Report

Farhad

October 15, 2018

Contents:

• Research areas

• Feature selection based on Brain Storm Optimization

• Future research plan

Research areas:

- Robotics & Sensors
 - UAV control system
 - UAV fault detection and monitoring system
 - Human motion recognition
- Machine learning and evolutionary algorithms
 - Feature selection
 - Classification

Robotics & Sensors

1. Unmanned aerial vehicle (UAV) control system

Jiang, F., **Pourpanah,** F., Qi, H., (2018). Design, implementation and evaluation of a neural network based quadcopter UAV system. *IEEE Transactions on Industrial Electronics,* Manuscript ID: 18-TIE-2102 (major revision)

UAV fault detection and condition monitoring
Pourpanah, F., Zhang, B., Ma, R., Qi, H., (2018). Anomaly detection and condition monitoring of UAV motors and propellers. *IEEE conference on Sensors.* (accepted)

3. Human motion recognition

Pourpanah, F., Zhang, B., Ma, R., Qi, H., (2018). Non-Intrusive human motion recognition using distributed sparse sensors and the genetic algorithm based neural network. *IEEE conference on Sensors.* (accepted)

Feature selection

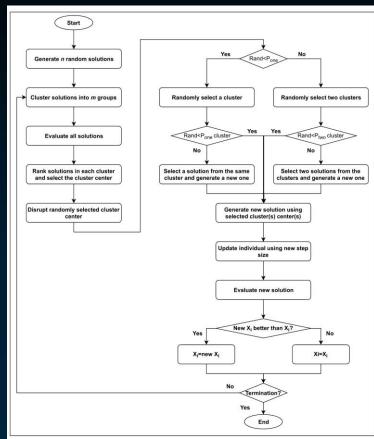
- Feature extraction and feature selection are two important pre-processing steps in Data Mining, specifically for solving classification problems.
- Feature extraction extract features from raw data.
- Feature selection is a process of removing redundant and irrelevant features from extracted features to achieve better accuracy and/or reduce the model complexity.
- Nevertheless, it is a difficult task to select a relevant and useful feature subset, particularly with high-dimensional features due to a large search space.

Feature selection

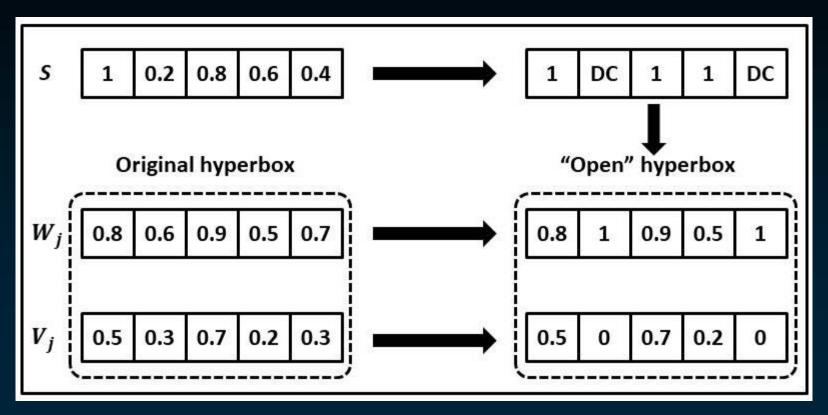
- Feature selection can be categorized into three groups:
 - Filter based methods use characteristics of training samples, i.e., distance.
 - **Embedded based** methods integrate search mechanism during learning.
 - Wrapper based methods use a classifier to operate as feedback mechanism to evaluate the effectiveness of the various feature subsets.
- Wrapper-based methods are more effective, but they are more complex and require a longer execution time.
- Traditional wrapper-based methods such as sequential forward selection (SFS) and sequential backward selection (SBS) have shown promising results, but they are computationally too expensive.
- To solve this limitation Evolutionary Computation based methods such as GA, PSO are used.

Feature selection based on Brain Storm Optimization for data classification

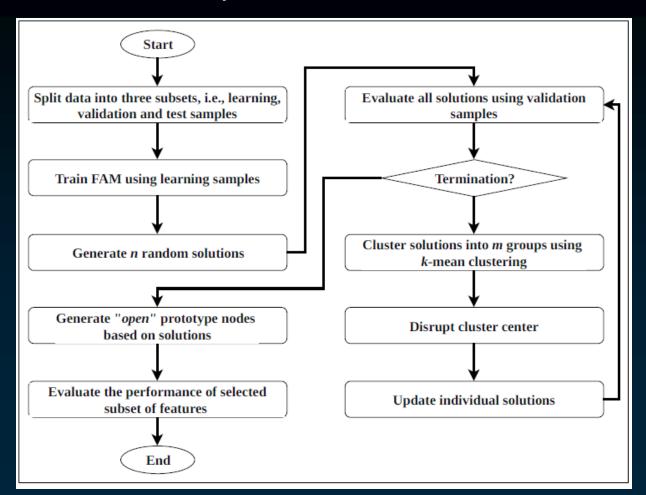
- Thus, wrapper-based methods require two elements:
 - A classification algorithm
 - A search mechanism


- Fuzzy ARTMAP (FAM), which is a supervised learning method with the capability of incremental learning, is used as classification algorithm
- BSO is used to find an optimal feature subset.
 - Error rate is used as fitness function

Brain Storm optimization (BSO)

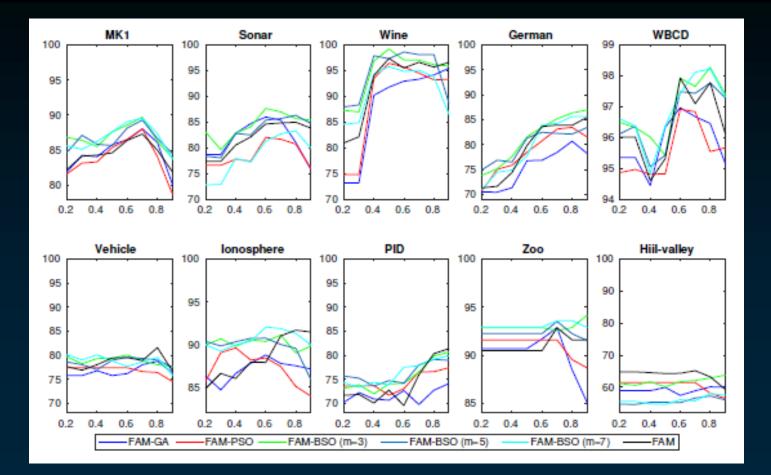

 BSO is a new and effective swarm intelligence method inspired by human brain storming process.

Algorithm 1: The procedure of the original BSO

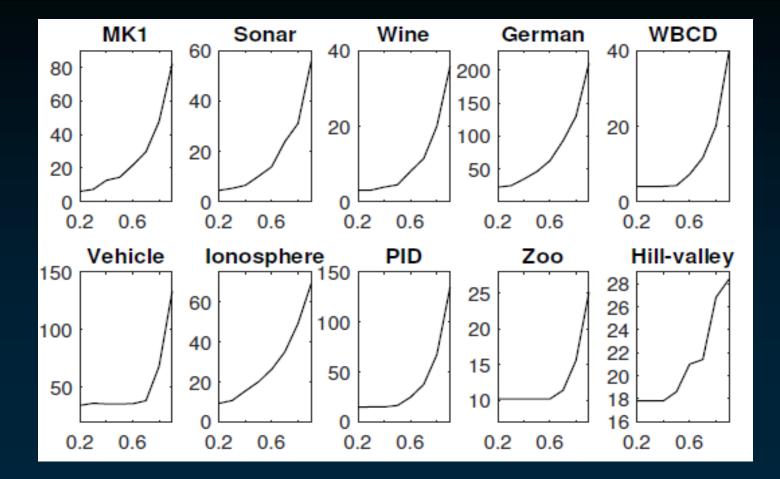

- 1 Population initialization;
- 2 while not terminated do
- 3 Evaluating individuals;
- 4 Clustering individuals;
- 5 Disrupting a cluster center;
- 6 Updating individuals;
- 7 Output individuals;

An example of generated solution, original node and open porotype node

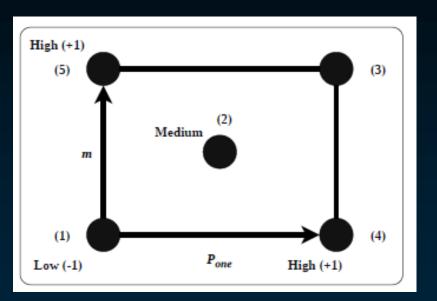
Proposed FAM-BSO


Accuracy rates

Data	FAM-BSO	PSO(3-1)	PSO(4-1)	BPSO-2	U-FAM	ACO-	GPmtfs
set	(best)	(best)	(best)	Stage(best)	[27]	\mathbf{ER}	[32]
		[43]	[43]	[57]		[1]	
MK1	84.42	85.51	84.62	85.70	-	79.53	-
	(88.19)	(90.21)	(90.21)	(89.51)	-		
Sonar	87.97	78.03	77.40	-	72.00	-	86.26
	(90.74)	(85.71)	(87.30)				
Wine	97.15	96.62	96.15	96.94	89.00	-	94.82
	(100.0)	(98.77)	(98.88)	(100.0)			
German	82.92	69.13	69.27	68.93	-	70.17	-
	(84.93)	(71.67)	(74.33)	(73.67)			
WBCD	96.49	93.02	93.78	92.98	93.00	-	96.31
	(98.83)	(94.15)	(94.74)	(92.98)			
Vehicle	81.78	85.26	85.06	84.47	53.00	79.53	78.45
	(88.65)	(87.99)	(86.61)	(85.04)			
Ionos-	91.93	86.50	87.45	89.52	-	92.12	-
phere	(94.15)	(94.29)	(92.38)	(93.33)			
PID	74.26	-	-	-	74.00	-	-
	(79.69)						
Zoo	95.71	95.62	95.64	-	-	-	-
	(98.74)	(97.14)	(97.14)				
Hill-	56.25	57.78	57.68	57.61	-	54.13	-
valley	(57.64)	(60.71)	(61.26)	(60.44)			


Average number of selected features

Data set	FAM-BSO	PSO(3-1)	PSO(4-1)	BPSO-	U-FAM	ACO	GPmtfs
		[43]	[43]	2Stage	[27]	-ER	[32]
				[57]		[1]	
MK1	83.34	107.14	83.54	80.72	-	83.03	-
Sonar	29.85	31.76	11.3	-	36.00	-	9.45
Wine	6.41	9.44	8.1	5.1	11.01	-	4.08
German	12.03	16.82	13.68	8.62	-	10.76	-
WBCD	14.84	19.06	8.12	6.68	17.01	-	6.72
Vehicle	9.03	10.58	9.54	7.3	9.00	9.86	5.37
Ionosphere	17.05	18.38	3.26	8.9	-	12	-
PID	4.01	-	-	-	7.00	-	-
Zoo	8.42	9.96	7.98	-	-	-	-
Hill-valley	48.34	60.65	13.16	37.1	-	47.63	-


Accuracy rates with different vigilance value

Number of generated prototype nodes (hidden nodes)

Real-world case study (Human motion detection)

Experiment #	Noise-free	Noisy
	(std. dev.)	(std. dev.)
Experiment 1	0.0154	0.0616
$(m=3, \text{ and } P_{one}=0)$	(1.4e-3)	(10.7e-3)
Experiment 2	0.0246	0.0669
$(m=5, \text{ and } P_{one}=0.5)$	(8.8e-3)	(13.5e-3)
Experiment 3	0.0112	0.0613
$(m=7, \text{ and } P_{one}=1)$	(5.7e-3)	(8.8e-3)
Experiment 4	0.0236	0.0658
$(m=3, \text{ and } P_{one}=1)$	(17.9e-3)	(9.5e-3)
Experiment 5	0.0098	0.0574
$(m=7, \text{ and } P_{one}=0)$	(2.4e-3)	(6.8e-3)

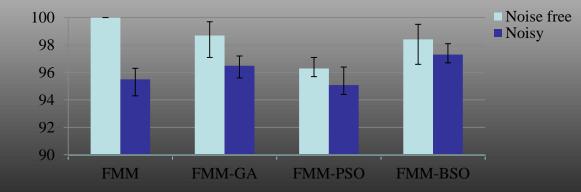
Under review manuscript

 Pourpanah, F., Shi, Y., Lim, C. P., Hao, Q., Tan, C. J., Feature selection based on brain storm optimization for data classification. *Applied Soft Computing*, Manuscript ID: ASOC-D-18-00890R1

Problems

- FAM:
 - To avoid the problem of category proliferation, FAM converts an *M*-dimensional input sample into 2*M*-dimensional. Thus search space becomes more complex and requires longer execution time.
- To overcome this solution Fuzzy Min-Max (FMM) can be used.
- BSO:
 - Uses distance *k*-means clustering to categorize solutions into *m* groups, which takes long execution to measure the distance.
- Objective space solutions can be used

Accuracy rates


Data sets	PSO	GA	SA	ALO	BBA	CS ACBFO IS	ACBFO	ISEDBFO	FMM-BSO			
	F30	GA	5 A	ALU	DDA	63		ISEDBFU	Lower	Mean	Upper	
Australian	85.5	86.1	86.2	86.1	86.5	85.4	86.9	87.3	72.56	73.46	75.37	
Bupa liver	71.1	70.1	72.3	71.2	69.2	68.9	74.2	74.8	69.30	70.90	71.70	
Cleveland	84.1	82.4	84.2	82.5	82.5	84.1	85.8	86.1	83.40	85.17	87.38	
heart	04.1	02.4	04.2	02.5	02.0	04.1	00.0	00.1	03.40	00.17	07.30	
Diabetes	76.2	77.1	77.3	76.5	77.5	77.3	77.9	77.6	80.74	82.24	85.65	
German	74.4	75.7	76.7	75.5	76.2	76.7	76.8	77.4	88.78	89.83	90.53	
lonosphere	94.8	95.3	93.7	94.1	95.9	92.8	96.2	96.6	88.84	89.59	90.98	
Sonar	85.2	87.1	85.8	88.8	90.2	89.7	93.5	92.8	88.90	89.93	91.19	
Vowel	57.2	59.6	58.3	61.6	64.8	63.9	64.9	66.6	91.84	92.52	93.09	
Thyroid	95.1	95.1	95.2	95.5	94.2	95.9	96.3	97.2	94.06	94.72	95.76	
Yeast	56.5	57.3	57.4	61.4	60.3	62.7	63.3	65.3	67.43	69.46	72.34	
Mean	78.0	78.6	78.7	79.3	79.7	79.7	81.6	82.2	82.6	83.8	85.4	

Average number of selected features

Data sets	PSO	GA	SA	ALO	BBA	CS	ACBFO	ISEDBFO	FMM-BSO
Australian	9.8	9.0	9.7	9.3	10.1	9.5	8.6	8.2	3.7
Bupa liver	5.9	5.8	5.6	5.8	5.7	5.6	5.5	5.4	3.6
Cleveland heart	8.5	8.7	9.2	8.1	7.9	8.3	7.2	6.9	6.2
Diabetes	6.3	6.6	5.5	5.1	4.8	5.4	4.2	4.6	5.1
German	16.8	15.7	14.3	13.9	15.2	14.8	13.1	12.3	14.3
lonosphere	19.2	19.5	18.9	17.3	18.2	17.8	16.8	16.1	11.9
Sonar	29.4	27.7	28.4	28.1	30.0	27.2	26.1	25.4	18.0
Vowel	9.2	8.8	8.0	7.4	8.1	7.8	6.9	6.5	9.5
Thyroid	4.1	4.3	3.4	4.0	3.6	3.7	2.8	3.0	3.7
Yeast	6.6	5.7	6.2	5.0	5.3	5.1	4.8	4.6	4.6
Mean	11.6	11.2	10.9	10.4	10.9	10.5	9.6	9.3	8.1
			. 5.0		. 510		0.0	0.0	

Real-world case study (motor fault detection)

Experiment		Noise-free		Noisy			
Experiment	Lower	Mean	Upper	Lower	Mean	Upper	
Exp. 1 (m=3, P _{one} =0)	95.00	95.91	97.40	93.86	95.58	96.30	
Exp. 2 (m=5, P _{one} =0.5)	93.50	94.51	95.60	90.80	92.30	94.60	
Exp. 3 (m=7, P _{one} =1)	91.80	93.89	95.10	90.60	92.80	94.54	
Exp. 4 (m=3, P _{one} =1)	93.50	94.20	94.70	91.45	93.24	94.53	
Exp. 5 (m=7, P _{one} =0)	96.90	97.49	98.10	94.90	96.67	97.28	

Future research plan

- Mainly will focus on machine learning and feature selection:
 - Proposing binary BSO (BBSO) for feature selection and classification
 - Adopting the structure of the proposed BBSO to tackle high-dimensional problems
 - Working on imbalance classification problems (with Salim)
- Publication plan
 - A hybrid model of fuzzy min-max and brain storm optimization for feature selection and data classification (Neurocomputing)
 - Deep learning for unmanned aerial vehicles: A comprehensive survey (IEEE Access)
 - Binary brain storm optimization in objective space for feature selection (IEEE CEC 2019)

Thank you