the effectiveness of uncertainty quantification techniques directly.
Based on the bias and variance decomposition, which is mentioned in this work,
making theoretical exploration of the quality of the uncertainty estimation is
also a good future research direction.

• Availability of data and code: This can help researchers to reproduce re-
sults, enhance their performance and conduct a fair comparison. However, the
majority of studies do not make the relevant codes and data available.

4.2. Concluding remarks

Enabling supervised learning models to quantify their uncertainty is vital for many
real-world applications such as safety-related problems. This survey first explained
the importance of addressing the epistemic uncertainty in supervised learning mod-
els and discussed it in terms of bias and variance. Then, we reviewed the epistemic
uncertainty learning techniques in supervised learning over the last five years. We
provided a hierarchical categorization of these techniques and introduced the rep-
resentative models of each category along with their applications. Specifically, we
discussed two widely used epistemic uncertainty learning techniques, i.e., Bayesian
approximation and ensemble learning. In addition, several research gaps have been
pointed out as potential future research directions. It is aimed to promote the concept
of epistemic uncertainty learning.
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